Reasoning with Graphical Models

Slides Set 3: *Rina Dechter*

Reading: Darwiche chapter 4 Pearl: chapter 3

Outline

- DAGS, Markov(G), Bayesian networks
- Graphoids: axioms of for inferring conditional independence (CI)
- D-separation: Inferring CIs in graphs
 - I-maps, D-maps, perfect maps
 - Markov boundary and blanket
 - Markov networks

Properties of Probabilistic Independence (Pearl ch 3)

- **Theorem:** Let **X**, **Y**, and **Z** be three **disjoint** subsets of variables from a set **U**. If **I(X,Z,Y)** stands for the relation: "**X** is independent of **Y** given **Z**" in the probabilistic distribution **P**, then **I** must satisfy the following independent conditions:
- Symmetry:
 - $I(X,Z,Y) \rightarrow I(Y,Z,X)$
- Decomposition:
 - $I(X,Z,YW) \rightarrow I(X,Z,Y)$ and I(X,Z,W)
- Weak union:
 - I(X,Z,YW)→I(X,ZW,Y)
- Contraction:
 - I(X,Z,Y) and $I(X,ZY,W) \rightarrow I(X,Z,YW)$

Graphoid axioms:

Symmetry, decomposition Weak union and contraction

Positive graphoid:

+intersection

In Pearl: the 5 axioms are called Graphoids, the 4, semi-graphoids

- Intersection:
 - I(X,ZY,W) and $I(X,ZW,Y) \rightarrow I(X,Z,YW)$

Outline

- DAGS, Markov(G), Bayesian networks
- Graphoids: axioms of for inferring conditional independence (CI)
- D-separation: Inferring CIs in graphs
 - I-maps, D-maps, perfect maps
 - Markov boundary and blanket
 - Markov networks

Outline

- Bayesian Networks, DAGS, Markov(G)
- Graphoids axioms for Conditional Independence
- D-separation: Inferring conditional independences (Cis) in directed graphs

What we know so far on BN?

- A probability distribution of a Bayesian network having directed graph G, satisfies all the Markov assumptions of independencies.
- 5 graphoid, (or positive) axioms allow inferring more conditional independence relationship for the BN.
- d-separation in G will allow deducing easily many of the inferred independencies.
- G with d-separation yields an I-MAP of the probability distribution.

The inferential power of the graphoid axioms can be tersely captured using a graphical test, known as d-separation, which allows one to mechanically, and efficiently, derive the independencies implied by these axioms.

- To test whether X and Y are d-separated by Z in DAG G, written dsep_G(X, Z, Y), we need to consider every path between a node in X and a node in Y, and then ensure that the path is blocked by Z.
- The definition of d-separation relies on the notion of blocking a path by a set of variables Z.

dsep_G(X, Z, Y) implies $I_{Pr}(X, Z, Y)$ for every probability distribution Pr induced by G.

d-speration

- To test whether X and Y are d-separated by Z in dag G, we need to consider every path between a node in X and a node in Y, and then ensure that the path is blocked by Z.
- A path is blocked by Z if at least one valve (node) on the path is 'closed' given Z.
- A divergent valve or a sequential valve is closed if it is in Z
- A convergent valve is closed if it is not on Z nor any of its descendants are in Z.

The type of a valve is determined by its relationship to its neighbors on the path.

- A sequential valve → W→ arises when W is a parent of one of its neighbors and a child of the other.
- A divergent value $\leftarrow W \rightarrow$ arises when W is a parent of both neighbors.
- A convergent value $\rightarrow W \leftarrow$ arises when W is a child of both neighbors.

Example

A path with 6 valves. From left to right, convergent, divergent, sequential, convergent, sequential, and sequential.

Definition

Let **X**, **Y** and **Z** be disjoint sets of nodes in a DAG *G*. We will say that **X** and **Y** are d-separated by **Z**, written $\operatorname{dsep}_G(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$, iff every path between a node in **X** and a node in **Y** is blocked by **Z**, where a path is blocked by **Z** iff at least one value on the path is closed given **Z**.

A path with no values (i.e., $X \rightarrow Y$) is never blocked.

Example

 $<2|1|3>_D$, $\neg<2|15|3>_D$

Bayesian Networks as i-maps

- E: Employment
- V: Investment
- W: Wealth
- H: Health
- C: Charitable contributions
- P: Happiness

Are C and V d-separated give E and P? Are C and H d-separated?

