Causal and Probabilistic Reasoning

Slides Set 6:

Exact Inference Algorithms
Tree-Decomposition Schemes

(Dechter chapter 5, Darwiche chapter 6-7)

slides6 276 2024

Outline

= From bucket-elimination (BE) to bucket-tree elimination (BTE)
= From BTE to CTE, Acyclic networks, the join-tree algorithm

= Generating join-trees, the treewidth

= Examples of CTE for Bayesian network

= Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

= Conditioning with elimination (Dechter, 7.1, 7.2)

Outline

= From bucket-elimination (BE) to bucket-tree elimination (BTE)

Outline

= From bucket-elimination (BE) to bucket-tree elimination (BTE)
s From BTE to CTE, Acyclic networks, the join-tree algorithm

s Generating join-trees, the treewidth

s Examples of CTE for Bayesian network

m Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

slides6 276 2024

From BE to Bucket-Tree Elimination(BTE)

First, observe the BE operates on a tree.

Second, What if we want the marginal on D?

Bucket G: P(G|F) G

e

©)

@

Bucket F: P(’F|BJ>)),\G_>F(F) Aoor(F
F

Bucket D: P(DA\ P(F|B,C) D
Bucket C: Pr’C|A_)\ Aroc(B,C)

Bucket B: P(B|4) \p_p(A,B) A\c—p(A,B)

Bucket A: P(4) Xg_4 (A) {,.1}

Ta—gla) = P(A),
T pla,b) = p(bla) - ma_,gla) - Ac_, 5(b)

bel(d) = EIZ P(d|a.b) - mp_,pla,b).
b

A / (PB4

Wr-c(B.C) | PrD -I,BJ

Ap-n(A,B)

P(D)?

‘L BTE: Allows Messages Both Ways

G

Initial buckets
+ messages /©
©)
©
Output buckets o
a G
P(F) = z P(F|b,c)mcor(b, c) Agor(F) P(G|F),7c() | P(D) = Z P(D|a,b) mp_p(a,b)
b,c F ab
S— P(F|B,0), "o+ D
‘ 7IC—.F(B,C) [P(D |AjB), HB_’D(A:B)J‘/

C
Ao (B.O)
PCIA), 5y oA)

B

.;'I.('y_,B(A .B)
P(B|A), ip_5(A,B)

TA—B

A
[P(A), ip.a(4)

(b)

‘L BTE

Theorem: When BTE terminates The
product of functions in each bucket is the
beliefs of the variables joint with the
evidence.

elim(i,j) = scope(B;)— scope(B;)

o

s

ALGORITHM BUCKET-TREE ELIMINATION {(BTE)

Input: A problem M = (X, D.F,[[.5). ordering d.

X={X,...Xnltand F = {f1, ..., fr}

Evidence F' = e.

Output: Augmented buckets { B'; }. containing the original functions and all the

m and A functions received from neighbors in the bucket tree.
1.

Pre-processing: Partition functions to the ordered buckets as usual

and generate the bucket tree.

Top-down phase: A messages (BE) do
for i = mto 1, in reverse order of d process bucket B;:

The mes W 1D jis nt B, is:

JIlf—u" = Zet:‘m[f.j} Wi - HkEchird{i] Ak
endfor

bottom-up phase: = messages
for j = 1 10 n, process bucket B; do:

B; takes m._, j received from its parent Bj., and computes a message m;_,;

fi :

Mj—i = Zerim[j:f] The—j * i"'I!J' ‘ Hr;éi ‘j"?'—f_f' j

endfor
Output: avgmented buckets By, ..., B',, where each B'; contains the
original bucket functions and the A and = messages it received.

Figure 5.3: Algorithm buckei-tree elimination.

slides6 276 2024

i Bucket-Tree Construction From the Graph
1. Pick a (good) variable ordering, d. %ﬁ

2. Generate the induced ordered graph

3. From top to bottom, each bucket of X is mapped to
pairs (variables, functions)

4. The variables are the cligue of X, the functions are
those placed in the bucket

5. Connect the bucket of X to earlier bucket of Y if Y is
the closest node connected to X

Example: Create bucket tree for ordering A,B,C,D,FEG

Asynchronous BTE:
Bucket-tree Propagation (BTP)

All messages are called lambda

Bucker-TrEE ProracaTion (BTP)

Input: A problem M = (X.D.F.[].>)), ordering d. X = {X;,.... X,,} and
F={fi. ... fr}, E =e. Anordering d and a corresponding bucket-tree structure,
in which for each node Xj;, its bucket B; and its neighboring buckets are well defined.
Output: Explicit buckets. Assume functions assigned with the evidence.

