Causal and Probabilistic Reasoning

Slides Set 8: Introduction to Causality

Rina Dechter

(**Causal Inference in Statistics, A primer, J. Pearl, M Glymur and N. Jewell Ch1, Why, ch1**

276 slides8 F24

association

intervention & counterfactuals

http://bayes.cs.ucla.edu/PRIMER/

Why Causality?

Outline

- Simpson Paradox
- The causal Hierarchy
- Structural Causal Models

Outline

- Simpson Paradox
- The causal Hierarchy
- Structural Causal Models

- (Simpson 1951) a group of sick patients are given the option to try a new drug. Among those who took the drug, a lower percentage recover than among those who did not. However, when we partition by gender, we see that more men taking the drug recover than do men not taking the drug, and more women taking the drug recover than do women not taking the drug!
- We record the recovery rates of 700 patients who were given access to the drug. 350 patients chose to take the drug and 350 patients did not. We got:

What is the right answer?

So, given the results of the study, should the doctor prescribe the drug for a man? For a woman? Or when gender is unknown?

- (Simpson 1951) a group of sick patients are given the option to try a new drug. Among those who took the drug, a lower percentage recover than among those who did not. However, when we partition by gender, we see that more men taking the drug recover than do men not taking the drug, and more women taking the drug recover than do women not taking the drug!
- We record the recovery rates of 700 patients who were given access to the drug. 350 patients chose to take the drug and 350 patients did not. We got:

The answer cannot be found in the data!! We need to know the story of how the data was generated.

• The same phenomenon with continuous variables. Example: Impact of exercise on Cholesterol for different age groups:

Because, Age is a common cause of both treatment (exercise) and outcome (cholesterol). So we should look at the age-segregated data in order to compare same-age people, and thereby eliminate the possibility that the high exercisers in each group we examine are more likely to have high cholesterol due to their age, and not due to exercising.

- Segregated data is not always the right way. What if we record blood (BP) pressure (post intervention) instead of gender?
- We know that drug lower blood pressure but also has a toxic effect.
- Would you recommend the drug to a patient?
- In the general population, the drug might improve recovery rates because of its effect on blood pressure. But in the subpopulations—the group of people whose post-treatment BP is high and the group whose post-treatment BP is low—we of course would not see that effect; we would only see the drug's toxic effect.
- In this case the aggregated data should be consulted.
- **Same data opposite conclusions!!!**

• The fact that treatment affect BP and not the opposite was not in the data. Indeed in Statistics it is often stressed that "correlation is not causation", so there is no statistical method that can determine the causal story from the data alone. Therefore, there is no statistical method that can aid in the decision.

- We can make causal assumptions because we know that drug cannot affect gender. "treatment does not cause sex" cannot be expressed in the data.
- So, what do we do? How can we make causal assumptions and make causal inferences?

What is Wrong With These Claims?

• "Data show that income and marriage have a high positive correlation. Therefore, your earnings will increase if you get married."

● "Data shows that as the number of fires increase, so does the number of firefighters. Therefore, to cut down on fires, you should reduce the number of firefighters."

● "Data show that people who hurry tend to be late to their meetings. Don't hurry, or you'll be late."

For Causal Inference We Need:

1. A working definition of "causation"

2. A method by which to formally articulate causal assumptions—that is, to create causal models

3. A method by which to link the structure of a causal model to features of data

4. A method by which to draw conclusions from the combination of causal assumptions embedded in a model and data.

Outline

- Simpson Paradox
- The causal Hierarchy
- Structural Causal Models
- Product form of Graphical models.

Ladder of Causation`

seeing, doing, and imagining.

- Most animals, learning machines are on the first rung, learning from association.
- Tool users, such as early humans, are on the second rung, if they act by planning and not merely by imitation. We can also use experiments to learn the effects of interventions, and presumably this is how babies acquire much of their causal knowledge.
- On the top rung, counterfactual learners can imagine worlds that do not exist and infer reasons for observed phenomena.

Darwiche 2017: "Human-Level Intelligence or Animal-Like Abilities?"

276 slides8 F24

The Firing Squad

The story: Suppose that a prisoner is about to be executed. First, the court has to order the execution. The order goes to a captain, who signals the soldiers on the firing squad (A and B) to fire.

(CO, C, A, B, D) is a true/false variable

Ladder 1: If the prisoner is dead, does that mean the court order was given?

Yes. Logic Alternatively, suppose we find out that A fired. What does that tell us about B? Yes.

Ladder 2: we can ask questions of intervention. What if soldier A decides on his own initiative to fire, without waiting for the captain's command? Will the prisoner be dead or alive?

Court Order (CO)

Death (D)

Captain (C)

 \boldsymbol{B}

Did B fire?