• X is d-separated from Y given Z (<X,Z,Y>d) iff:

- Take the ancestral graph that contains **X**,**Y**,**Z** and their ancestral subsets.
- Moralized the obtained subgraph
- Apply regular undirected graph separation
- Check: <E,{},V>,<E,P,H>,<C,EW,P>,<C,E,HP>?

• X is d-separated from Y given Z (<X,Z,Y>d) iff:

- Take the ancestral graph that contains **X**,**Y**,**Z** and their ancestral subsets.
- Moralized the obtained subgraph
- Apply regular undirected graph separation
- Check: <E,{},V>,<E,P,H>,<C,EW,P>,<C,E,HP>?

²⁷⁶ slides3 F24

• X is d-separated from Y given Z (<X,Z,Y>d) iff:

- Take the ancestral graph that contains **X**,**Y**,**Z** and their ancestral subsets.
- Moralized the obtained subgraph
- Apply regular undirected graph separation
- Check: <E,{},V>,<E,P,H>,<C,EW,P>,<C,E,HP>?

• X is d-separated from Y given Z (<X,Z,Y>d) iff:

- Take the ancestral graph that contains **X**,**Y**,**Z** and their ancestral subsets.
- Moralized the obtained subgraph
- Apply regular undirected graph separation
- Check: <E,{},V>,<E,P,H>,<C,EW,P>,<C,E,HP>?

• X is d-separated from Y given Z (<X,Z,Y>d) iff:

- Take the ancestral graph that contains **X**,**Y**,**Z** and their ancestral subsets.
- Moralized the obtained subgraph
- Apply regular undirected graph separation
- Check: <E,{},V>,<E,P,H>,<C,EW,P>,<C,E,HP>?

Idsep(R,EC,B)?

Example

R and B are d-separated by E and C. The closure of only one valve is sufficient to block the path, therefore, establishing d-separation.

$I_{dsep}(R, \emptyset, C)?$

Example

R and C are not d-separated since both valves are open. Hence, the path is not blocked and d-separation does not hold.

$I_{dsep}(C,S,B) = ?$

Example

C and B are d-separated by S since both paths between them are blocked by S.

Is S1 conditionally on S2 independent of S3 and S4 In the following Bayesian network?

Example

Any path between S_1 and $\{S_3, S_4\}$ must have the value $S_1 \rightarrow S_2 \rightarrow S_3$ on it, which is closed given S_2 . Hence, every path from S_1 to $\{S_3, S_4\}$ is blocked by S_2 , and we have $\operatorname{dsep}_G(S_1, S_2, \{S_3, S_4\})$, which leads to $I_{\operatorname{Pr}}(S_1, S_2, \{S_3, S_4\})$.

 $I_{\Pr}(S_1, S_2, \{S_3, S_4\})$ for any probability distribution \Pr which is induced by the DAG.

Outline

- DAGS, Markov(G), Bayesian networks
- Graphoids: axioms of for inferring conditional independence (CI)
- D-separation: Inferring CIs in graphs
 - Soundness, completeness of d-seperation
 - I-maps, D-maps, perfect maps
 - Construction a minimal I-map of a distribution
 - Markov boundary and blanket
 - Markov Networks

The d-separation test is sound in the following sense.

Theorem

If \Pr is a probability distribution induced by a Bayesian network (G, Θ) , then

 $\operatorname{dsep}_{G}(X, Z, Y)$ only if $I_{\operatorname{Pr}}(X, Z, Y)$.

The proof of soundness is constructive, showing that every independence claimed by d-separation can indeed be derived using the graphoid axioms.

Completeness of d-separation

It is not a d-map

d-separation is not complete in the following sense:

- Consider a network with three binary variables $X \rightarrow Y \rightarrow Z$.
- Z is not d-separated from X.
- Z can be independent of X in a probability distribution induced by this network.

Example

- Choose the CPT for variable Y so that $\theta_{y|x} = \theta_{y|\bar{x}}$.
- Y independent of X since
 - $\Pr(y) = \Pr(y|x) = \Pr(y|\bar{x})$ and
 - $\Pr(\bar{y}) = \Pr(\bar{y}|x) = \Pr(\bar{y}|\bar{x}).$

Z is also independent of X.

Outline

- DAGS, Markov(G), Bayesian networks
- Graphoids: axioms of for inferring conditional independence (CI)
- D-separation: Inferring CIs in graphs
 - Soundness, completeness of d-seperation
 - I-maps, D-maps, perfect maps
 - Construction a minimal I-map of a distribution
 - Markov boundary and blanket
 - Markov networks

More on DAGs and Independence

Definition

G is an Independence MAP (I-MAP) of Pr iff every independence declared by d-separation on DAG G holds in the distribution Pr:

$\operatorname{dsep}_{G}(X, Z, Y)$ only if $I_{\operatorname{Pr}}(X, Z, Y)$.