1. for bucket B; do:
2. for each neighbor bucket B; do,

once all messages from all other neighbors were received, do

compute and send to B; the message
Aisj = 2etimiijy Vi - Uk Ae—i)]
3. Output: augmented buckets B’} B, where each B’; contains the

original bucket functions and the A messages it received.

‘L Query Answering

COMPUTING MARGINAL BELIEFS

Input: a bucket tree processed by BTE with augmented buckets: Bry, ... By,

output: beliefs of each variable, bucket, and probability of evidence.

bel(By) <= o Tgem, f
bel(X;) <= a-Yp._xy e, f
P(evidence) <= ¥ [iep. f

Figure 5.4: Query answering.

i Complexity of BTE/BTP on Trees

Theorem 5.6 Complexity of BTE. Ler w*(d) be the induced width of (G*.d) where G is the
primal graph of M = (X.D.F.[[.).), r e the number of functions in ¥ and k be the maximum
domain size. The time complexity of BTE is O(r - deg - k WA+ aphere deg is the maximum degree
of a node in the bucket tree. The space complexity of BTE is O(n - fw @)y,

Proposition 5.8 BTE on trees For free graphical models, algorithms BI'E and BTP are time and
space O(nk?) and O(nk), respectively, when k bound the domain size and n bounds the number of
variables.

This will be extended to acyclic graphical models shortly

i From Buckets to Tree-Clusters

Merge non-maximal buckets into maximal clusters.

s Connect clusters into a tree: connect each cluster to one with which it
shares a largest subset of variables.

= Separators are variable-intersection on adjacent clusters.

(A) /© (B) /Twime exp(a”)(z) /\T;g?/goé;);pe{ga)
emory ex;
o) &Y (ae) rew (C)
. F

iMessage Passing on a Tree Decomposition

@_. J vl y
Mrype equation here.

53§tn;ea;(/-5£g%ucz- C/USter(U) = lp (u) U {mX1—>u' le_,u; mX2—>u’ s an_)u}

With max. Elim(u,v) = cluster(u)-sep(u,v)

My -y =Zelim(u,v) l/)(u) [€Eneighbor(u),r#v {mr—m}

i Propagation in Both Directions

= Messages can propagate both ways and we
get beliefs for each variable

Outline

= From bucket-elimination (BE) to bucket-tree elimination (BTE)

= From BTE to CTE, Acyclic networks, the join-tree algorithm (also
called, junction-tree algorithm)

s Examples of CTE for Bayesian network

m Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

slides6 Compsci 2021

i Acyclic Graphical Models

= Dual network: Each scope of a CPT is a nhode and each arc is
denoted by intersection.

= Acylic network: when the dual graph is a tree or has a join-
tree

= Tree-clustering converts a network into an acyclic one.

From Acyclic Networks

Sometime the dual graph seems to not be a tree, but it is in fact, a tree. This is because some
of its arcs are redundant and can be removed while not violating the original independency rela-

tionships that is captured by the graph.

ABC AEF CDE ACE

(e)

(c) (d)

Figure 5.1: (a)Hyper, (b)Primal, (¢)Dual and (d)Join-tree of a graphical model having
scopes ABC, AEF, CDE and ACE. (e) the factor graph

Connectedness and Ascyclic Dual Graphs

(The Running Intersection Property)

Definition 5.11 Connectedness, join-trees. Given a dual graph of a graphical model M, an
arc subgraph of the dual graph satisfies the connectedness property iff for each two nodes that share

a variable, there is at least one path of labeled arcs of the dual graph such that each contains the

shared variables. An arc subgraph of the dual graph that satisfies the connectedness property is
called a join-graph and if it is a tree, it is called a join-free.

