Slides Set 5: Exact Inference Algorithms Bucket-elimination

Rina Dechter

(Dechter chapter 4, Darwiche chapter 6)

Inference for probabilistic networks

- Bucket elimination (Dechter chapter 4)
 - Belief-updating, P(e), partition function
 - Marginals, probability of evidence
 - The impact of evidence
 - for MPE (\rightarrow MAP)
 - for MAP (\rightarrow Marginal Map)
 - Influence diagrams ?
- Induced-Width (Dechter, Chapter 3.4)

Inference for probabilistic networks

- Bucket elimination
 - Belief-updating, P(e), partition function
 - Marginals, probability of evidence
 - The impact of evidence
 - for MPE (\rightarrow MAP)
 - for MAP (\rightarrow Marginal Map)
- Induced-Width

Bayesian networks: example (Pearl, 1988)

P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

Belief Updating:

P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

A Bayesian Network

Α	Θ_A
true	.6
false	.4

А	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

A	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	С	D	$\Theta_{D BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

С	Е	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Types of queries

- **NP-hard**: exponentially many terms
- Difficulty (in part) due to restricted elimination orderings
- Focus is on **approximation** and Anytime algorithms
 - Anytime: very fast & very approximate ! Slower & more accurate

Belief updating is NP-hard

- Each SAT formula can be mapped into a belief updating query in a Bayesian network
- Example

A simple network

- How can we compute P(D)?, P(D|A=0)? P(A|D=0)?
- Brute force $O(k^4)$
- Maybe O(4k²)

A simple example

- Suppose we have two factors: $f(X) = f_{12}(X_1, X_2) f_{23}(X_2, X_3)$
- To compute the partition function (sum):

$$Z = \sum_{x_1, x_2, x_3} f(x_1, x_2, x_3) = f(0, 0, 0) + f(0, 0, 1) + f(0, 0, 2) + f(0, 1, 0) + \dots + f(1, 0, 0) + f(1, 0, 1) + f(1, 0, 2) + f(1, 1, 0) + \dots$$

• Use the factorization of f(x): $Z = f_{12}(0,0) f_{23}(0,0) + f_{12}(0,0) f_{23}(0,1) + f_{12}(0,0) f_{23}(0,2) + f_{12}(0,1) f_{23}(1,0) + \dots + f_{12}(1,0) f_{23}(0,0) + f_{12}(1,0) f_{23}(0,1) + f_{12}(1,0) f_{23}(0,2) + f_{12}(1,1) f_{23}(1,0) + \dots$

 $= f_{12}(0,0) \left(f_{23}(0,0) + f_{23}(0,1) + f_{23}(0,2) \right) + f_{12}(0,1) \left(f_{23}(1,0) + \dots + f_{12}(1,0) \left(f_{23}(0,0) + f_{23}(0,1) + f_{23}(0,2) \right) + f_{12}(1,1) \left(f_{23}(1,0) + \dots + f_{12}(1,0) \left(f_{23}(1,0) + f_{23}(0,1) + f_{23}(0,2) \right) + f_{12}(1,1) \left(f_{23}(1,0) + \dots + f_{12}(1,0) \left(f_{23}(1,0) + f_{23}(0,1) + f_{23}(0,2) \right) + f_{12}(1,1) \left(f_{23}(1,0) + \dots + f_{12}(1,0) \right) \right)$

We can pre-compute and re-use these terms in the sum!

$$\lambda(x_2) = \left(\sum_{x_3} f_{23}(x_2, x_3)\right) \qquad \qquad Z = \sum_{x_1, x_2} f_{12}(x_1, x_2) \lambda(x_2)$$
276 slidess F24

Variable elimination

Product of factors:

 $p(X_1, X_2, X_3, X_4) = \frac{1}{Z} f_{12}(X_1, X_2) f_{13}(X_1, X_3) f_{24}(X_2, X_4) f_{34}(X_3, X_4).$ Compute:

$$Z = \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} f_{34}(x_3, x_4) f_{24}(x_2, x_4) f_{12}(x_1, x_2) f_{13}(x_1, x_3),$$