Definition

An I-MAP *G* is minimal if *G* ceases to be an I-MAP when we delete any edge from *G*.

By the semantics of Bayesian networks, if \Pr is induced by a Bayesian network (G, Θ), then G must be an I-MAP of \Pr , although it may not be minimal.

More on DAGs and Independence

Definition

G is a Dependency MAP (D-MAP) of Pr iff

 $I_{\Pr}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ only if $d_{\operatorname{Sep}_{G}}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$.

If G is a D-MAP of Pr, then the lack of d-separation in G implies a dependence in Pr.

Definition

If DAG G is both an I-MAP and a D-MAP of distribution Pr, then G is called a Perfect MAP (P-MAP) of Pr.

This is sometimes called "Faithfullness"

Outline

- DAGS, Markov(G), Bayesian networks
- Graphoids: axioms of for inferring conditional independence (CI)
- D-separation: Inferring CIs in graphs
 - Soundness, completeness of d-seperation
 - I-maps, D-maps, perfect maps
 - Construction a minimal I-map of a distribution
 - Markov boundary and blanket
 - Markov Networks

So how can we construct an I-MAP of a probability distribution? And a minimal I-Map

Given a distribution Pr, how can we construct a DAG G which is guaranteed to be a minimal I-MAP of Pr?

Given an ordering X_1, \ldots, X_n of the variables in Pr:

- Start with an empty DAG G (no edges)
- Consider the variables X_i one by one, for i = 1, ..., n.
- For each variable X_i, identify a minimal subset P of the variables in X₁,..., X_{i-1} such that

$$I_{\Pr}(X_i, \mathbf{P}, \{X_1, \ldots, X_{i-1}\} \setminus \mathbf{P}).$$

• Make **P** the parents of X_i in DAG G.

The resulting DAG is a minimal I-MAP of \Pr .

Construct a minimal I-MAP G for some distribution Pr using the previous procedure and variable order A, B, C, E, R.

Suppose that DAG G' is a P-MAP of distribution Pr

Independence tests on \Pr , $I_{\Pr}(X_i, \mathbf{P}, \{X_1, \dots, X_{i-1}\} \setminus \mathbf{P})$, can now be reduced to equivalent d-separation tests on DAG G', $\operatorname{dsep}_{G'}(X_i, \mathbf{P}, \{X_1, \dots, X_{i-1}\} \setminus \mathbf{P}).$

- Variable B added with P = A, since dsep_{G'}(B, A, ∅) holds and dsep_{G'}(B, ∅, A) does not.
- Variable C added with P = A, since dsep_{G'}(C, A, B) holds and dsep(C, Ø, {A, B}) does not.
- Variable E added with P = A, B since this is the smallest subset of A, B, C such that dsep_{G'}(E, P, {A, B, C} \ P) holds.
- Variable R added with P = E since this is the smallest subset of A, B, C, E such that dsep_{G'}(R, P, {A, B, C, E} \ P) holds.

Independence MAPs

DAG G' and distribution Pr

Minimal I-MAP G

• If $\operatorname{dsep}_{G}(X, Z, Y)$, then $\operatorname{dsep}_{G'}(X, Z, Y)$ and $I_{\operatorname{Pr}}(X, Z, Y)$.

• This ceases to hold if we delete any of the five edges in G.

For example, if we delete the edge $E \leftarrow B$, we will have $\operatorname{dsep}_G(E, A, B)$, yet $\operatorname{dsep}_{G'}(E, A, B)$ does not hold.

Independence MAPs

- The minimal I-MAP of a distribution is not unique, as we may get different ones depending on which variable ordering we start with.
- Even when using the same variable ordering, it is possible to arrive at different minimal I-MAPs. This is possible since we may have multiple minimal subsets P of {X₁,..., X_{i−1}} for which I_{Pr}(X_i, P, {X₁,..., X_{i−1}} \ P) holds.
- This can only happen if the probability distribution \Pr represents some logical constraints.
- We can ensure the uniqueness of a minimal I-MAP for a given variable ordering if we restrict ourselves to strictly positive distributions.

Perfect Maps for DAGs

- Theorem 10 [Geiger and Pearl 1988]: For any dag D there exists a P such that D is a perfect map of P relative to d-separation.
- Corollary 7: d-separation identifies any implied independency that follows logically from the set of independencies characterized by its dag.

