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Properties of Probabilistic Independence

earl ch 3)

heorem: Let X, Y, and Z be three disjoint subsets of variables from a set U.

If I(X,Z,Y) stands for the relation: "X is independent of Y given Z” in the
probabilistic distribution P, then I must satisfy the following independent

conditions:

Symmetry:
I(X,2Y) > IY,ZX)

Decomposition:

I(X,Z,YW)> I(X,ZY) and I(X,Z,W)

Weak union:
I(X,Z,YW)->I(X,ZW,Y)

Contraction:

1(X,2,Y) and I(X,ZY,W)->I(X,Z,YW)

Intersection:
I(X,ZY,W) and I(X,ZW,Y) >

Graphoid axioms:
Symmetry, decomposition
Weak union and contraction

Positive graphoid:
+intersection

In Pearl: the 5 axioms
are called Graphoids,
the 4, semi-graphoids

276 slides3 F24

I(X,Z,YW)



* Outline

= D-separation: Inferring CIs in graphs
- I-maps, D-maps, perfect maps
- Markov boundary and blanket
- Markov networks



* Outline

= D-separation: Inferring conditional
independences (Cis) in directed graphs



* What we know so far on BN?

A probability distribution of a Bayesian network having
directed graph G, satisfies all the Markov assumptions
of independencies.

= 5 graphoid, (or positive) axioms allow inferring more
conditional independence relationship for the BN.

= d-separation in G will allow deducing easily many of
the inferred independencies.

= G with d-separation yields an I-MAP of the probability
distribution.



A Graphical Test of Independence

The inferential power of the graphoid axioms can be tersely
captured using a graphical test, known as d-separation, which
allows one to mechanically, and efficiently, derive the
independencies implied by these axioms.

@ [o test whether X and Y are d-separated by Z in DAG G,

written dsep(X,Z,Y), we need to consider every path

between a node in X and a node in Y, and then ensure that
the path is blocked by Z.

@ [he definition of d-separation relies on the notion of blocking
a path by a set of variables Z.

dseps(X,Z,Y) implies Ip,(X,Z,Y) for every probability
distribution Pr induced by G.



d-speration

To test whether X and Y are d-separated by Z in dag G, we need
to consider every path between a node in X and a node in Y,
and then ensure that the path is blocked by Z.

A path is blocked by Z if at least one valve (node) on the path
is ‘closed’ given Z.
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The type of a valve is determined by its relationship to its
neighbors on the path. J

divergent convergent

oo
OO o

@ A sequential valve —\WW— arises when W is a parent of one of its
neighbors and a child of the other.

sequential

@ A divergent valve < W — arises when W is a parent of both neighbors.

@ A convergent valve —W <« arises when W is a child of both neighbors.
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A path with 6 valves. From left to right, convergent, divergent,
sequential, convergent, sequential, and sequential.




Let X, Y and Z be disjoint sets of nodes in a DAG G. We will say
that X and Y are d-separated by Z, written dsep(X,Z,Y), iff
every path between a node in X and a node in Y is blocked by Z,
where a path is blocked by Z iff at least one valve on the path is

closed given Z.

A path with no valves (i.e., X — Y') is never blocked. |




211135, , =<211513>)

1

2 3
4
b




ayesian Networks as i-maps

- E: Employment
- V: Investment B }\D
- W: Wealth @ @

: H: Health / \@/
= C: Charitable contributions ©
= P: Happiness

Are C and V d-separated give E and P?
Are C and H d-separated?
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* d-Seperation Using Ancestral Graph

X is d-separated from Y given Z (<X,Z,Y>qd) iff:
Take the ancestral graph that contains X,Y,Z and their ancestral subsets.
Moralized the obtained subgraph

- Apply regular undirected graph separation
- Check: <E/{}V>,<EPH><CEW,P>,<CEHP>?
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Moralized Ancestral graph



* d-Seperation Using Ancestral Graph

X is d-separated from Y given Z (<X,Z,Y>qd) iff:
Take the ancestral graph that contains X,Y,Z and their ancestral subsets.
Moralized the obtained subgraph

- Apply regular undirected graph separation
- Check: <E/{}V>,<EPH><CEW,P>,<CEHP>?

<E,PH>

Moralized Ancestral graph



* d-Seperation Using Ancestral Graph

X is d-separated from Y given Z (<X,Z,Y>qd) iff:
Take the ancestral graph that contains X,Y,Z and their ancestral subsets.
- Moralized the obtained subgraph
- Apply regular undirected graph separation
- Check: <E[{},V><E,PH>,<CEWP>,<CEHP>?

<C,EWP>
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* d-Seperation Using Ancestral Graph

X is d-separated from Y given Z (<X,Z,Y>qd) iff:

Take the ancestral graph that contains X,Y,Z and their ancestral subsets.
Moralized the obtained subgraph

- Apply regular undirected graph separation

- Check: <E/{}V>,<EPH><CEW,P>,<CEHP>?