Definition: A graphical model whose dual graph has a join-tree is acyclic

Theorem: BTE is time and space linear on acyclic graphical models

Tree-decomposition: If we transform a general model into an acyclic one
it can then be solved by a BTE/BTP scheme. Also known as tree-clustering

Tree Decompositions

A Tree decomposition for a graphical model < X,D,P >isa
triple<T, y,w >, whereT =(V,E)isatreeand y and y are labeling
functions, associating with each vertex v eV two sets, y(v) < X and
w(v) < P satisfying :

1. For each function p, € P there is exactly one vertex such that

p, € w(v)and scope(p;) < x(v)

2. For each variable X, € X theset{v eV|X, € y(v)}formsa

[connected subtree (running intersection property)]

Tree Decompositions

A Tree decomposition for a graphical model < X,D,P >isa { ABC]
triple<T, 7, >, where T = (V,E)isa treeand y and y are labeling _P(2): P(}a), p(cfa,b)
functions, associating with each vertex v eV two sets, y(v) < X and BC
w(v) < P satisfying : SCOF

1. For each function p, € P there is exactly one vertex such that [o(db), p(fic.d)]

p; € w(v)and scope(p;) < x(v)
{ 2. For each variable X, € X theset{v eV|X, € y(v)}formsa J BF

connected subtree (running intersection property)

e

Connectedness, or
Running intersection property

p(elo,f)

EF
[EFG]
p(gle.f)

Tree decomposition

BEF]

Tree Decompositions (TD)

A Tree decomposition for a graphical model < X,D,P >isa { ABC]
triple<T, 7, >, where T = (V,E)isa treeand y and y are labeling _P(2): P(}a), p(cfa,b)
functions, associating with each vertex v eV two sets, y(v) < X and BC
w(v) < P satisfying : 5
. : BCDF
1. For each function p, € P there is exactly one vertex such that [o(db), p(fic.d)]
p, € w(v)and scope(p;) < x(v)
2. For each variable X, € X theset{v eV|X, € y(v)}formsa BF
connected subtree (running intersection property) [BEF]
p(e(b.f)
Treewidth: maximum number of variables in a node of TD — 1 EF
Seperator-width: maximum intersection between adjacent nodes
Eliminator: elim(u,v) = x(u) - x(v) { E('|: (]f)]
P(g€,

Tree decomposition

H-Tree Decompositions (TD)

A Tree decomposition for a graphical model < X,D,P >isa { ABC]
triple<T, 7, >, where T = (V,E)isa treeand y and y are labeling _P(2): P(}a), p(cfa,b)
functions, associating with each vertex v eV two sets, y(v) < X and BC
w(v) < P satisfying : SCOF
1. For each function p, € P there is exactly one vertex such that [o(db), p(fic.d)]

Pi € w(v)and scope(p;) < x(v)

2. For each variable X, € X theset{v eV|X, € y(v)}formsa BF
connected subtree (running intersection property) [BEE]
p(elb,f)
Treewidth: maximum number of variables in a node of TD — 1 EF
Seperator-width: maximum intersection between adjacent nodes
Eliminator: elim(u,v) = x(u) - X(v) { EFG]
Hypertree-width = Max number off functions in a node p(gle.f)

Hypertree-decomposition: 3. If every variable in a node is covered by a function scope.

Cluster-Tree Elimination

CLUSTER-TREE ELIMINATION (CTE)

Input: A tree decomposition < T, y, ¥ > fora problem M =< X, D, F,[[.2_} >,

X ={X;....X,}, F={fi..... [,}. Evidence E = e, ¥, = erw(ul f

Output: An augmented tree decomposition whose clusters are all model explicit.

Namely, a decomposition < T, y, ¥ > where u € T, ¥ (u) is model explicit relative to y (u).
1. Initialize. (denote by m,_., the message sent from vertex u to vertex v.)

2. Compute messages:
For every node u in T, once u received messages from all neighbors but v,

Process observed variables:
For each node u € T assign relevant evidence to ¥ (u)

Comp age:
My < ZX{H)—S(’P{"'U} Yy - Hreweighbor{u).r?év’ny

endfor o o——

Note: functions whose scopes do not contain any separator variable
do not need to be combined and can be directly passed on to the receiving vertex.

3. Return: The explicit tree < T, y, ¥ >, where

(ul_f(v) — w(vjmigh!mr(v} {’nn—n!}
return the explicit function: for each o, My (v) = [[rcj) f

Properties of CTE

= Theorem: Correctness and completeness: Algorithm CTE
is correct, i.e. it computes the exact joint probability of a
single variable and the evidence. Moreover, it generates

explicit clusters.