Bayesian Networks as Knowledge-Bases

- Given any distribution, P, and an ordering we can construct a minimal i-map.
- The conditional probabilities of x given its parents is all we need.
- In practice we go in the opposite direction: the parents must be identified by human expert... they can be viewed as direct causes, or direct influences.

BAYESIAN NETWORK AS A KNOWLEDGE BASE

STRUCTURING THE NETWORK

- Given any joint distribution $P(x_1, ..., x_n)$ and an ordering d of the variables in U, Corollary 4 prescribes a simple recursive procedure for constructing a Bayesian network.
- Choose X_1 as a root and assign to it the marginal probability $P(x_1)$ dictated by $P(x_1,...,x_n)$.
- If X_2 is dependent on X_1 , a link from X_1 to X_2 is established and quantified by $P(x_2|x_1)$. Otherwise, we leave X_1 and X_2 unconnected and assign the prior probability $P(x_2)$ to node X_2 .
- At the *i*-th stage, we form the node X_i , draw a group of directed links to X_i from a parent set Π_{X_i} defined by Eq. (3.27), and quantify this group of links by the conditional probability $P(x_i | \mathbf{n}_{X_i})$.
- The result is a directed acyclic graph that represents all the independencies that follow from the definitions of the parent sets.

- In practice, $P(x_1,...,x_n)$ is not available.
- The parent sets Π_{X_i} must be identified by human judgment.
- To specify the strengths of influences, assess the conditional probabilities $P(x_i \mid \pi_{X_i})$ by some functions $F_i(x_i, \pi_{X_i})$ and make sure these assessments satisfy

$$\sum_{x_i} F_i(x_i, \mathbf{n}_{X_i}) = 1 , \qquad (3.30)$$

where $0 \le F_i(x_i, \pi_{X_i}) \le 1$

This specification is complete and consistent because the product form

$$P_a(x_1, ..., x_n) = \prod_i F_i(x_i, \mathbf{n}_{X_i})$$
(3.31)

constitutes a joint probability distribution that supports the assessed quantities.

$$P_{a}(x_{i} \mid \mathbf{n}_{X_{i}}) = \frac{P_{a}(x_{i}, \mathbf{n}_{X_{i}})}{P_{a}(\mathbf{n}_{X_{i}})} = \frac{\sum_{x_{j} \notin (x_{i} \cup \Pi_{X_{i}})} P_{a}(x_{1}, ..., x_{n})}{\sum_{x_{j} \notin \Pi_{X_{i}}} P_{a}(x_{1}, ..., x_{n})} = F_{i}(x_{i}, \mathbf{n}_{X_{i}})^{3.32}$$

 DAGs constructed by this method will be called *Bayesian belief* networks or causal networks interchangeably.

Outline

- DAGS, Markov(G), Bayesian networks
- Graphoids: axioms of for inferring conditional independence (CI)
- D-separation: Inferring CIs in graphs
 - Soundness, completeness of d-seperation
 - I-maps, D-maps, perfect maps
 - Construction a minimal I-map of a distribution
 - Markov boundary and blanket
 - Markov networks

Definition

Let \Pr be a distribution over variables **X**. A Markov blanket for a variable $X \in \mathbf{X}$ is a set of variables $\mathbf{B} \subseteq \mathbf{X}$ such that $X \notin \mathbf{B}$ and $I_{\Pr}(X, \mathbf{B}, \mathbf{X} \setminus \mathbf{B} \setminus \{X\})$.

A Markov blanket for X is a set of variables which, when known, will render every other variable irrelevant to X.

Definition

A Markov blanket **B** is minimal iff no strict subset of **B** is also a Markov blanket. A minimal Markov blanket is a Markov Boundary.

The Markov Boundary for a variable is not unique, unless the distribution is strictly positive.

If \Pr is induced by DAG G, then a Markov blanket for variable X with respect to \Pr can be constructed using its parents, children, and spouses in DAG G. Here, variable Y is a spouse of X if the two variables have a common child in DAG G.

What is a Markov blanket of C?

 $\{S_{t-1}, S_{t+1}, O_t\}$ is a Markov blanket for every variable S_t , where t > 1

If \Pr is induced by DAG G, then a Markov blanket for variable X with respect to \Pr can be constructed using its parents, children, and spouses in DAG G. Here, variable Y is a spouse of X if the two variables have a common child in DAG G.