Collect terms involving x_1 , then x_2 , and so on:

$$Z = \sum_{x_4} \sum_{x_3} f_{34}(x_3, x_4) \sum_{x_2} f_{24}(x_2, x_4) \sum_{x_1} f_{12}(x_1, x_2) f_{13}(x_1, x_3),$$

"Bucket elimination":

$$\lambda_{1}(x_{2}, x_{3}) = \sum_{x_{1}} f_{12}(x_{1}, x_{2}) f_{13}(x_{1}, x_{3}),$$

$$\lambda_{2}(x_{3}, x_{4}) = \sum_{x_{2}} f_{24}(x_{2}, x_{4}) \lambda_{1}(x_{2}, x_{3}),$$

$$\lambda_{3}(x_{4}) = \sum_{x_{3}} f_{34}(x_{3}, x_{4}) \lambda_{2}(x_{3}, x_{4}),$$

$$Z = \sum_{x_{4}} \lambda_{3}(x_{4}),$$
276

Collect all factors with x_1 in a "bucket"

Collect all remaining factors with x₂

Place intermediate calculations in bucket of their earliest argument

		А	В	$\Theta_{B A}$	В	С	$\Theta_{C B}$
A	$\Theta_{\mathcal{A}}$	true	true	.9	true	true	.3
true	.6	true	false	.1	true	false	.7
false	.4	false	true	.2	false	true	.5
		false	false	8	false	false	5

To compute the prior marginal on variable C, Pr(C)

we first eliminate variable A and then variable B

- There are two factors that mention variable A, Θ_A and $\Theta_{B|A}$
- We multiply these factors first and then sum out variable A from the resulting factor.
- Multiplying Θ_A and $\Theta_{B|A}$:

A	В	$\Theta_A \Theta_{B A}$
true	true	.54
true	false	.06
false	true	.08
false	false	.32

Summing out variable A:

В	$\sum_{A} \Theta_{A} \Theta_{B A}$
true	.62 = .54 + .08
false	.38 = .06 + .32

- We now have two factors, ∑_A Θ_AΘ_{B|A} and Θ_{C|B}, and we want to eliminate variable B
- Since B appears in both factors, we must multiply them first and then sum out B from the result.
- Multiplying:

В	С	$\Theta_{C B} \sum_{A} \Theta_{A} \Theta_{B A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

Summing out:

С	$\sum_{B} \Theta_{C B} \sum_{A} \Theta_{A} \Theta_{B A}$
true	.376
false	.624

- We now have two factors, ∑_A Θ_AΘ_{B|A} and Θ_{C|B}, and we want to eliminate variable B
- Since B appears in both factors, we must multiply them first and then sum out B from the result.
- Multiplying:

В	С	$\Theta_{C B} = A \Theta_A \Theta_{B A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

Summing out:

Belief updating

P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

From essai

Belief updating

From essai

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c) \sum_{d} P(d|b, a) \sum_{g=1} P(g|f).$$
(4.1)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c)\lambda_{G}(f) \sum_{d} P(d|b, a).$$
(4.2)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a)\lambda_{D}(a, b) \sum_{f} P(f|b, c)\lambda_{G}(f)$$
(4.3)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a)\lambda_{D}(a, b)\lambda_{F}(b, c)$$
(4.4)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a)\lambda_{B}(a, c)$$
(4.5)

A Bayesian network
ordering: A,C,B,F,D,G

$$P(a,g=1) = \sum_{c,b,e,d,g=1} P(a,b,c,d,e,g) = \sum_{c,b,f,d,g=1} P(g|f)P(f|b,c)P(d|a,b)P(c|a)P(b|a)P(a).$$

$$P(a,g=1) = P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\sum_{f} P(f|b,c)\sum_{d} P(d|b,d)\sum_{g=1} P(g|f) \quad (4.1)$$

$$P(a,g=1) = P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\sum_{f} P(f|b,c)\lambda_G(f)\sum_{d} P(d|b,a). \quad (4.2)$$

$$P(a,g=1) = P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\sum_{f} P(f|b,c)\lambda_G(f) \quad (4.3)$$

$$P(a,g=1) = P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\lambda_D(a,b)\sum_{f} P(f|b,c)\lambda_G(f) \quad (4.4)$$