 $A = True$

The Firing Squad, Counterfactuals

- **Ladder 3: Suppose the prisoner is lying** dead on the ground. Using level one implies that A shot, B shot, the captain gave the signal, and the court gave the order.
- If, contrary to fact, A had decided not to shoot, would the prisoner be alive?
- This question requires us to compare the real world with a fictitious and contradictory world where A didn't shoot.
- In the fictitious world, the arrow leading into A is erased and A is set to False, but the past history of A stays the same as it was in the real world.

In the firing squad example we ruled out uncertainties: maybe the captain gave his order a split second after rifleman A decided to shoot, maybe rifleman B's gun jammed, etc. To handle uncertainty we need information on how likely the alternatives are to occur.

Big picture - Pearl's Causal Hierarchy

Big picture - Pearl's Causal Hierarchy

Outline

- Simpson Paradox
- The causal Hierarchy
- Structural Causal Models
- Product form of Graphical models.

Outline

- Simpson Paradox
- The causal Hierarchy
- Structural Causal Models; Informal
- Product form of Graphical models.

Structural Causal Models (SCM), M

A structural causal model describes how nature assigns values to variables of interest.

- Two sets of variables, U and V and a set of functions **M: (U,V,F)**
- Each function assigns value to a variable in V based on the values of the other variables.
- We say that Variable X is a direct cause of Y if it appears in the function of Y.
- U are exogenous variables (external to the model. We do not explain how they are caused)..
- Variables in U have no parents.

SCM 1.5.1 (Salary Based on Education and Experience)

$$
U = \{X, Y\}, \quad V = \{Z\}, \quad F = \{f_Z\}
$$

$$
f_Z : Z = 2X + 3Y
$$

 $_{276 \text{ slides 8 F24}}$ Z- salary, X – years in school, Y – years in the profession

Structural Causal Models (SCM), M

- Every SCM is associated with a graphical causal diagram.
- The graphical model G for a SCM M contains one node for each variable in M. If, in M, the function f_x for a variable X contains variable Y (i.e., if X depends on Y for its value), then, in G , there will be a directed edge from Y to X.
- We will deal primarily with SCMs that are acyclic graphs (DAGs).
- A graphical definition of causation: If, in a graphical model, a variable X is the child of another variable Y then Y is a direct cause of X; if X is a descendant of Y, then Y is a potential cause of X .

276 slides8 F24

SCM 1.5.1 (Salary Based on Education and Experience)

$$
U = \{X, Y\}, \quad V = \{Z\}, \quad F = \{f_Z\}
$$

$$
f_Z : Z = 2X + 3Y
$$

X and Y are direct causes for Z

Structural Causal Models (SCM)

SCM 1.5.2 (Basketball Performance Based on Height and Sex)

$$
V = \{\text{Height, Sex, Performance}\}, \quad U = \{U_1, U_2, U_3\}, \quad F = \{f1, f2\}
$$
\n
$$
\text{Seex} = U_1
$$
\n
$$
\text{Height} = f_1(\text{Sex}, U_2)
$$
\n
$$
\text{Performance} = f_2(\text{Height, Sex}, U_3)
$$

U are unmeasured terms that we do not care to name. Random causes we do not care about. U are sometime called error terms.

The graphical causal model provides lots of information about what is going on: X causes Y and Y causes Z

Outline

- Simpson Paradox
- The causal Hierarchy
- Structural Causal Models; The big picture
- Product form of Graphical models.

Traditional Stats-ML Inferential Paradigm

•**Approach:** Find a good representation for the data.

Inference

e.g., Infer whether customers who bought product *A* would also buy product *B* — or, compute $Q = P(B/A)$.

276 slides8 F24

From Statistical to Causal Analysis

Inference

e.g., Estimate *P'(sales)* if we double the price Estimate *P'(cancer)* if we ban smoking

P is tied to the data; P' is never observed, no data. 11 Q: How does *P* (factual) changes to *P'(hypothetical)*? Needed: New formalism to represent both P & P'.

New Oracle - The Structural Causal Model Paradigm

Inference

M – Invariant strategy (mechanism, recipe, law, protocol) by which Nature assigns values to variables in the analysis.

P - model of data, *M* - model of reality

276 slides8 F24

The Big Picture

Modeling Reality with SCM

- The population of a certain city is falling ill from a contagious disease. There is a drug believed to help patients survive the infection.
- Unknown to the physicians, folks with good living conditions (rich) will always survive.
- While some people have a gene that naturally fights the disease and don't require treatment, they will develop an allergic reaction if treated, which is fatal under poor living conditions.

