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Causal and Probabilistic Reasoning

Slides Set 5: 

Rina Dechter

Exact Inference Algorithms  
Bucket-elimination

(Dechter chapter 4, Darwiche chapter 6)
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Inference for probabilistic networks

■ Bucket elimination (Dechter chapter 4) 
■ Belief-updating, P(e), partition function 
■ Marginals, probability of evidence 
■ The impact of evidence 
■ for MPE (MAP) 
■ for MAP  ( Marginal Map) 
■ Influence diagrams ? 

■ Induced-Width (Dechter, Chapter 3.4)
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Inference for probabilistic networks

■ Bucket elimination  
■ Belief-updating, P(e), partition function 
■ Marginals, probability of evidence 
■ The impact of evidence 
■ for MPE (MAP) 
■ for MAP  ( Marginal Map) 

■ Induced-Width
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 Bayesian networks: example 
(Pearl, 1988)

P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea
P(D|C,B)

P(B|S)

P(S)

P(X|C,S)

P(C|S)

CPD:    
C  B   P(D|C,B) 
0  0    0.1  0.9 
0  1    0.7  0.3 
1  0    0.8  0.2 
1  1    0.9  0.1 

Belief Updating: 

P (lung cancer=yes | smoking=no, dyspnoea=yes ) = ?
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Types of queries

■ NP-hard: exponentially many terms 
■ Difficulty (in part) due to restricted elimination orderings 
■ Focus is on approximation  and Anytime algorithms 

■ Anytime: very fast & very approximate  ! Slower & more accurate

(e.g., decisions & planning)

(e.g., causal effects)

(optimal prediction)
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Belief updating is NP-hard

■ Each SAT formula can be mapped into a belief 
updating query in a Bayesian network 

■ Example
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A simple network

■ How can we compute P(D)?,  P(D|A=0)? P(A|D=0)? 
■ Brute force O( ) 
■ Maybe O(4 )

𝑘4

𝑘2

A DB CGiven: 
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A simple example

■ Suppose we have two factors: 

■ To compute the partition function (sum): 

■ Use the factorization of f(x): 

	 and apply the distributive rule:

We can pre-compute and re-use these terms in the sum!
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Variable elimination
Product of factors:

Compute:

Collect terms involving x1, then x2, and so on:

“Bucket elimination”:

Collect all factors with x1 in a “bucket”

Collect all remaining factors with x2

Place intermediate calculations in 
    bucket of their earliest argument
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 Belief updating  

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea

P (lung cancer=yes | smoking=no, dyspnoea=yes ) = ?
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“primal” graph

A

D E

CB

Belief updating
■ p(X | Evidence) = ?

Variable Elimination

A

D E

CB

From essai
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W*=4 
“induced width”  

(max clique size)

bucket  B: 

bucket  C: 

bucket  D: 

bucket  E: 

bucket  A: 

B

C

D

E

A

A

D E

CB

Algorithm BE-bel    [Dechter 1996]
Bucket elimination

Elimination & combination 
 operators

From essai
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W*=4 
”induced width”  

(max clique size)

bucket  B: 

bucket  C: 

bucket  D: 

bucket  E: 

bucket  A: 

B

C

D

E

A

A

D E

CB

Algorithm BE-bel    [Dechter 1996]
Bucket elimination

Elimination & combination 
 operators

Time and space exponential in the 
induced-width / treewidth
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A Bayesian network 
ordering: A,C,B,F,D,G
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A Bayesian network 
ordering: A,C,B,F,D,G



A different ordering

Ordering: A,F,D,C,B,G
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A Bayesian network 
processed along two orderings

d1=A,C,B,F,D,G d2: A,F,D,C,B,G

G

GD

F

B

C

A
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The operation in a bucket

■ Multiplying  functions 
■ Marginalizing (summing-out) functions
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Combination of Cost Functions

A B f(A,B)

b b 0.4

b g 0.1

g b 0

g g 0.5

B C f(B,C)

b b 0.2

b g 0

g b 0

g g 0.8
A B C f(A,B,C)

b b b 0.1

b b g 0

b g b 0

b g g 0.08

g b b 0

g b g 0

g g b 0

g g g 0.4

●

= 0.1  x 0.8
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Elimination in a factor

