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The construction of a Bayesian network involves three major steps:

@ Identify relevant variables and their possible values.
@ Build the network structure by connecting variables into DAG.

@ Define the CPT for each network variable.

Queries: Different queries may be relevant for different scenarios



Reasoning with Bayesian Networks
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Samlam available at http://reasoning.cs.ucla.edu/samiam/.

For other tools (e.g., GeNie/Smile) see class page


http://reasoning.cs.ucla.edu/samiam

Query: Probability of Evidence

Probability of some variable instantiation e, Pr(e). ]
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The variables E = {X, D} are called evidence variables. The query
Pr(e) is known as a probability-of-evidence.

Other type of evidence: We may want to know the probability that the patient has either a
positive X-ray or dyspnoea, X =yes or D=yes.



Query: Prior and Posterior Marginals

Prior Marginals

Given a joint probability distribution Pr(xi,..., x,), the marginal

/

distribution Pr(xi,...,Xm), m < n, is defined as follows:

/
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Prior Marginals in the Asia Network
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Query: Posterior Marginals in the Asia Network
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Query: Most Probable Explanation (MPE)

Let Xi...., X, be all network variables, and e be evidence. ldentify
an instantiation xi...., X, that maximizes the probability
Pr(xi,...,xple). Instantiation xi, ..., X, is called a most probable
explanation given evidence e.

MPE cannot be obtained directly from posterior marginals.

If x1,...,x, Is an instantiation obtained by choosing each value Xx;

/

so as to maximize the probability Pr(x;|e), then xq, ..., x, is not
necessarily an MPE.
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Query: Most Probable Explanation (MPE)

MPE given a positive

X-ray and dyspnoea

A patient that made no
visit to Asia; is a
smoker; has lung
cancer and bronchitis;
but no tuberculosis.

MPE is also called MAP



Query: Most Probable Explanation (MPE)
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Choosing values with maximal probability, we get:
a: A=no, S=vyes, T =no, C=no, B=no, P=no, X =yes, D =no.
Probability ~ 20.03% given evidence e: X =yes, D=no.



Query: Maximum a Posteriori Hypothesis (MAP)
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MAP has probability of ~ 50.74% given the evidence.

MAP is also called Marginal Map (MMAP)
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Query: Maximum a Posteriori Hypothesis (MAP)

A common method for approximating MAP is to compute an MPE
and then return the values it assigns to MAP variables. We say in
this case that we are projecting the MPE on MAP variables.




Probabilistic Reasoning Problems
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Modeling with Bayesian Networks

Bayesian networks will be constructed in three consecutive steps.

Define the network variables and their values. \

@ A query variable is one which we need to ask questions about, such
as compute its posterior marginal.

@ An evidence variable is one which we may need to assert evidence
about.

@ An intermediary variable is neither query nor evidence and is meant
to aid the modeling process by detailing the relationship between
evidence and query variables.

The distinction between query, evidence and intermediary variables
Is not a property of the Bayesian network, but of the task at hand.



Modeling with Bayesian Networks

Bayesian networks will be constructed in three consecutive steps.

Define the network structure (edges).

We will be guided by a causal interpretation of network structure.

The determination of network structure will be reduced to
answering the following question about each network variable X:
what set of variables we regard as the direct causes of X7




Constructing a Bayesian Network for any
Distribution P

COROLLARY 3: Given a probability distribution P (x X2y X, ) and
any ordering d of the variables, the DAG created by designating as
parents of X; any minimal set Iy of predecessors satisfying

P(Xi '"X,) =P(x,~ le,...,x,-_l) ’ nxi o {XI’XZ ..... Xi—l} (3.27)

is a Bayesian network of P.

) If P is strictly positive, then all of the parent sets are unique (see
Theorem 4) and the Bayesian network is unique (given d).

COROLLARY 4: Given a DAG D and a probability distribution P, a
necessary and sufficient condition for D to be a Bayesian network of P
is that each variable X be conditionally independent of all its non-
descendants, given its parents Ily, and that no proper subset of Iy
satisfy this condition.