Reality (unknown to physicians): rich $=$ alive anyways $poor₁ = die anyways (no gene)$ $poor₂ = die iff take the drug (gene)$ \Box = rich ∪ poor1 ∪ poor2 $P(\text{rich}) = P(\text{poor})$ $P(poor₁) = P(poor₂)$

Variables we observe (**V**):

- *R* $(R=1$ for rich, $=0$ for poor)
- *D* (*D*=*1* for taking the drug)
- *A* (*A=1* if person ends up alive)

Variables we observe (**V**): *R* (*R=1* for rich, *=0* for poor) *D* (*D*=*1* for taking the drug) *A* (*A=1* if person ends up alive) Variables that are unobserved (**U**):

 U_g (U_g = 1 has genetic factor, $=$ 0 o/w) *Ur* (Other factors affecting Wealth)

 $\overline{}$

Variables we observe (**V**):

- *R* $(R=1$ for rich, $=0$ for poor)
- *D* (*D*=*1* for taking the drug)
- *A* (*A=1* if person ends up alive)

How are the observed variables determined?

$$
R \leftarrow U_r
$$

$$
D \leftarrow R
$$

$$
A \leftarrow R \vee (U_g \wedge \neg D)
$$

Variables that are unobserved (**U**):

 U_g (U_g = 1 has genetic factor, $=$ 0 o/w) *Ur* (Other factors affecting Wealth)

- Rich is always alive.
- Poor will survive only if they have the gene and don't take the drug.

Outline

- Simpson Paradox
- The causal Hierarchy
- Structural Causal Models; formal
- Product form of Graphical models.
The New Oracle: Structural Causal Models

Definition: A structural causal model (SCM) M is a 4 tuple $\langle V, U, \mathcal{F}, P(u) \rangle$, where

- $V = \{V_1, ..., V_n\}$ are endogenous variables;
- *^U= {U1,...,Um}* are exogenous variables;
- ^ℱ*= {f1,..., fn}* are functions determining *^V*, e.g. $y = \alpha + \beta X + U_Y$ Not regression!! $\left\{ \n\begin{array}{l}\n\overline{\n\begin{array}{c}\n\overline{\n\end{array}}\n\overline{\n\begin{array}{c}\n\overline{\n\end{array}}\n\overline{\n\begin{array}{c}\n\overline{\n\end{array}}\n\overline{\n\begin{array}{c}\n\overline{\n\end{array}}\n\overline{\n\begin{array}{c}\n\overline{\n\end{array}}\n\overline{\n\begin{array}{c}\n\overline{\n\end{array}}\n\overline{\n\begin{array}{c}\n\overline{\n\end{array}}\n\overline{\n\begin{array}{c}\n\overline{\n\end{array}}\n\overline{\n\$
- *P(u)* is a distribution over *^U*

Axiomatic Characterization:

(Galles-Pearl, 1998; Halpern, 1998).

• \mathcal{F} can be seen as a mapping from $U \longrightarrow V$

$$
(u_1, u_2, ..., u_k) \longrightarrow \boxed{\mathcal{F}} \longrightarrow (v_1, v_2, ..., v_n)
$$

- When the input *U* is a set of random vars, then the output *V* also becomes a set of r.v's.
- P(v) is the layer 1 of the PCH, known as the observational (or passive) prob. distribution.
- Each event, person, observation, etc... corresponds to an instantiation of $U = u$.

Example: (Drug, Rich, Alive)

• Each citizen follows in one of four groups according to the unobservables in the model:

$$
\mathcal{F} = \begin{cases} f_R: U_r \\ f_D: R \\ f_A: R \vee (U_g \wedge \neg D) \end{cases}
$$

 ${\mathcal F}$

$$
(U_r=1, U_g=1) \longrightarrow (R=1, D=1, A=1)
$$

\n
$$
(U_r=1, U_g=0) \longrightarrow (R=1, D=1, A=1)
$$

\n
$$
(U_r=0, U_g=1) \longrightarrow (R=0, D=0, A=1)
$$

\n
$$
(U_r=0, U_g=0) \longrightarrow (R=0, D=0, A=0)
$$

In our example:

• Events in the U-space translate into events in the space of *V*.

$$
\mathcal{F} = \begin{cases} f_R: U_r \\ f_D: R \\ f_A: R \vee (U_g \wedge \neg D) \end{cases}
$$

$$
P(u)
$$
\n
$$
1/4 \quad | \quad (U_r=1, U_s=1) \rightarrow (R=1, D=1, A=1) \quad | \quad \}
$$
\n
$$
1/4 \quad | \quad (U_r=1, U_s=0) \rightarrow (R=1, D=1, A=1) \quad | \quad \}
$$
\n
$$
1/4 \quad | \quad (U_r=0, U_s=1) \rightarrow (R=0, D=0, A=1) \quad | \quad \}
$$
\n
$$
1/4 \quad | \quad (U_r=0, U_s=0) \rightarrow (R=0, D=0, A=0) \quad | \quad \}
$$
\n
$$
1/4 \quad | \quad (U_r=0, U_s=0) \rightarrow (R=0, D=0, A=0) \quad | \quad \}
$$
\n
$$
1/4 \quad | \quad (U_r=0, U_s=0) \rightarrow (R=0, D=0, A=0) \quad | \quad \}
$$