<C,EW P>

Moralized Ancestral graph



* d-Seperation Using Ancestral Graph

X is d-separated from Y given Z (<X,Z,Y>qd) iff:

Take the ancestral graph that contains X,Y,Z and their ancestral subsets.
- Moralized the obtained subgraph
- Apply regular undirected graph separation
- Check: <E/{}V>,<EPH><CEW,P>,<CEHP>?
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Idsep(R, EC, B)7

& ;D
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s ) R and B are d-separated by E
//\Q/ and C. The closure of only one

Q;(‘“‘OD JUSREN valve is sufficient to bl.oc.k the
(R) Q path, therefore, establishing

d-separation.




Idsep( R,@,C)7
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R and C are not d-separated
since both valves are open.
Hence, the path is not blocked

adio Alarm?
<(R) Q(A) | .
w_~ and d-separation does not hold.

open




Idsep(c,s, B) =7?

Visit to Asia?
(4)
v

Tuberculosis?
(T)

) Y S,

Lung Cancer?
(€

Tuberculosis or Cancer?

(P)
Positive X-Ray?
(X)

Bronchitis?

Dyspnoea?
(D)
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(\\f‘liu ‘l,c;:\x.li-> <-“—?m(o;efj-->
Example

< el W Ll.ngccm, C and B are d-separated by S

since both paths between them

Bron chitis?
\/ ( (B)
open T
Tuberculosis or C1mer7 f are bIOCked by S'
<__ (P) P ," -
— 7:.::"_’:__“““- closed , ’.'

" _K“--\ —
/Po sitive X-Ray? / DV noea?
\ P
\___ (D) ~

\\ 1X )



Is S1 conditionally on S2 independent of S3 and 54
In the following Bayesian network?
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doet Any path between S; and {53, 54}
~ / \ /S | /5_‘\- mu.st havg the valve 51.—>52—>53
'\Sl/ S,/ L3 () on it, which is closed given S,.

T Hence, every path from $; to
I l {S3, S4} is blocked by S;, and we
v v v have dsepG(Sl, 52, {53, 54}),
( 01> /07\ 0\ ........... (¢ O ) which leads to
N 2 Ipe(S1, S, {53, 5a}).

lpr(S1, S2,{S3, S4}) for any probability distribution Pr which is
induced by the DAG.
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» Graphoids: axioms of for inferring conditional
independence (CI)

= D-separation: Inferring CIs in graphs
- Soundness, completeness of d-seperation
« I-maps, D-maps, perfect maps
= Construction a minimal I-map of a distribution

- Markov boundary and blanket
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Soundness of d-separation

The d-separation test is sound in the following sense.

If Pr is a probability distribution induced by a Bayesian network
(G,©), then

dsepg(X,Z.Y) only if Ip(X,Z,Y).

The proof of soundness is constructive, showing that every
independence claimed by d-separation can indeed be derived using

the graphoid axioms.



Completeness of d-separation

It is not a d-map

d-separation is not complete in the following sense:

@ Consider a network with three binary variables X—Y—/Z.
@ / is not d-separated from X.

@ /Z can be independent of X in a probability distribution
induced by this network.

Choose the CPT for variable Y so that 6, = 0,x.
Y independent of X since

o Pr(y) = Pr(y|x) = Pr(y[x) and
X

o Pr(y) = Pr(ylx) = Pr(y[x).
Z is also independent of X.

y|x
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More on DAGs and Independence

G is an Independence MAP (I-MAP) of Pr iff every independence
declared by d-separation on DAG G holds in the distribution Pr:

dseps(X,Z,Y) only if Ip (X, Z,Y).

Definition

An I-MAP G is minimal if G ceases to be an I-MAP when we
delete any edge from G.

By the semantics of Bayesian networks, if Pr is induced by a
Bayesian network (G, ®©), then G must be an I-MAP of Pr,
although it may not be minimal.



More on DAGs and Independence

G is a Dependency MAP (D-MAP) of Pr iff

(X, Z,Y) only if dsepg(X,Z,Y).

If G is a D-MAP of Pr, then the lack of d-separation in G implies
a dependence in Pr.

Definition

It DAG G is both an I-MAP and a D-MAP of distribution Pr, then
G is called a Perfect MAP (P-MAP) of Pr.

This is sometimes called “Faithfullness”
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So how can we construct an I-MAP of a probability distribution?
And a minimal I-Map



Independence MAPs

Given a distribution Pr, how can we construct a DAG G which is
guaranteed to be a minimal I-MAP of Pr? J

Given an ordering Xi,.... X, of the variables in Pr:
e Start with an empty DAG G (no edges)
@ Consider the variables X; one by one, fori=1,...,n.