= Time complexity:
« O(deg x (n+N) x kWw+1)

= Space complexity: O (N x k5€P)
where deg = the maximum degree of a node
n = number of variables (= number of CPTs)
N = number of nodes in the tree decomposition
k = the maximum domain size of a variable
w* = the induced width, treewidth
sep = the separator size

Outline

s From bucket-elimination (BE) to bucket-tree elimination (BTE)
s From BTE to CTE, Acyclic networks, the join-tree algorithm

s Generating join-trees, the treewidth

s Examples of CTE for Bayesian network

m Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

= Conditioning with elimination (Dechter, 7.1, 7.2)

slides6 276 2024

i The Idea of Cutset-Conditioning

Figure 7.1: An instantiated variable cuts its own cycles.

slides6 276 2024

Ittonditioning - the Probability Tree

P(D=1.G=0)) =) P@) Plkla)) Pbla)) P(flb.c)Pd=1lb,a)P(g=0|f)
i C b f'

© Slippery
(a) Dirceted Acyclic Graph

P(d=1]b,a) P(g=0| f~0)
P(d=1]b,a)P(g=0| 1)
P(d=1]b,a) P(g=0| -0)

P fibych
N P(d=1]b.a)P(g=0| 1)

Figure 6.1: Probability tree for computing Pld = 1, g = 0).

Complexity of conditioning. exponential time, linear space

Slides7 COMPSCI 2021

i Cycle-Cutset Conditioning

0 680 @ o @90 @
PO Sy O P ©
wEY e

Cycle cutset = {A,B,C} ‘B

<

1-cutset = {A,B,C}, size 3

‘_L Search Over the Cutset (cont)

Graph o Inference may require too much memory

Coloring
problem

N
A=yellow
m B=yellow

e Condition on some of the variables

2-cutset = {A B}, size =2

The Impact of Observations ¢ ¥~

© sipery

(a)} Directed acyclic graph (b) Moral graph

(a) (b) {c)

Figure 4.9: Adjusted induced graph relative to observing B.

Ordered graph Induced graph Ordered conditioned graph

i The Idea of Cutset-Conditioning

We observed that when variables are assigned, connectivity reduces.
The magnitude of saving is reflected through the "conditioned-induced graph”

Cutset-conditioning exploit this in a systematic way:
Select a subset of variables, assign them values, and
Solve the conditioned problem by bucket-elimination.
Repeat for all assignments to the cutset,

Algorithm VEC

The Cycle-Cutset Scheme:
Condition Until Treeness

* Cycle-cutset
* |-cutset
» C(i)-size of i-cutset

‘L Loop-Cutset Conditioning

= You condition until you get a polytree

e

P(B/F=0) = P(B, A=0/F=0)+P(B,A=1/F=0)

Loop-cutset method is time exponential in loop-cutset size
but linear space. For each cutset we can do BE (belief propagation.)

i Loop-Cutset, g-Cutset, cycle-cutset

= A loop-cutset is a subset of nodes of a
directed graph that when removed the
remaining graph is a poly-tree

= A g-cutset is a subset of nodes of an
undirected graph that when removed

the remaining graph has an induced-
width of g or less.

= A cycle-cutset is a g-cutset such that
g=1.

‘_L Search Over the Cutset (cont)

Graph o Inference may require too much memory

Coloring

problem e Condition on some of the variables

2-cutset = {A B}, size =2

or, g-cutset Igorithms

i VEC: Variable Elimination with Conditioning;

s VEC-bel:
» Identify a g-cutset, C, of the network

= For each assignment to C=c solve the conditioned
sub-problem by CTE or BTE.

= Accumulate probabilities.
= Time complexity: nkctat!
= Space complexity: nk4

Algorithm VEC (Variable-elimination with conditioning)

ALGORITHM V EC-EVIDENCE
Input: A belief network B =< X'.D.G.P >. an ordering d =
(x1,...,x,) : evidence e over E. a subset ' of conditioned vari-
ables:
output: The probability of evidence P(e)
Initialize: A = 0.
1. For every assignment C' = ¢, do
e \; & The output of BE-bel with ¢ U e as observations.
e \ +— A+ 1. (update the sum).

o

. Return P(e) = a - A (a isg.nopmalization constant.)

i What Hybrid Should We Use?

= =17 (loop-cutset?)

= 4=07 (Full search?)

= q=w* (Full inference)?
= g in between?

= depends... on the graph

= What is relation between cycle-cutset
and the induced-width?

Properties; Conditioning+Elimination

Definition 5.6.1 (cycle-cutset,w-cutset) Given a graph GG. a subset of nodes is called
a w-cutset iff when removed from the graph the resulting graph has an induced-width less
than or equal to w. A minimal w-cutset of a graph has a smallest size among all w-cutsets

of the graph. A cycle-cutset is a 1-cutset of a graph.