Intuition: The causes of X can serve as the parents
Ask: who does a variable listen to



Modeling with Bayesian Networks

Define the network CPTs. I

@ CPTs can sometimes be determined completely from the
problem statement by objective considerations.

@ CPTs can be a reflection of subjective beliefs.

@ CPTs can be estimated from data.
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Diagnosis |: Model from Expert

T Is an acute disease characterizosiuaysisner mesysaghes and

pains, and can be associated with chillingusms=esserestissani. T he
cz'd is a bodily disorder popularly associated with edsmsg and can

cause a ysmembasaad. .. ~-'''5 Is inflammation of the tonsils which
leads to a sewessmmem and can be associated with femew

Our goal here is to develop a Bayesian network to capture this
knowledge and then use it to diagnose the condition of a patient
suffering from some of the symptoms mentioned above.

Variables? Arcs? Try it.



Diagnosis |: Model from Expert

A naive Bayes structure

~———  Whatabout? has the following edges C ->A1, ..., C -> Am, where C is called
the class variable and A1; :: :: Am are called the attributes.
/'/ /// | ) \\\
o N R N
i.Chullm;. Bod\ A\he Sé;e Thrmt Fe\‘“° '\C old ‘.’> !\Hu ? /' '\\TOHSIHIIIS ’\
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Variables are binary: values are either true or false. More refined
information may suggest different degrees of body ache. J




Got up to here 10/10
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Diagnosis |: Model from Expert

The naive Bayes structure commits to the single-fault assumption. |
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Suppose the patient is known to have a cold.

Naive Bayes structure

Fever and sore throat become independent as they are d-separated
by “Condition”.

Original structure

Fever may increase our belief in tonsillitis, which could then
increase our belief in a sore throat.




CPTs can be obtained from medical experts, who supply this
information based on known medical statistics or subjective beliefs

gained through practical experience.

CPTs can also be estimated from medical records of previous patients

Case | Cold?  Flu? Tonsillitis? ~ Chilling?  Bodyache?  Sorethroat?  Fever?

1 true false ? true false false false
2 false true false true true false true
3 ? ? true false ? true false

? indicates the unavailability of corresponding data for that patient.



Diagnosis |:

@ Tools for Bayesian network inference can generate a network
parameterization ©, which tries to maximize the probability of
seeing the given cases.

@ If each case is represented by event d;, such tools will
generate a parametrization © which leads to a probability
distribution Pr that attempts to maximize:

N
[ ] Pr(di).
=1

@ Term Pr(d;) represents the probability of seeing the case i.

@ The product represents the probability of seeing all N cases
(assuming the cases are independent).




Diagnosis |l: Model from Expert

A few weeks after inseminating a cow, we have three possible tests to confirm
pregnancy. The first iz - - ~= *~~t which has a false positive of 1% and a
false negative of 10%. The second i~ - ~'--+ *~=+ which d-*--*- ==-=-~*--~~ ~
with a false positive of 10% and a false negative of 30%. The third test is a
~oin2 7 __:, which also detects progesterone with a false positive of 10% and a
false negative of 20%. The probability of a detect~h!~ ~v~~~- tavana lavel is 90%
given pregnancy, and 1% given no pregnancy. The probablllty that insemination
will impregnate a cow is 87%.

Our task here is to build a Bayesian network and use it to compute
the p~hahilitv Aaf nraana--1 gjyen the results of some of these

pregnancy tests.

Try it: Variables and values? Structure? CPTs?



Model from Expert

Diagnosis Il:

~ Pregnant? ™ Try with GeNie/Smile
~_ P S
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p | p P S Os|p P L O11p
o ’ 8”7 yes —ve | .10 yes undetectable | .10
y ' no +ve | .01 no detectable .01
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undetectable +ve .10 undetectable +ve .10



Diagnosis |l: Model from Expert

We inseminate a cow, wait for a few weeks, and then perform the
three tests which all come out negative:

e: S=-ve, B=—ve, U=—ve.