• [Def. 2, PCH chapter] An SCM $M = \langle V, U, \mathcal{F},$ $P(u)$ defines a joint probability distribution $P^{M}(V)$ s.t. for each $Y \subseteq V$:

$$
P^{M}(y) = \sum_{u|Y(u)=y} P(u)
$$

• $\mathscr F$ can be seen as a mapping from $U\longrightarrow V$

$$
(u_1, u_2, ..., u_k) \longrightarrow \boxed{\mathcal{F}}
$$

_{276 slides8 F24} $(v_1, v_2, ..., v_n)$

- Every SCM *M* induces a causal diagram
- Represented as a DAG where:
	- Each $V_i \in V$ is a node,
	- There is $W \longrightarrow V_i$ if for $W \in P_i$,

C V_i $|V_j|$ *A B* $V_i \leftarrow f_i(A, B, U)$ V_j ← f_j (*C,U*)

- Every SCM *M* induces a causal diagram
- Represented as a DAG where:
	- Each $V_i \in V$ is a node,
	- There is $W \longrightarrow V_i$ if for $W \in Pa_i$,
	- There is $V_i \leftarrow V_j$ whenever $U_i \bigcap U_j \neq \emptyset$.

 $V_i \leftarrow f_i(A, B, U)$ V_j ← f_j (*C,U*)

- Every SCM *M* induces a causal diagram
- Represented as a DAG where:
	- Each $V_i \in V$ is a node,
	- There is $W \longrightarrow V_i$ if for $W \in Pa_i$,
	- There is $V_i \leftarrow V_j$ whenever $U_i \bigcap U_j \neq \emptyset$.

 $V_i \leftarrow f_i(A, B, U)$ V_j ← f_j (*C,U*)

Causal Diagram — Definition

- *Causal Diagram* [Def. 13, PCH chapter] Consider an SCM $M = \langle V, U, \mathcal{F}, P(u) \rangle$. Then G is said to be a causal diagram (of *M*) if constructed as follows:
- 1. add vertex for every endogenous variable $V_i \in V$.
- 2. add edge $(V_j \rightarrow V_i)$ for every V_i , $V_j \subset V$ if *V*^{*j*} appears as argument of $f_i \in \mathcal{F}$.
- 3. add a bidirected edge $(V_j \leftarrow \rightarrow V_i)$ for every V_i , $V_j \subset V$ if U_i , U_j ⊂ U are correlated or the corresponding functions f_i, f_j share some $U \in U$ as argument.

Recall our medical example:

- Endogenous (observed) variables *V*:
	- $R(R=1 \text{ for rich}, =0 \text{ for poor})$
	- *D* (*D=1* for taking the drug, *D=0* o/w) •
	- $A(A=1)$ if person ends up alive, $=0$ o/w)
- Exogenous (unobserved) Variables *U*:
	- *Ur* (Wealthiness factors)
	- U_g (=1 has the genetic factor, $=$ 0 o/w)
- Distribution over *U*: $P(U_r)=1/2$, $P(U_g)=1/2$

$$
\mathcal{F} = \begin{cases} R \leftarrow U_r \\ D \leftarrow R \\ A \leftarrow R \vee (U_g \wedge \neg D) \end{cases}
$$

Another example:

- *^V ⁼{ Smoking, Cancer }*
- $\boldsymbol{U} = \{ U_s, U_c, U_g \}$ unobserved factors
	- \bullet \mathcal{F} : $Smoking \leftarrow f_{\text{Smoking}}(U_s, U_g)$ $Cancer \leftarrow f_{Cancer}(Smoking, U_c, U_g)$

Remark 1. The mapping is just 1-way (i.e., from a SCM to a causal graph) since the graph itself is compatible with infinitely many SCMs with the same scope (the same functions signatures and compatible exogenous distributions).

Remark 2. This observation will be central to causal inference since, in most practical settings, researchers may know the scope of the functions, for example, but not the details about the underlying mechanisms.

Causal Diagrams

• Convention. The unobserved variables are left implicit in the graph.

The Emergence of the First Layer

In our example,

The joint distribution over the observables $P(v)$ is equal to:

$$
P(R = r, D = d, A = a) = \sum_{u_r, u_g} P(R = r, D = d, A = a, U_r = u_r, U_g = g)
$$

For short,

$$
P(r, d, a) = \sum_{u_r, u_g} P(r, d, a, u_r, u_g)
$$

The Emergence of the First Layer

In the second example,

The joint probability distribution over the observed variables (V), *Smoking* and *Cancer*, is given by

$$
P(s, c) = \sum_{u_s, u_g, u_c} P\left(s, c, u_s, u_g, u_c\right)
$$

Recall, this distribution is called observational distribution. Sometimes, it's also called passive or non-experimental distribution. 276 slides8 F24

What about conditional independence?

Does the causal diagram give us any clues about the (in)dependence relations in the obs. distribution P(V)?