 $\{S, P, T\}$ is a Markov blanket for variable C

 $\{S_{t-1}, S_{t+1}, O_t\}$ is a Markov blanket for every variable S_t , where t > 1

Outline

- DAGS, Markov(G), Bayesian networks
- Graphoids: axioms of for inferring conditional independence (CI)
- D-separation: Inferring CIs in graphs
 - Soundness, completeness of d-seperation
 - I-maps, D-maps, perfect maps
 - Construction a minimal I-map of a distribution
 - Markov boundary and blanket
 - Markov networks, Markov Random Fields

Undirected Graphs as I-maps of Distributions

- We say < X, Z, Y >_G iff once you remove Z from the graph X and Y are not connected
- Can we completely capture probabilistic independencies by the notion of separation in a graph?
- Example: 2 coins and a bell.

Graphoids vs Undirected graphs

Grap	hoic	ls:	Cond	litional	Ind	lepend	ence
Ciup			00110		1110	i ep ei i a	

Seperation in Graphs

Symmetry: $I(X,Z,Y) \rightarrow I(Y,Z,X)$

Decomposition: $I(X,Z,YW) \rightarrow I(X,Z,Y)$ and I(X,Z,W)

Weak union: **I**(**X**,**Z**,**YW**)→**I**(**X**,**ZW**,**Y**)

Contraction: I(X,Z,Y) and $I(X,ZY,W) \rightarrow I(X,Z,YW)$

Intersection: I(X,ZY,W) and $I(X,ZW,Y) \rightarrow I(X,Z,YW)$

Symmetry: $I(x,z,y) \rightarrow I(y,z,x)$

Decomposition: $I(X,Z,YW) \rightarrow I(X,Z,Y)$ and I(X,Z,Y)

Intersection: I(X,ZW,Y) and I(X,ZY,W)→I(X,Z,YW)

Strong union: $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y}) \rightarrow I(\mathbf{X}, \mathbf{Z}\mathbf{W}, \mathbf{Y})$

Transitivity: $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y}) \rightarrow \text{ exists t s.t. } I(\mathbf{X}, \mathbf{Z}, t) \text{ or } I(t, \mathbf{Z}, \mathbf{Y})$

See Pearl's book

Markov Networks

 An undirected graph G which is a minimal I-map of a probability distribution Pr, namely deleting any edge destroys its i-mappness relative to (undirected) seperation, is called a Markov network of P.

MARKOV NETWORK AS A KNOWLEDGE BASE

How can we construct a probability Distribution that will have all these independencies?

Figure 3.2. An undirected graph representing interactions among four individuals.

QUANTIFYING THE LINKS

- If couple (M_1, F_2) meet less frequently than the couple (M_1, F_1) , then the first link should be weaker than the second
- The model must be consistent, complete and a Markov field of G.
- Arbitrary specification of $P(M_1, F_1)$, $P(F_1, M_2)$, $P(M_2, F_2)$, and $P(F_2, M_1)$ might lead to inconsistencies.
- If we specify the pairwise probabilities of only three pairs, incompleteness will result.

Markov Random Field (MRF)

- A safe method (called *Gibbs' potential*) for constructing a complete and consistent quantitative model while preserving the dependency structure of an arbitrary graph *G*.
 - 1. Identify the cliques[†] of *G*, namely, the largest subgraphs whose nodes are all adjacent to each other.
 - 2. For each clique C_i , assign a nonnegative compatibility function $g_i(c_i)$, which measures the relative degree of compatibility associated with the value assignment c_i to the variables included in C_i .
 - 3. Form the product $\prod_{i} g_i(c_i)$ of the compatibility functions over all the cliques.
 - Normalize the product over all possible value combinations of the variables in the system

$$P(x_1,...,x_n) = K \prod_i g_i(c_i),$$
(3.13)

$$K = \left[\sum_{x_1, \dots, x_n} \prod_i g_i(c_i)\right]^{-1}.$$

[†] We use the term *clique* for the more common term maximal clique.

Examples of Bayesian and Markov Networks

Markov Networks

Figure 2.6: (a) An example 3×3 square Grid Markov network (ising model) and (b) An example potential $H_6(D, E)$

network represents a global joint distribution over the variables X given by:

$$P(\mathbf{x}) = \frac{1}{Z} \prod_{i=1}^{m} H_i(\mathbf{x}) \quad , \quad Z = \sum_{\mathbf{x} \in \mathbf{X}} \prod_{i=1}^{m} H_i(\mathbf{x})$$
276 slides 3 F24

Sample Applications for Graphical Models

Figure 1: Application areas and graphical models used to represent their respective systems: (a) Finding correspondences between images, including depth estimation from stereo; (b) Genetic linkage analysis and pedigree data; (c) Understanding patterns of behavior in sensor measurements using spatio-temporal models.