A B f(A,B)

b b 4

b g 6

b r 1

g b 2

g g 6

g r 3

r b 1

r g 1

r r 6

Elim(f,B) A g(A)

b 11

g 11

r 8

Elim(g,A)
h∅

30

Elim = sum
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Bucket elimination and 
induced-width

d1=A,C,B,F,D,G d2: A,F,D,C,B,G

G

GD

F

B

C

A

W*=2
W*=4
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IntelligenceDifficulty

Grade

Letter

SAT

Job

Apply

Student network example

■ P(J)?
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primal 
graph

A

D E

CB

B

C

D

E

A

E

D

C

B

A

■ Width is the max number of parents in the ordered graph 
■ Induced-width is the width of the induced ordered graph: recursively connecting 

parents going from last node to first. 
■ Induced-width w*(d) is the max induced-width over all nodes in ordering d 
■ Induced-width of a graph, w* is the min w*(d) over all orderings d

Induced width
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Complexity of bucket elimination

The effect of the ordering:

primal 
graph

A

D E

CB

B

C

D

E

A

E

D

C

B

A

Finding smallest induced-width is hard!

r = number of functions

Bucket-Elimination is time and space

:  the induced width of the primal graph along ordering d
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Inference for probabilistic networks

■ Bucket elimination  
■ Belief-updating, P(e), partition function 
■ Marginals, probability of evidence 
■ The impact of evidence 
■ for MPE (MAP) 
■ for MAP  ( Marginal Map) 

■ Induced-Width
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 The impact of evidence? 
 Algorithm BE-bel

Elimination operator

P(e=0)

        W*=4 
”induced width”  
(max clique size)

bucket  B: 

 P(a)

  P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D: 

bucket  E: 

bucket  A: 

 e=0

B

C

D

E

A

A

D E

CB

P(a|e=0)

B=1
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 The impact of evidence? 
 Algorithm BE-bel  

Elimination operator

P(e=0)

bucket  B: 

 P(a)

  P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D: 

bucket  E: 

bucket  A: 

 e=0

B

C

D

E

A

A

D E

CB

P(a|e=0)

B=1

P(e|b=1,c)

P(d|b=1,a)

P(b=1|a)

P(A|E=0,B=1)?



The impact of observations

Induced graphOrdered graph Ordered conditioned graph
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Types of queries

■ NP-hard: exponentially many terms 
■ Difficulty (in part) due to restricted elimination orderings 
■ We will focus on approximation algorithms 

■ Anytime: very fast & very approximate  ! Slower & more accurate

(e.g., decisions & planning)

(e.g., causal effects)

(optimal prediction)
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Inference for Probabilistic Networks

■ Bucket elimination  
■ Belief-updating, P(e), partition function 
■ Marginals, probability of evidence 
■ The impact of evidence 
■ for MPE (MAP) 
■ for MAP  ( Marginal Map) 

■ Induced-Width
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 Finding MPE/MAP 
 

OPT

bucket  B: 

bucket  C: 

bucket  D: 

bucket  E: 

bucket  A: 

B

C

D

E

A

Algorithm BE-mpe  (Dechter 1996, Bertele and Briochi, 1977)
A

D E

CBB C

ED

        W*=4 
“induced width” 
(max clique size)
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Generating the optimal assignment

■ Given BE messages, select optimum config in reverse 
order

Return optimal configuration  (a*,b*,c*,d*,e*)

E:

C:

D:

B:

A:

OPT = optimal value
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Complexity of bucket elimination

The effect of the ordering:

primal 
graph

A

D E

CB

B

C

D

E

A

E

D

C

B

A

Finding smallest induced-width is hard!

r = number of functions

Bucket-Elimination is time and space

:  the induced width of the primal graph along ordering d
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Example with mpe?
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Try to compute MPE when E=0
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Complexity of bucket-elimination

■ Theorem:  
BE is  O(n exp(w*+1)) time and O(n exp(w*)) 
space, when w* is the induced-width of the 
moral graph along d when evidence nodes are 
processed (edges from evidence nodes to earlier 
variables are removed.)

More accurately: O(r exp(w*(d)) where r is the number of CPTs. 
For Bayesian networks r=n. For Markov networks?
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Inference for probabilistic networks

■ Bucket elimination  
■ Belief-updating, P(e), partition function 
■ Marginals, probability of evidence 
■ The impact of evidence 
■ for MPE (MAP) 
■ for MAP  ( Marginal Map) 

■ Induced-Width (Dechter 3.4,3.5)
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Variable ordering heuristics
■ What makes a good order? 