- •Is *T* independent of *W*?
- Is *W* independent of T ?
- Is *Z* independent of *T*?
- •Is *Z* independent of *^X*?
- •Is *Y* independent of *^W*?
- •Is *Y* independent of *W* if we know the value of *X*?

$$
M = \begin{cases} Z \leftarrow f_Z(u_z) \\ X \leftarrow f_x(u_x) \\ W \leftarrow f_W(z, x, u_w) \\ Y \leftarrow f_Y(x, u_y) \\ T \leftarrow f_T(w, u_t) \\ \text{Prop. 2} \\ U_z \\ \downarrow \\ U_z \\ \downarrow \\ U_x \\ \downarrow \\ U_y \\ \downarrow \\ U_z
$$

Outline

- Structural Causal Models
- Markov and semi-Markov
- Product form of Markov SCM
- d-seperation
- Bayesian networks

What the Diagram Encodes

• *M* induces $P(V)$:

$$
P(\mathbf{v}) = \sum_{\mathbf{u}} P(\mathbf{v}, \mathbf{u}),
$$

• Using the chain rule and following a topological order,

$$
P(\mathbf{v}) = \sum_{\mathbf{u}} P(\mathbf{u}) \prod_{V_i \in \mathbf{V}} P(\nu_i | \nu_1, \dots, \nu_{i-1}, \mathbf{u}),
$$

• An observed variable is fully determined by its observed and unobserved parents; also $\{pa_i, u_i\} \subseteq \{v_1, ..., v_{i-1}, u\}$, then

$$
P(v_i|v_1,...,v_{i-1},u) = P(v_i|pa_i,u_i)
$$

What the Diagram Encodes

• Since *G* is a directed acyclic graph, there exists a topological order over *V* such that every variable goes after its parents, i.e., $Pa_i < V_i$.

What the Diagram Encodes

• The distribution $P(V)$ decomposes as:

$$
P(\mathbf{v}) = \sum_{\mathbf{u}} P(\mathbf{u}) \prod_{V_i \in V} P(v_i | v_1, ..., v_{i-1}, \mathbf{u})
$$

\n
$$
= \sum_{\mathbf{u}} P(\mathbf{u}) \prod_{V_i \in V} P(v_i | pa_i, u_i)
$$

\n
$$
U_r
$$

\n
$$
U_r
$$

\n
$$
U_s
$$

\n
$$
P(r, d, a) = \sum_{u_n, u_g} P(u_n, u_g) P(r | u_r) P(d | r) P(a | r, d, u_g)
$$

\n
$$
D \longrightarrow A
$$

\n
$$
V_s
$$

\n
$$
P(s, c) = \sum_{u_s, u_g, u_c} P(u_s, u_g, u_c) P(s | u_g, u_s) P(c | s, u_g, u_c)
$$

\n
$$
Smoking(S) \longrightarrow Cancer(C)
$$

\n
$$
276 \text{ slides 8 F24}
$$

Markovian Factorization

• Suppose no variable in U is a parent of two variables in V (observables) (i.e., $\forall_{i,j}$ $U_i \cap U_j = \emptyset$), then the model is called Markovian. We have:

$$
P(\mathbf{v}) = \sum_{\mathbf{u}} P(\mathbf{u}) \prod_{V_i \in \mathbf{V}} P(v_i | pa_i, u_i)
$$
\nIn Markovian models
\nSCM yields a Bayesian ne
\nOver the visible variables
\n
$$
= \sum_{\mathbf{u}} \prod_{V_i \in \mathbf{V}} P(v_i | pa_i, u_i) P(u_i)
$$
\n
$$
= \sum_{\mathbf{u}} \prod_{V_i \in \mathbf{V}} P(v_i | pa_i, u_i) P(u_i | pa_i)
$$
\n
$$
= \prod_{V_i \in \mathbf{V}} \sum_{u_i} P(v_i, u_i | pa_i) = \prod_{V_i \in \mathbf{V}} P(v_i | pa_i)
$$
\n
$$
= \prod_{V_i \in \mathbf{V}} \sum_{u_i} P(v_i, u_i | pa_i) = \prod_{V_i \in \mathbf{V}} P(v_i | pa_i)
$$
\n
$$
P(v_i | pa_i)
$$
\n
$$
= \prod_{V_i \in \mathbf{V}} P(v_i | pa_i) = \prod_{V_i \in \mathbf{V}} P(v_i | pa_i)
$$
\n
$$
= \prod_{V_i \in \mathbf{V}} P(v_i | pa_i)
$$
\n
$$
= \prod_{V_i \in \mathbf{V}} P(v_i | pa_i) = \prod_{V_i \in \mathbf{V}} P(v_i | pa_i)
$$
\n
$$
= \prod_{V_i \in \mathbf{V}} P(v_i | pa_i) = \prod_{V_i \in \mathbf{V}} P(v_i | pa_i)
$$
\n
$$
= \prod_{V_i \in \mathbf{V}} P(v_i | Pa_i) = \prod_{V_i \in \mathbf{V}} P(v_i | Pa_i)
$$