A cycle-cutset 15 known by the name a feedback verter set and 1t 18 known that finding
the minimal such set 18 NP-complete [41]. However, we can always settle for approx-

mmations, provided by greedy schemes. Cutset-decomposition schemes call for a new

optimization task on graphs:

Definition 5.6.2 (finding a minimal w-cutset) Given a graph G = (V. E) and a con-
stant w, find a smallest subset of nodes U, such that when removed, the resulting graph

has induced-width less than or equal w.

slides6 276 2024

Tradeoff between w* and g-cutstes

Theorem 7.7 Given graph G, and denoting by E: its munimal g-cutset then,

l+ef=24e;=2.g+c;, .. 2w +cg. =w'

Proof. Let’s assume that we have a q-cutset of size ¢;. Then if we remove it from the graph the
result is a graph having a tree decomposition whose treewidth is bounded by ¢. Let's T be this
decomposition where each cluter has size ¢ + 1 or less. If we now take the g-cutset variables and
add them back to every cluster of T, we will get a tree decomposition of the whole graph (exercise:
show that) whose treewidth is ¢y + ¢. Therefore, we showed that for every c4-size g-cutset, there
is a tree decomposition whose treewidth is ¢z + ¢. In particular, for an optimal g-cutset of size ¢*
we have that w+, the treewidth obeys, w* < ¢z + ¢. This does not complete the proof because we
only showed that for every ¢, w* < c; + ¢. But, if we remove even a single node from a minimal
g -cutset whose size is ::.‘; , we get a ¢ + | cutset by definition, whose size is f‘; — 1. Therefore,
Cg+1 = ¢4 — 1. Adding ¢ to both sides of the last inequality we get that for every | = ¢ = w*,

q+cg=q+1+c5,, which completes the proets 276 2024 O

+

Generating Join-trees
(Junction-trees); a special type of
lree-decompositions

ASSEMBLING A JOIN TREE

. Use the fill-in algorithm to generate a chordal graph G’ (if G is
chordal, G =G").

2. Identify all cliques in G’. Since any vertex and its parent set
(lower ranked nodes connected to it) form a clique in G’, the
maximum number of cliques is | V1.

3. Order the cliques C,, C»,..., C, by rank of the highest vertex in each
clique.

4. Form the join tree by connecting each C; to a predecessor C ;G<i)
sharing the highest number of vertices with C.

() () ic)

EXAMPLE: Consider the graph in Figure 3.9a. One maximum
cardinality ordering is{A,B,C, D, E).

. Every vertex in this ordering has its preceding neighbors already
connected, hence the graph is chordal and no edges need be added.
e The cliques are ranked €, C;, and C as shown in Figure 3.95.

¢ C;={C, E) shares only vertex C with its predecessors C, and C,
so either one can be chosen as the parent of C;,

e These two choices yield the join trees of Figures 3.95 and 3.9¢.

* Now suppose we wish to assemble a join tree for the same graph
with the edge (8, C) missing.

. The ordering (A,B,C,D,E) is still a maximum cardinality
ordering, but now when we discover that the preceeding neighbors
of node D (i.e., 8 and C) are nonadjacent, we should fill in edge
(&, C).

. This renders the graph chordal, and the rest of the procedure yields
the same join trees as in Figures 3.96 and 3.9¢.

N
A

i Examples of (Join)-Trees Construction

‘L Hypertree width and EmpBN

Tree and Hypertree Decompositions

A tree decomposition of a graphical model is a triple <T, x, w>, where T=<V/E> Is a tree and x
and y are labeling

functions that associate with each vertex va V two sets, x(v)B X and y(v)®a F that satisfy the
following condiitions:

- for each ;B8 F, there Is at least one v @ V such that £;,B y(v).

- If ;8 y(v), then scope(f) B x(v).

« for each x;B X, the set {vR V [x;8 x(v)} induces a connected subtree of T.

The tree width of T is w = max,, , [x(v)] - 1. T is also a hypertree decomposition If it
satisties the following additional

condition.

- for each va Vj x(v)B By) SCOPE(T,).

In this case, the hypertree width of T is hw = max,, , [w(Vv)/].

Finding tree and hypertree decompositions of minimal width is known to be NP-complete, therefore
heuristic algorithms are employed in practice. Once a tree or hypertree decomposition is available,
it can be processed by a suitable version of a message passing algorithm like Cluster-Tree
Elimination (CTE).