■ Low induced width 
■ Elimination creates a function over neighbors 

■ Finding the best order is hard (NP-complete!) 
■ But we can do well with simple heuristics 

■ Min-induced-width, Min-Fill, … 
■ Anytime algorithms 

■ Search-based         [Gogate & Dechter 2003] 
■ Stochastic (CVO)   [Kask, Gelfand & Dechter 2010]

Primal graph

B C

E

D

C

E

D

combine &  

eliminate

A
A
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Min-width ordering

Proposition: algorithm min-width finds a min-width ordering of a graph 
 What is the Complexity of MW?   
O(e) 
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Variable ordering heuristics
■ Min (induced) width heuristic

Primal graph

B C

E

D

C

E

D

combine &  

eliminate

A
A

1. for i=1 to n   ( # of variables) 
2.     Select a node  with smallest degree as next eliminated 
3.     Connect Xi’s neighbors: 
4.             E = E + { ( ,  ) :  ( ,  ) and ( , ) in E } 
5.     Remove  from the graph:  V = V – { } 
6. end 
                      

𝑋𝑖

𝑋𝑖 𝑋𝑘 𝑋𝑖 𝑋𝑗 𝑋𝑖 𝑋𝑘

𝑋𝑖 𝑋𝑖

(“Weighted” version: weight edges by domain size)
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Variable ordering heuristics
■ Min fill heuristic

1. for i=1 to n   ( # of variables) 
2.     Select a node  with smallest “fill edges” as next eliminated 
3.     Connect Xi’s neighbors: 
4.             E = E + { ( , ) :  ( , ) and ( , ) in E } 
5.     Remove  from the graph:  V = V – { }  
6. end 
                      

𝑋𝑖

𝑋𝑗 𝑋𝑘 𝑋𝑖 𝑋𝑗 𝑋𝑖 𝑋𝑘

𝑋𝑖 𝑋𝑖

(“Weighted” version: weight edges by domain size)

Primal graph

B C

E

D

C

E

D

combine &  

eliminate

A
A
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Min-Fill heuristic
■ Select the variable that creates the fewest “fill-in” 

edges

A

E D

C

F

A

D

CB

F

A

E D

CB

F

Eliminate B next? 
   Connect neighbors 
   “Fill-in” = 3:  
    (A,D), (C,E), (D,E)

Eliminate E next? 
   Neighbors already connected 
   “Fill-in” = 0
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Tree-structured graphs
■ If the graph is a tree, the best ordering is easy: 

■ B, E have only one neighbor; no “fill” 
■ Select one to eliminate; remove it 
■ Now D or E have only one neighbor; no “fill”… 

■ Order 
■ leaves to root 
■ never increases the size of the factors

Primal graph

B C

E

D

C

E

D

combine &  

eliminate

A
A
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Greedy orderings heuristics

■ Min-induced-width 
■ From last to first, pick a node with smallest 

width, then connect parent and remove 

■ Min-Fill 
■ From last to first, pick a node with smallest 

fill-edges

Complexity? O( )𝑛3
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Different induced-graphs

A Min-fill ordering

A Miw ordering

Let’s find a miw ordering and a min-fill ordering
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Different induced-graphs

A Min-fill ordering

A Miw ordering
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Which greedy algorithm is best?

■ Min-Fill, prefers a node who adds the least 
number of fill-in arcs. 

■ Empirically, fill-in is the best among the 
greedy algorithms (MW,MIW,MF,MC) 

■ Complexity of greedy orderings? 
■ MW is O(e), MIW: O( ) MF O( )  MC is 

O(e+n)
𝑛3 𝑛3
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Inference for probabilistic networks

■ Bucket elimination (Dechter chapter 4) 
■ Belief-updating, P(e), partition function 
■ Marginals, probability of evidence 
■ The impact of evidence 
■ for MPE (MAP) 
■ for MAP  ( Marginal Map) 
■ Influence diagrams ? 