276 slides8 F24

a Bayesian network

From Bayesian Networks to SCM

- Endogenous (visible) variables V
	- Season, Sprinkler, Rain, Wet…
- Exogenous (latent) variables U
	- Temp, Humidity, Day, Month
- V are deterministic $\left(\right.$ $\right)$ given parents
	- $v_i = f_i(pa_i, u_i)$
- Randomness arises from U
	- $(u_1,\ldots,u_m) \sim p(U)$
- We can only observe the variables V
	- SCM defines a **causal diagram**

and the **observational distribution** p(V)

$$
p(V) = \sum_{\mathbf{u}} p(\mathbf{u}) \prod_{i} p(V_i | pa_i, u_i)
$$

Ex: Sprinkler

From Bayesian Networks (BN) to Causal BN (CBN)

- Endogenous (visible) variables V
	- Season, Sprinkler, Rain, Wet…
- Exogenous (latent) variables U
	- Temp, Humidity, Day, Month
- V are CPTs given parents

•

- P(Vi | pa_i,ui) $v_i = f_i(p_{a_i}, u_i)$
- Randomness arises from U
	- $(u_1,\ldots,u_m) \sim p(U)$
- We can only observe the variables V
	- SCM defines a **causal diagram** and the **observational distribution** p(V)

$$
p(V) = \sum_{\mathbf{u}} p(\mathbf{u}) \prod_{i} p(V_i | pa_i, u_i)
$$

Causal Diagram

A graph over the visible variables V that describes their causal structure

Special Cases

Markovian

• Each U_i has no parents, one child (equivalent to a Bayesian network)

Semi-Markovian

• Each U_i has no parents, ≤ 2 children

Observational Distribution $p(V) = \sum p(\mathbf{u}) \prod p(V_i | pa_i, u_i)$

 $\mathbf u$

visible and latent parents of Vⁱ

Outline

- Structural Causal Models
- Product form of Markov SCM
- d-separation (review)
- Bayesian networks (review)

Is there a set *A* such that the separation statement $(W \perp Z / A)$ holds?

Is there a set *A* such that the separation statement $(W \perp Z / A)$ holds?

Path 1: $W \leftarrow T \rightarrow Z$

Is there a set *A* such that the separation statement $(W \perp Z / A)$ holds?

Path 1: $W \leftarrow T \rightarrow Z$

Path 2: $W \longrightarrow X \longrightarrow Z$

Is there a set *A* such that the separation statement $(W \perp Z / A)$ holds?

Path 1: $W \leftarrow T \rightarrow Z$

Path 2: $W \longrightarrow X \longrightarrow Z$

Path 3: $W \rightarrow X \rightarrow Y \rightarrow Z$

Is there a set *A* such that the separation statement $(W \perp Z / A)$ holds?

Path 1:
$$
W \leftarrow \blacktriangleright Z
$$

Path 2: $W \rightarrow \blacktriangleright Z$

Path 3: $W \rightarrow X \rightarrow Y \rightarrow Z$

Is there a set *A* such that the separation statement $(W \perp Z / A)$ holds?

Path 1:
$$
W \leftarrow \boxed{1} \rightarrow Z
$$

Path 2: $W \rightarrow \boxed{1} \rightarrow Z$

Path 3: $W \longrightarrow X \longleftarrow Z$ = $W \longrightarrow X \longleftarrow U \longrightarrow Y \longleftarrow Z$

Is there a set *A* such that the separation statement $(W \perp Z / A)$ holds?

Path 1:
$$
W \leftarrow \boxed{1} \rightarrow Z
$$

Path 2: $W \rightarrow \boxed{1} \rightarrow Z$

 P ath 3: $W \rightarrow X \rightarrow Y \leftarrow Z$ = $W \rightarrow X \leftarrow U \rightarrow Y \leftarrow Z$

Is there a set *A* such that the separation statement $(W \perp Z / A)$ holds?

Path 1:
$$
W \leftarrow \blacktriangleright Z
$$

Path 2: $W \rightarrow \blacktriangleright Z$

Path 1 and 2 need to be blocked, Path 3 is naturally blocked:

 $A = \{T, X\}$ suffices.

 P ath 3: $W \rightarrow X \rightarrow Y \leftarrow Z$ = $W \rightarrow X \leftarrow U \rightarrow Y \leftarrow Z$

Is there a set *A* such that the separation statement $(R, Z \perp\!\!\!\perp S/A)$ holds?

Is there a set *A* such that the separation statement $(R, Z \perp\!\!\!\perp S/A)$ holds?

Path 1: $R \rightarrow Y \rightarrow S$

Is there a set *A* such that the separation statement $(R, Z \perp\!\!\!\perp S/A)$ holds?

Path 1: $R \rightarrow Y \rightarrow S$

Path 2: $Z \rightarrow Y \rightarrow S$

Is there a set *A* such that the separation statement $(R, Z \perp\!\!\!\perp S/A)$ holds?

Path 1: $R \rightarrow Y \rightarrow S$

Path 2: $Z \rightarrow Y \rightarrow S$

Path 3: $Z \rightarrow Y \rightarrow S$

Is there a set *A* such that the separation statement $(R, Z \perp S / A)$ holds?