$$P(a,g=1) = P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\lambda_D(a,b)\sum_{f} P(f|b,c)\lambda_G(f) \quad (4.4)$$

$$P(a,g=1) = P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\lambda_D(a,b)\sum_{f} P(f|b,c)\lambda_G(f) \quad (4.4)$$

$$P(a,g=1) = P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\lambda_D(a,b)\lambda_F(b,c) \quad (4.4)$$

$$P(a,g=1) = P(a)\sum_{c} P(c|a)\lambda_B(a,c) \quad (4.5)$$

A different ordering

(b) Moral graph

Ordering: A,F,D,C,B,G

 $P(a, g = 1) = P(a) \sum_{f} \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) P(d|a, b) P(f|b, c) \sum_{g=1} P(g|f)$ $= P(a) \sum_{f} \lambda_G(f) \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) P(d|a, b) P(f|b, c)$ $= P(a) \sum_{f} \lambda_G(f) \sum_{d} \sum_{c} P(c|a) \lambda_B(a, d, c, f)$ ΣП $= P(a) \sum_{f} \lambda_g(f) \sum_{d} \lambda_C(a, d, f)$ Bucket G: P(G|F) = G=1 $= P(a) \sum_{f} \lambda_G(f) \lambda_D(a, f)$ Bucket B: P(F|B,C) = P(D|B,A) = P(B|A) $= P(a)\lambda_F(a)$ Bucket C: $P(C|A) = \lambda^{B}(\overrightarrow{A}, \overrightarrow{D}, \overrightarrow{C}, F)$ $\lambda^{c}(A, D, F)$ Bucket D: $\lambda^{D}(A,F)$ $\lambda^G(F)$ Bucket F:

Figure 4.3: The bucket's output when processing along $d_2 = A, F, D, C, B, G$

The operation in a bucket

- Multiplying functions
- Marginalizing (summing-out) functions

Combination of Cost Functions

Α	В	f(A,B)
b	b	0.4
b	g	0.1
g	b	0
g	g	0.5

A	В	С	f(A,B,C)
b	b	b	0.1
b	b	g	0
b	g	b	0
b	g	g	0.08
g	b	b	0
g	b	g	0
g	g	b	0
g	g	g	0.4

В	С	f(B,C)
b	b	0.2
b	g	0
g	b	0
g	g	0.8

 $= 0.1 \times 0.8$

Elimination in a factor

Factors: Sum-Out Operation

The result of summing out variable X from factor $f(\mathbf{X})$

is another factor over variables $\mathbf{Y} = \mathbf{X} \setminus \{X\}$:

$$\left(\sum_{X} f\right)(\mathbf{y}) \stackrel{def}{=} \sum_{x} f(x, \mathbf{y})$$

В	С	D	f_1
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

В	С	$\sum_{D} f_1$
true	true	1
true	false	1
false	true	1
false	false	1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

276 slides5 F24

Thanks to Darwiche

Algorithm BE-bel

Input: A belief network $\mathcal{B} = \langle \mathbf{X}, \mathbf{D}, \mathbf{P}_G, \prod \rangle$, an ordering $d = (X_1, \dots, X_n)$; evidence *e* **output:** The belief $P(X_1|\mathbf{e})$ and probability of evidence $P(\mathbf{e})$

- Partition the input functions (CPTs) into *bucket*₁, ..., *bucket*_n as follows: for i ← n downto 1, put in *bucket*_i all unplaced functions mentioning X_i. Put each observed variable in its bucket. Denote by ψ_i the product of input functions in *bucket*_i.
- 2. backward: for $p \leftarrow n$ downto 1 do

Figure 4.5: BE-bel: a sum-product bucket-elimination algorithm.

Student network example

Induced width

- Width is the max number of parents in the ordered graph
- Induced-width is the width of the induced ordered graph: recursively connecting parents going from last node to first.
- Induced-width w*(d) is the max induced-width over all nodes in ordering d
- Induced-width of a graph, w* is the min w*(d) over all orderings d

Complexity of bucket elimination

Bucket-Elimination is time and space $O(r \exp(w_d^*))$

 w_d^* : the induced width of the primal graph along ordering d r = number of functions The effect of the ordering:

Inference for probabilistic networks

Bucket elimination

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width

The impact of evidence? Algorithm BE-bel

The impact of evidence? Algorithm BE-bel

The impact of observations

Figure 4.9: Adjusted induced graph relative to observing *B*.