■ Induced-Width (Dechter, Chapter 3.4)
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 Sum-Inference 

 Max-Inference

 Mixed-Inference

Marginal Map

■ NP-hard: exponentially many terms

H
arder
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Example for MMAP Applications

■ Haplotype in Family pedigrees 

■ Coding networks 

■ Probabilistic planning 

■ Diagnosis
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Marginal MAP is not easy on trees

■ Pure MAP or summation tasks 
■ Dynamic programming 
■ Ex: efficient on trees 

■ Marginal MAP 
■ Operations do not commute: 

■ Sum must be done first!

Max variables
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Bucket Elimination

A

B C

ED

M
A

X
S

U
M

B: 

C: 

D: 

E: 

A: 

MAP* is the marginal MAP value

co
ns

tra
in

ed
 e

lim
in

at
io

n 
or

de
r

Bucket elimination for MMAP



A

B C

ED

B

C

D

E

A

E

D

C

B

A

M
A

X
S

U
M

un
co

ns
tra

in
ed

 e
lim

in
at

io
n 

or
de

r

co
ns

tra
in

ed
 e

lim
in

at
io

n 
or

de
r

In practice, constrained induced is much 
larger!

exact upper 
bound

Why is MMAP harder?

(Park & Darwiche, 2003) 
(Yuan & Hansen, 2009)
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Inference for probabilistic networks

■ Bucket elimination (Dechter chapter 4) 
■ Belief-updating, P(e), partition function 
■ Marginals, probability of evidence 
■ The impact of evidence 
■ for MPE (MAP) 
■ for MAP  ( Marginal Map) 

■ Induced-Width (Dechter, Chapter 3.4) 
■ Mixed networks 
■ Influence diagrams ?
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Influence diagram ID = (X,D,P,R).

Influence Diagrams

Chance variables                             over domains. 
Decision variables 
CPT’s for chance variables 
Reward components 
Utility function

T DR

S O

OP OSP

MI

TC DC

SC

OS
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Task: Find an optimal policy that maximizes the expected utility.

Influence Diagrams 
(continue)

A decision rule for     is a mapping: 
where       is the cross product of domains in S. 

A policy is a list of decision rules
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The Car Example 
(Howard 1976)

A car buyer needs to buy one of two used cars. The buyer can carry 
out tests with various costs, and then, decide which car to buy.

T: Test variable (t0, t1, t2) (t1 test car 1, t2 test car 2) 
D: the decision of which car to buy, D ∈ {buy1, buy2} 
Ci: the quality of car i, Ci ∈ {q1, q2}  
ti: the outcome of the test on car i, ti ∈ {pass, fail, null}. 
r(T): The cost of testing, 
r(C1,D), r(C2,D): the reward in buying cars 1 and 2. 
The utility is: r(T) + r(C1,D) + r(C2,D).

Task: determine decision rules T and D such that:

T

C2

t2t1

C1

r(C1,D)

r(T)

r(C2,D)
D



bucket(C1): P(C1), P(t1|C1,T), r(C1,D) 

bucket(C2): P(C2), P(t2|C2,T), r(C2,D) 

bucket(D): 
bucket(t1): 
bucket(t2): 
bucket(T): r(T)

Bucket Elimination for meu 
(Algorithm Elim-meu-id)

Input: An Influence diagram ID = {P1,…,Pn,r1,…,rj} 
Output: Meu and optimizing policies.

1. Order the variables and partition into buckets. 
2. Process buckets from last to first: 
     o = T,t2,t2,D,C2,C1

3. Forward: Assign values in ordering d

),( 11
TtC

λ
),,,( 11 DTtC

θ

),( 22
TtC

λ

),,( 22
DTtC

θ

),,,( 21 TttD
θ

),( 21
Ttt

θ

)(1 Tt
λ )(2 Tt

λ )(1 Tt
θ

),,( 21 Tttδ

TT
δθ ,
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The Bucket Description

bucket(C1): P(C1),P(t1|C1,T),r(C1,D) 

bucket(C2): P(C2),P(t2|C2,T),r(C2,D) 
bucket(D):  
bucket(t1): 
bucket(t2): 
bucket(T): r(T)

Optimizing policies:       is argmax of      computed in 
bucket(T), and                 in bucket(t1).

Final buckets: (λs or Ps) utility components (θ’s or r’s).

t2

C1

C2

D

t1

T
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General Graphical Models
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General bucket elimination