Posterior marginal for pregnancy given this evidence:

P Pr(Ple)
yes 10.21%
no 89.79%

Probability of pregnancy is reduced from 87% to 10.21%, but still
relatively high given that all three tests came out negative.



Diagnosis IlI: Model from Design

A B
1 | ‘ Problem statement

) Yy ) Given some values for the circuit primary
7 \l/ inputs and output (test vector), decide if the
c— ‘ — D circuit is behaving normally. If not, find the
V) most likely health states of its components.
\Z / y

Try it: Variables? Values? Structure?

L | U OLIVUNVODT L LT



Diagnosis |ll: Model from Design

A B
| Problem statement

X/ \ Yy | Given some values for the circuit primary
P [ g inputs and output (test vector), decide if the
C— ‘ —D circuit is behaving normally. If not, find the
N / most likely health states of its components.
\Z_ __/__// ’
|E

Evidence variables
Primary inputs and output of the circuit, A, B and E.




Diagnosis |ll: Model from Design

A B
. ’ Problem statement

X Yy / Given some values for the circuit primary
Q ~ [ | inputs and output (test vector), decide if the
c— ‘ — D circuit is behaving normally. If not, find the
N most likely health states of its components.
\\_»»‘_Z_ % / y
IE

Evidence variables
Primary inputs and output of the circuit, A, B and E.

Health of components X, Y and Z.




Diagnosis |ll: Model from Design

| =
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&

Problem statement

X Y Given some values for the circuit primary
Q I inputs and output (test vector), decide if the
C— ‘ —D circuit is behaving normally. If not, find the
N most likely health states of its components.
\Z __,__/‘/‘v '
’E

Evidence variables
Primary inputs and output of the circuit, A, B and E.

Query variables T~
Health of components X, Y and Z. z)

Intermediary variables

Internal wires, C and D.




Diagnosis |ll: Model from Design

\ . Values of
| J circuit wires:
CA | 1, C\ () /“‘\D/ low or high
J' \I /
\Z (E)
’

Health states: ok or faulty

faulty is too vague as a component may fail in a number of modes.

@ stuck-at-zero fault: low output regardless of gate inputs.
@ stuck-at-one fault: high output regardless of gate inputs.

@ input-output-short fault: inverter shorts input to its output.

Fault modes demand more when specifying the CPTs.



Diagnosis Ill: Model from Design

Three classes of CPTs

@ primary inputs (A, B)
@ gate outputs (C, D, E)
@ component health (X, Y, 2Z)

CPTs for health variables depend on their values

X 9. X 0,
ok .99
ok .99
Eault 01 stuckatO | .005
Y- stuckatl | .005

Need to know the probabilities of various fault modes.



Diagnosis |ll: Model from Design

CPTs for component outputs determined from functionality. |
B X C Oc|a,x
high ok high | 0
low ok high 1
CPT for inverter X. high  stuckat0  high | O
low stuckat0  high | 0
high  stuckatl  high 1
low stuckatl  high 1




Diagnosis Ill: Model from Design

CPTs for component outputs determined from functionality. |
A X C Oc)ax
high ok high | O
low ok high | 1
CPT for inverter X. high  stuckat0  high | 0
low stuckat0  high | 0
high  stuckatl  high 1
low stuckatl  high | 1

-~
If we do not represent health states:

A X C 0
high ok high 0
low ok high 1
high  faulty  high 7
low faulty high 7

cla,x

Common to use a probability of .50 in this case.




A Diagnosis Example

Given test vector e: A=high, B=high, E =low, compute MAP
over health variables X. Y and Z.




A Diagnosis Example

Given test vector e: A=high, B=high, E =low, compute MAP
over health variables X, Y and Z.