Path 1: $R \rightarrow Y \rightarrow S$

Path 2: $Z \rightarrow Y \rightarrow S$

Path 3: $Z \rightarrow Y \rightarrow S$

 $Path 4: Z \longleftarrow T \longrightarrow W \longrightarrow X \longleftarrow Y \longrightarrow S$

Is there a set *A* such that the separation statement $(R, Z \perp S / A)$ holds?

Is there a set *A* such that the separation statement $(R, Z \perp S / A)$ holds?

A={Y} suffices.

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1: $W \rightarrow X \rightarrow Z \rightarrow Y$

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1: $W \rightarrow X \rightarrow Z \rightarrow Y$

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1: $W \rightarrow X \rightarrow Z \rightarrow Y$ *{X}* or *{Z}* or *{X, Z}*

$$
W \longrightarrow X \longrightarrow Z \longrightarrow Y
$$

\n
$$
S
$$

Path 2: $W \leftarrow T \rightarrow Z \rightarrow Y$

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1:
$$
W \rightarrow X \rightarrow Z \rightarrow Y
$$
 {X} or *t*

It the following equations:

\n
$$
W \longrightarrow X \longrightarrow Z \longrightarrow Y
$$
\n
$$
S
$$

 \mathbf{T}

Path 2: $W \leftarrow T \rightarrow Z \rightarrow Y$

$$
\boxed{\n{T} \text{ or } \n{Z} \text{ or } \n{T, Z}
$$

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1:
$$
W \longrightarrow X \longrightarrow Z \longrightarrow Y
$$
 {X} or {Z}

Path 2:
$$
W \longleftarrow T \longrightarrow Z \longrightarrow Y
$$
 {T} or *{Z}* or *{T, Z}*

$$
W \longrightarrow X \longrightarrow Z
$$

T

Path 3: $W \longrightarrow X \longleftrightarrow Y$

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1:
$$
W \longrightarrow X \longrightarrow Z \longrightarrow Y
$$
 {X} or {Z}

Path 2:
$$
W \leftarrow T \rightarrow Z \rightarrow Y
$$

$$
\{X\} \text{ or } \{Z\} \text{ or } \{X, Z\}
$$

T

 $W \longrightarrow X \longrightarrow Z$

$$
\boxed{\{T\} \text{ or } \{Z\} \text{ or } \{T, Z\}}
$$

Path 3: $W \longrightarrow X \longleftrightarrow Y$

$$
\fbox{ not } X
$$

S

Y

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1:
$$
W \longrightarrow X \longrightarrow Z \longrightarrow Y
$$
 27

Path 2: $W \leftarrow T \rightarrow Z \rightarrow Y$

$$
W \longrightarrow X \longrightarrow Z
$$

\n
$$
\longrightarrow
$$

$$
X \longrightarrow Z
$$

\n
$$
Z
$$

\n
$$
\longrightarrow
$$

$$
Z
$$

\n
$$
Z
$$

\n
$$
\longrightarrow
$$

$$
Z
$$

\n
$$
Z
$$

\n
$$
\longrightarrow
$$

$$
Z
$$

\n
$$
Z
$$

\n
$$
\longrightarrow
$$

$$
Z
$$

\n
$$
Z
$$

\n
$$
\longrightarrow
$$

$$
Z
$$

T

Path 3: $W \longrightarrow X \longmapsto Y$

not *X*

S

Y

T

 $W \longrightarrow X \longrightarrow Z$

{T} or *{Z}* or *{T, Z}*

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1:
$$
W \rightarrow X \rightarrow Z \rightarrow Y
$$

\nPath 2: $W \leftarrow T \rightarrow Z \rightarrow Y$
\n $\begin{array}{c}\nTf \text{ or } (Z) \text{ or } (T, Z) \\
Tf \text{ or } (Z) \text{ or } (T, Z)\n\end{array}$ \n
\nPath 3: $W \rightarrow X \leftrightarrow Y$ not x

Path 4: $W \leftarrow T \rightarrow Z \leftarrow X \leftarrow Y$

S

Y

T

 $W \longrightarrow X \longrightarrow Z$

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1:
$$
W \rightarrow X \rightarrow Z \rightarrow Y
$$

\nPath 2: $W \leftarrow T \rightarrow Z \rightarrow Y$
\nPath 3: $W \rightarrow X \leftrightarrow Y$
\nPath 4: $W \leftarrow T \rightarrow Z \rightarrow X \leftrightarrow Y$
\nPath 5: $W \rightarrow X \rightarrow Y$
\n $W \rightarrow X \rightarrow Y$
\n $W \rightarrow X \rightarrow Y$
\n $W \rightarrow Y \rightarrow Z \rightarrow Y$
\n $W \rightarrow T \rightarrow Z \rightarrow X \rightarrow Y$
\n $W \rightarrow T \rightarrow Z \rightarrow Y$