CIMPIriCal FaCtors Spdarse

representation

Table 80: 6 Variables with domain size 3

(a) Data Table

o ™
] —
O o
[]
o8-
-, ©

(b) Sparse Factor Table

—

o=

] -

— 4

= o

A B C D E F Probability
2

0.20
0.20
0.20
0.15
0.10
0.10
0.05
0.05
0.05

[T |

[=

= ™

— =

[Je}

2

2 0 1

1

= — ™

[Q===

—] =

= — ™

No o

L}

[}

0
0 0 0

2
0

[=T]

— =

L= B

[e

— O

=S

— =

[=

o=

=

[et

— =

— =

[=

o=

=

oo

| ree dlind nypertree-
‘L Decompositions

o | Z\H_ G.F __fi

L Y S .
1 —f/
”“"“" B f) ﬁ /ré%/ll @@ G-FD W":.-'-m-."-;-rj
\ \ ¥ fan- fa I'\-"'t@

W
O n.('..r-'.-'“'—.f; D.F —
(&) T -
¥ frc) [P ey P GHK
':;Eﬂn'-"-m-l
(a) b
W=2,
wW=3, hw=2
hw=3

Theorem: A hypertree decomposition of a graphical model whose functions are sparse and bounded by t, can
be processed in time and space exp(hw): O(m «deg « hw < log t o lﬁ w).

Corollary: Given graph G and data D, reasoning over empBN(G,D) is O(m « deg « hw « log t o thw).

N Hypergraphs and Hypertrees

BN hypergraphs. A BN can be associated with a dual graph or a hypergraph

PV ldo(V1))= X PV |V, Vo, V3, Vo, Vs)P(Vy | Vi, Vo, V3)P(V, | V1)
V2,V3,Va, V5,V

X BP V7 | V1, V2, V3, Vi, Vo, V)P (Vs | V1, V2, V3, V) P(V3 | V1, V2)P(VY)
Vl

‘‘‘‘‘‘‘‘

OO OROSOROR0

Figure 1: Chain Model with 7 observable variables and 3 latent variables

hlv:l, w=3 hlv=1, w=5

	Slide 1
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: From BE to Bucket-Tree Elimination(BTE)
	Slide 6: BTE: Allows Messages Both Ways
	Slide 9: BTE
	Slide 10: Bucket-Tree Construction From the Graph
	Slide 11: Asynchronous BTE: Bucket-tree Propagation (BTP)
	Slide 12: Query Answering
	Slide 14: Complexity of BTE/BTP on Trees
	Slide 15: From Buckets to Tree-Clusters
	Slide 16: Message Passing on a Tree Decomposition
	Slide 17: Propagation in Both Directions
	Slide 18: Outline
	Slide 19: Acyclic Graphical Models
	Slide 20: From Acyclic Networks
	Slide 21: Connectedness and Ascyclic Dual Graphs (The Running Intersection Property)
	Slide 22: Tree Decompositions
	Slide 23: Tree Decompositions
	Slide 24: Tree Decompositions (TD)
	Slide 25: H-Tree Decompositions (TD)
	Slide 27: Cluster-Tree Elimination
	Slide 28: Properties of CTE
	Slide 32: Outline
	Slide 33: The Idea of Cutset-Conditioning
	Slide 34: Conditioning - the Probability Tree
	Slide 35: Cycle-Cutset Conditioning
	Slide 36: Search Over the Cutset (cont)
	Slide 37: The Impact of Observations
	Slide 38: The Idea of Cutset-Conditioning
	Slide 39: The Cycle-Cutset Scheme: Condition Until Treeness
	Slide 42: Loop-Cutset Conditioning
	Slide 44: Loop-Cutset, q-Cutset, cycle-cutset
	Slide 45: Search Over the Cutset (cont)
	Slide 46: VEC: Variable Elimination with Conditioning; or, q-cutset lgorithms
	Slide 47: Algorithm VEC (Variable-elimination with conditioning)
	Slide 48: What Hybrid Should We Use?
	Slide 49: Properties; Conditioning+Elimination
	Slide 50: Tradeoff between w* and q-cutstes
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Examples of (Join)-Trees Construction
	Slide 56: Hypertree width and EmpBN
	Slide 57
	Slide 58: Empirical Factors Sparse representation
	Slide 59: Tree and Hypertree-Decompositions
	Slide 60: BN Hypergraphs and Hypertrees