Ordered graph

Induced graph

Ordered conditioned graph

Types of queries

- **NP-hard**: exponentially many terms
- Difficulty (in part) due to restricted elimination orderings
- We will focus on **approximation** algorithms
 - Anytime: very fast & very approximate ! Slower & more accurate

Inference for Probabilistic Networks

Bucket elimination

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width

²⁷⁶ slides5 F24

Generating the optimal assignment

Given BE messages, select optimum config in reverse order $\mathbf{b}^* = \arg \max_{b} p(b|a^*) p(d^*|b,a^*) p(e^*|b,c^*)$ **B:** $p(b|a) \ p(d|b,a) \ p(e|b,c)$ C: p(c|a) $\lambda_{B \to C}(a, c, d, e)$ $\mathbf{c}^* = \arg\max_{a} p(c|a^*) \,\lambda_{B \to C}(a^*, c, d^*, e^*)$ $\lambda_{C \to D}(a, d, e)$ $\mathbf{d}^* = \arg\max_{d} \lambda_{C \to D}(a^*, d, e^*)$ D: $\mathbf{e}^* = \arg \max \, \mathbb{1}[e=0] \, \lambda_{D \to E}(a^*, e)$ **E**: $\underbrace{\mathbb{1}[e=0]}_{I} \quad \underbrace{\lambda_{D\to E}(a,e)}_{I}$ $\underbrace{p(a) \ \lambda_{E \to A}(a)}_{\backslash}$ **A:**

$$\mathbf{a}^* = \arg\max_{a} \, p(a) \cdot \lambda_{E \to A}(a)$$

Return optimal configuration (a*,b*,c*,d*,e*)

Complexity of bucket elimination

Bucket-Elimination is time and space $O(r \exp(w_d^*))$

 w_d^* : the induced width of the primal graph along ordering d r = number of functions The effect of the ordering:

A Bayesian Network

Example with mpe?

Α	Θ_A
true	.6
false	.4

А	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

		_
A	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	С	D	$\Theta_{D BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

С	Е	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Try to compute MPE when E=0

Α	Θ_A
true	.6
false	.4

A	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

A	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	С	D	$\Theta_{D BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

С	Е	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Complexity of bucket-elimination

Theorem:

BE is O(n exp(w*+1)) time and O(n exp(w*)) space, when w* is the induced-width of the moral graph along d when evidence nodes are processed (edges from evidence nodes to earlier variables are removed.)

More accurately: $O(r \exp(w^*(d)))$ where r is the number of CPTs. For Bayesian networks r=n. For Markov networks?

Inference for probabilistic networks

Bucket elimination

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width (Dechter 3.4,3.5)

Variable ordering heuristics

- What makes a good order?
 - Low induced width
 - Elimination creates a function over neighbors
- Finding the best order is hard (NP-complete!)
 - But we can do well with simple heuristics
 - Min-induced-width, Min-Fill, ...
 - Anytime algorithms
 - Search-based [Gogate & Dechter 2003]

Min-width ordering

MIN-WIDTH (MW) input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ output: A min-width ordering of the nodes $d = (v_1, ..., v_n)$. 1. for j = n to 1 by -1 do 2. $r \leftarrow$ a node in G with smallest degree. 3. put r in position j and $G \leftarrow G - r$. (Delete from V node r and from E all its adjacent edges)

4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph What is the Complexity of MW? O(e) 276 slides5 F24

Variable ordering heuristics

- Min (induced) width heuristic for i=1 to n (# of variables)
- 1.
- Select a node X_i with smallest degree as next eliminated 2.
- Connect Xi's neighbors: 3.
- $E = E + \{ (X_i, X_k) : (X_i, X_i) \text{ and } (X_i, X_k) \text{ in } E \}$ 4.
- 5. Remove X_i from the graph: $V = V - \{X_i\}$