S

Y

T

 $W \longrightarrow X \longrightarrow Z$

S

Y

R

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1: $W \rightarrow X \rightarrow Z \rightarrow Y$	$\sum_{Z} \text{For } \{Z\} \text{ or } \sum_{Z} \text{ or } \sum_{Y} \text{ or } \{T\} \text{$
---	---

 P ath 4: $W \longleftarrow T \longrightarrow Z \longleftarrow X \longleftarrow Y$ (*T}* or \sum_{i} *{T}* or \sum_{i} *XX}* or *{T, Z}* or *{T ,X,Z}* 276 slides 8

T

 $W \longrightarrow X \longrightarrow Z$

Y

R

Is there a set *A* such that the separation statement $(W \perp Y / A)$ holds?

Path 1: $W \rightarrow X \rightarrow Z \rightarrow Y$ Path 2: $W \leftarrow T \rightarrow Z \rightarrow Y$ Path 3: $W \longrightarrow X \longmapsto Y$ *S* suffice? *{T}* or *{Z}* or *{T, Z}* Does *A={T, Z}* not *X { X}*or *{Z}* or *{X , Z}* P ath 4: $W \longleftarrow T \longrightarrow Z \longleftarrow X \longleftarrow Y$ (*T}* or \sum_{i} *{T}* or \sum_{i} *XX}* or *{T, Z}* or

 276 slides 8

{T ,X,Z}

Is there a set *A* such that the separation statement $(W \perp Y / A)$ holds?

T

 $W \longrightarrow X \longrightarrow Z$

Y

T

 $W \longrightarrow X \longrightarrow Z$

S

Y

R

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1: $W \rightarrow X \rightarrow Z \rightarrow Y$	For $\{Z\}$ or $\sum_{Z} Y$
Path 2: $W \leftarrow T \rightarrow Z \rightarrow Y$	or $\{T\}$ or $\{Z\}$ or $\{T, Z\}$

\nPath 3: $W \rightarrow X \leftrightarrow Y$

\nnot X

 P ath 4: $W \longleftarrow T \longrightarrow Z \longleftarrow X \longleftarrow Y$ (*T}* or \sum_{i} *{T}* or \sum_{i} *XX}* or *{T, Z}* or *{T ,X,Z}* 276 slides 8

Is there a set *A* such that the separation statement $(W \perp Y / A)$ holds?

T

 $W \longrightarrow X \longrightarrow Z$

Y

T

 $W \longrightarrow X \longrightarrow Z$

Y

R

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1:
$$
W \rightarrow X \rightarrow Z \rightarrow Y
$$

\nPath 2: $W \leftarrow T \rightarrow Z \rightarrow Y$
\nPath 3: $W \rightarrow X \leftrightarrow Y$
\n Z
\nPath 4: $W \leftarrow T \rightarrow Z \leftarrow X \leftrightarrow Y$
\n Z
\n $W \rightarrow X \leftrightarrow Y$
\n $W \rightarrow X \rightarrow Y$
\n $W \rightarrow Z \rightarrow Y$

{T ,X,Z} 276 slides8 F24

Is there a set *A* such that the separation statement $(W \perp\!\!\!\perp Y/A)$ holds?

Path 1:
$$
W \rightarrow X \rightarrow Z \rightarrow Y
$$

Path 2:
$$
W \leftarrow T \rightarrow Z \rightarrow Y
$$

Path 3: $W \longrightarrow X \longrightarrow Y$ *Z*

hat the	T			
$W \longrightarrow X$	Z			
Z	X	Z		
T	or	X	Y	Z
T	or	X	T	Y
T	or	X	T	Y

 \blacktriangleright Path 4: $W \longleftarrow T \longrightarrow Z \longleftarrow X \longmapsto Y$ (*T}* or \blacktriangleright *{T}* or \blacktriangleright *xX}* or \blacktriangleright \swarrow *x}* or *x_z* \overline{Y} 12 276 slides8 F24 *xz* 12 2

S

Y

Is there a set *A* such that the separation statement $(W \perp \!\!\! \perp Y/A)$ holds?

Path 1:
$$
W \rightarrow X \rightarrow Z \rightarrow Y
$$

Path 2: $W \leftarrow T \rightarrow Z \rightarrow Y$

Path 3: $W \longrightarrow X \longmapsto Y$ \rightarrow Z

Path 4: $W \leftarrow T \rightarrow Z \leftarrow X \leftarrow Y$ *{T}* or *{X} x}* or *{X} x}* or *x xz}* or *x {T ,X,Z}* $\overline{12}$ 276 slides $\overline{8}$ F24 $\overline{12}$ $\overline{12$

S

Y

d -SEPARATION (EXAMPLE)

Figure 1.3: Graphs illustrating d -separation. In (a), X and Y are d-separated given Z_2 and dconnected given Z_1 . In (b), X and Y cannot be d -separated by any set of nodes.