Network with fault modes gives two MAP instantiations:
MAP givene | X Y 4

ok stuckatO ok each probability ~ 49.4%
ok ok stuckatO




A Diagnosis Example

Given test vector e: A=high, B=high, E =low, compute MAP
over health variables X, Y and Z.

Network with fault modes gives two MAP instantiations:

MAP givene | X Y 4
ok stuckatO0 ok each probability ~ 49.4%
ok ok stuckatO

Network with no fault modes gives two MAP instantiations:

MAP givene | X Y /
ok faulty ok
ok ok faulty

each probability ~ 49.4%




Integrating Time

Suppose we have two test vectors instead of only one. ]




Integrating Time

Suppose we have two test vectors instead of only one. |

Additional evidence variables
A'.B" and E’




Integrating Time

Suppose we have two test vectors instead of only one. |

Additional evidence variables
A'.B" and E’

Additional intermediary variables

C" and D’




Integrating Time

Suppose we have two test vectors instead of only one. |

Additional evidence variables

A'. B and E’

Additional intermediary variables

C" and D’

Additional health variables on whether we allow intermittent faults

If health of a component can change from one test to another, we
need additional health variables X', Y/, and Z’. Otherwise, the
original health variables are sufficient.

Variables? Values? Structure?



Integrating Time: No Intermittent Faults

Two test vectors

e : A=high, B=high, E=low

e': A=low, B=low, E =low.




Integrating Time: No Intermittent Faults

Two test vectors

e : A=high, B=high, E=low

e: A=low, B=Ilow., E =low.

MAP using second structure

MAPgivene,e”X Y 7 | o 0
’ BT with probability ~ 97.53%




Integrating Time: Intermittent Faults

AN ) I I
(A ®) - Dynamic Bayesian network
B /\ S (DBN)
D N O AT
O . [ @) B)7Y) Two test vectors
\ 24 ~ . I - — i _
T e: A=high, B=high. E=low
{ /"' ‘--_‘____‘____‘_ lC" |D /l /. - - —_
4 — 7 )= e: A=low, B=low, E =low.
(E AN / '
) -\ZI/

Persistence model for the health of component X

ok ok .99
ok faulty | .01  healthy component becomes faulty
faulty ok 001 faulty component becomes healthy

faulty faulty | .999




Read on your own

Commonsense reasoning

When SamBot goes home at night, he wants to know if his family
is home before he tries the doors.

Often when SamBot's wife leaves the house she turns on an outdoor light.
However, she sometimes turns on this light if she is expecting a guest.

Also, SamBot's family has a dog. When nobody is home, the dog is in the
back yard. The same is true if the dog has bowel trouble.

If the dog is in the back yard, SamBot will probablyhear her barking, but
sometimes he can be confused by other dogs barking.

SamBot is equipped with two sensors: a light-sensor for detecting outdoor
lights and a sound-sensor for detecting the barking

of dogs. Both of these sensors are not completely reliable and can

break. Moreover, they both require SamBot's battery to be in good
condition.
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Commonsense Knowledge
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Parameters based on a combination of sources

@ Statistical information such as reliabilities of sensors and battery.

@ Subjective beliefs relating to how often the wife goes out, guests are
expected, the dog has bowel trouble, etc.

@ Objective beliefs regarding the functionality of sensors.




Genetic Linkage Analysis

A pedigree

is useful in reasoning about heritable characteristics which are
determined by genes, where different genes are responsible for the
expression of different characteristics.




Genetic Linkage Analysis

A pedigree

is useful in reasoning about heritable characteristics which are
determined by genes, where different genes are responsible for the
expression of different characteristics.

may occur in different states called alleles. Each individual carries
two alleles of each gene, one received from their mother and the
other from their father. The alleles of an individual are called the
genotype, while the heritable characteristic expressed by these
alleles (such as hair color, blood type, etc) are called the
phenotype of the individual.




Two Loci Inheritance

A A | a
BB (2)

A
B

a
b

S

Recombinant
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Bayesian Network for Recombination
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LiInKage analysis:
6 people, 3 markers
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