6. end

("Weighted" version: weight edges by domain size

Variable ordering heuristics

- Min fill heuristic
- 1. for i=1 to n (# of variables)
- 2. Select a node X_i with smallest "fill edges" as next eliminated
- 3. Connect Xi's neighbors:
- 4. $E = E + \{ (X_j, X_k) : (X_i, X_j) \text{ and } (X_i, X_k) \text{ in } E \}$
- 5. Remove X_i from the graph: $V = V \{X_i\}$

6. end

("Weighted" version: weight edges by domain size

Tree-structured graphs

- If the graph is a tree, the best ordering is easy:
 - B, E have only one neighbor; no "fill"
 - Select one to eliminate; remove it
 - Now D or E have only one neighbor; no "fill"...
- Order
 - leaves to root
 - never increases the size of the factors

Greedy orderings heuristics

- Min-induced-width
 - From last to first, pick a node with smallest width, then connect parent and remove
- Min-Fill
 - From last to first, pick a node with smallest fill-edges

Complexity? $O(n^3)$

Different induced-graphs

(a)

Let's find a miw ordering and a min-fill ordering

Different induced-graphs

Which greedy algorithm is best?

- Min-Fill, prefers a node who adds the least number of fill-in arcs.
- Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)
- Complexity of greedy orderings?
- MW is O(e), MIW: O(n³) MF O(n³) MC is O(e+n)

Inference for probabilistic networks

- Bucket elimination (Dechter chapter 4)
 - Belief-updating, P(e), partition function
 - Marginals, probability of evidence
 - The impact of evidence
 - for MPE (\rightarrow MAP)
 - for MAP (\rightarrow Marginal Map)
 - Influence diagrams ?
- Induced-Width (Dechter, Chapter 3.4)

Marginal Map

• **NP-hard**: exponentially many terms

Example for MMAP Applications

- Haplotype in Family pedigrees
- Coding networks

Diagnosis

Marginal MAP is not easy on trees

- Pure MAP or summation tasks
 - Dynamic programming
 - Ex: efficient on trees

- Marginal MAP
 - Operations do not commute:
 - Sum must be done first!

Bucket elimination for MMAP

Bucket Elimination

Why is MMAP harder?

Inference for probabilistic networks

Bucket elimination (Dechter chapter 4)

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width (Dechter, Chapter 3.4)
- Mixed networks
- Influence diagrams ?

Ex: "oil wildcatter"

e.g., [Raiffa 1968; Shachter 1986]

Influence diagram:

- Three actions: test, drill, sales policy
- Chance variables:

P(oil) P(seismic|oil) P(result | seismic, test) P(produced | oil, drill) P(market)

• Utilities capture costs of actions, rewards of sale Oil sales - Test cost - Drill cost - Sales cost

Influence diagram ID = (X, D, P, R).

Chance variables Decision variables CPT's for chance variables Reward components Utility function over domains.

Common examples

- Markov decision process
 - Markov chain state sequence
 - Actions "di" influence state transition
 - Rewards based on action, new state
 - Temporally homogeneous
- Partially observable MDP
 - Hidden Markov chain state sequence
 - Generate observations
 - Actions based on observations

A decision rule for is a mapping:

where is the cross product of domains in S.

A policy is a list of decision rules

Task: Find an optimal policy that maximizes the expected utility.

The Car Example (Howard 1976)

A car buyer needs to buy one of two used cars. The buyer can carry out tests with various costs, and then, decide which car to buy.

- *T*: Test variable (t_0, t_1, t_2) $(t_1 \text{ test car 1}, t_2 \text{ test car 2})$
- *D*: the decision of which car to buy, $D \in \{buy1, buy2\}$

 C_i : the quality of car *i*, $C_i \in \{q_1, q_2\}$

 t_i : the outcome of the test on car *i*, $t_i \in \{pass, fail, null\}$.

r(T): The cost of testing,

 $r(C_1,D)$, $r(C_2,D)$: the reward in buying cars 1 and 2. The utility is: $r(T) + r(C_1,D) + r(C_2,D)$.

Task: determine decision rules T and D such that:

Bucket Elimination for meu (Algorithm Elim-meu-id)

Input: An Influence diagram $ID = \{P_1, ..., P_n, r_1, ..., r_j\}$ **Output:** Meu and optimizing policies.

- 1. Order the variables and partition into buckets.
- 2. Process buckets from last to first:

$$o = T, t_{2}, t_{2}, D, C_{2}, C_{1}$$

bucket(C_{1}): $P(C_{1}), P(t_{1}|C_{1}, T), r(C_{1}, D)$
bucket(C_{2}): $P(C_{2}), P(t_{2}|C_{2}, T), r(C_{2}, D)$
bucket(D): $\theta_{C_{1}}(t_{1}, T, D), \theta_{C_{2}}(t_{2}, T, D)$
bucket(t_{1}): $\lambda_{C_{1}}(t_{1}, T) = \theta_{D}(t_{1}, t_{2}, T), \delta(t_{1}, t_{2}, T)$
bucket(t_{2}): $\lambda_{C_{2}}(t_{2}, T) = \theta_{t_{1}}(t_{2}, T)$
bucket(T): $r(T) = \lambda_{t_{1}}(T) = \lambda_{t_{2}}(T) = \theta_{t_{1}}(T)$

3. Forward: Assign values in ordering d

The Bucket Description

Final buckets: (λ s or Ps) utility components (θ 's or r's).

bucket(C_{l}): $P(C_{l}), P(t_{l}|C_{l}, T), r(C_{l}, D)$

bucket(C_2): $P(C_2), P(t_2|C_2, T), r(C_2, D)$

bucket(D): bucket(t₁):

 $bucket(t_2)$:

bucket(T): r(T)

Optimizing policies: bucket(T), and

is argmax of in $bucket(t_l)$.

computed in

General Graphical Models

Definition 2.2 Graphical model. A graphical model \mathcal{M} is a 4-tuple, $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \bigotimes \rangle$, where:

- 1. $\mathbf{X} = \{X_1, \dots, X_n\}$ is a finite set of variables;
- 2. **D** = { D_1, \ldots, D_n } is the set of their respective finite domains of values;
- 3. $\mathbf{F} = \{f_1, \ldots, f_r\}$ is a set of positive real-valued discrete functions, defined over scopes of variables $S = \{S_1, \ldots, S_r\}$, where $\mathbf{S}_i \subseteq \mathbf{X}$. They are called *local* functions.
- (product, sum, join). The combination operator can also be defined axiomatically as in [Shenoy, 1992], but for the sake of our discussion we can define it explicitly, by enumeration.

The graphical model represents a *global function* whose scope is **X** which is the combination of all its functions: $\bigotimes_{i=1}^{r} f_i$.

General bucket elimination

Algorithm General bucket elimination (GBE)

Input: $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes \rangle$. $F = \{f_1, ..., f_n\}$ an ordering of the variables, $d = X_1, ..., X_n$; $\mathbf{Y} \subseteq \mathbf{X}$.

Output: A new compiled set of functions from which the query $\Downarrow_Y \otimes_{i=1}^n f_i$ can be derived in linear time.

1. Initialize: Generate an ordered partition of the functions into $bucket_1, ..., bucket_n$, where $bucket_i$ contains all the functions whose highest variable in their scope is X_i . An input function in each bucket $\psi_i, \psi_i = \bigotimes_{i=1}^n f_i$. 2. Backward: For $p \leftarrow n$ downto 1, do for all the functions $\psi_p, \lambda_1, \lambda_2, ..., \lambda_j$ in $bucket_p$, do

- If (observed variable) $X_p = x_p$ appears in *bucket*_p, assign $X_p = x_p$ in ψ_p and to each λ_i and put each resulting function in appropriate bucket.
- else, (combine and marginalize) $\lambda_p \leftarrow \Downarrow_{S_p} \psi_p \otimes (\otimes_{i=1}^j \lambda_i)$ and add λ_p to the largest-index variable in $scope(\lambda_p)$.

3. Return: all the functions in each bucket.

Theorem 4.23 Correctness and complexity. Algorithm GBE is sound and complete for its task. Its time and space complexities is exponential in the $w^*(d) + 1$ and $w^*(d)$, respectively, along the order of processing d.