@ For each variable X;, identify a minimal subset P of the
variables in Xq,.... Xi_1 such that

b (Xi, P {X1,....Xi—1} \ P).

@ Make P the parents of X; in DAG G.
The resulting DAG is a minimal I-MAP of Pr.



Independence MAPs

Construct a minimal I-MAP G for some distribution Pr using the
previous procedure and variable order A, B, C, E. R. J

/" Earthquake? ™ Burglary? ™
'\\lf‘ (112}) ke_'_'./’ < \_-(E_)-_‘_’/

Suppose that DAG G’ is a
~ Radio? ™ ’ Alc.m,ﬁ\ P-MAP of distribution Pr
R \ () /

[
v
7 can? ™
\_© J
Independence tests on Pr, Ip,(Xi,P,{X1,..., Xi—1} \ P), can now be

reduced to equivalent d- separatlon tests on DAG G’
dsepe (Xi, P, {X1,. ... Xi—1} \ P).



@ Variable A added with
P=0.

@ Variable B added with P = A, since dsepg/ (B, A, ) holds and
dseps/ (B, 0, A) does not.

@ Variable C added with P = A, since dsep¢/ (C, A, B) holds and
dsep(C,0,{A, B}) does not.

@ Variable E added with P = A, B since this is the smallest subset of
A, B, C such that dsep..(E,P,{A, B, C} \ P) holds.

@ Variable R added with P = E since this is the smallest subset of
A, B, C, E such that dseps/ (R,P.{A, B, C,E}\ P) holds.



DAG G’ and distribution Pr

g .-‘Ié;nhquak_c;.;\‘ / -Bl'fglﬂr}’?x\,
N (E) % \______(B)______,/

- _"‘liadio_'.;»\\ Ve /.;\_larn;'}m\

B S @S

|
— }_ T
Call?
\»_;-(C) _/

Independence MAPs

Minimal I-MAP G

/ --éanllqllilke;.\‘_ 7 /Bl:l‘;l;\)\
\\___A_ (E) -___x“\_\/(B) _'/n
v -__l—{_adic;%’i\' / "Klarn_l‘.?n\,
B’ @
I
/7 Call? \\.'
O

o If dseps(X,Z,Y), then dseps/(X,Z,Y) and Ip (X, Z,Y).

@ This ceases to hold if we delete any of the five edges in G.

For example, if we delete the edge E «— B, we will have

dsepg(E, A, B), yet dsep¢/(E, A, B) does not hold.



Independence MAPs

@ The minimal I-MAP of a distribution is not unique, as we may

get different ones depending on which variable ordering we
start with.

@ Even when using the same variable ordering, it is possible to
arrive at different minimal [-MAPs. This is possible since we

may have multiple minimal subsets P of {Xi,..., Xj_1} for
which p(Xi, P, {X1,..., Xj—1} \ P) holds.

@ This can only happen if the probability distribution Pr
represents some logical constraints.

@ We can ensure the uniqueness of a minimal I-MAP for a given
variable ordering if we restrict ourselves to strictly positive
distributions.



* Perfect Maps for DAGs

Theorem 10 [Geiger and Pearl 1988]: For any dag D
there exists a P such that D is a perfect map of P
relative to d-separation.

= Corollary 7: d-separation identifies any implied
independency that follows logically from the set of
independencies characterized by its dag.



Bayesian Networks as
* Knowledge-Bases

Given any distribution, P, and an ordering we can
construct a minimal i-map.

- The conditional probabilities of x given its parents is
all we need.

- In practice we go in the opposite direction: the
parents must be identified by human expert... they

can be viewed as direct causes, or direct influences.



BAYESIAN NETWORK AS A KNOWLEDGE BASE

STRUCTURING THE NETWORK

° Given any joint distribution P(xy ..., x,) and an ordering d of the
variables in U, Corollary 4 prescribes a simple recursive
procedure for constructing a Bayesian network.

. Choose X as a root and assign to it the marginal probability P (x,)
dictated by P (x,..., x,,).

e If X, is dependent on X, a link from X, to X, is established and
quantified by P(x,lx;). Otherwise, we leave X; and X,
unconnected and assign the prior probability P (x,) to node X ,.

) At the i-th stage, we form the node X;, draw a group of directed
links to X; from a parent set Ily defined by Eq. (3.27), and
quantify this group of links by the conditional probability
P (x; lny ).

. The result is a directed acyclic graph that represents all the
independencies that follow from the definitions of the parent sets.



° In practice, P (x,...,x, ) is not available.
e  The parent sets ITy must be identified by human judgment.

. To specify the strengths of influences, assess the conditional
probabilities P (x; Iny,) by some functions F;(x;,ny) and make
sure these assessments satisfy

Y Filx,ng)=1, (3.30)
X

where 0 < F;(x;, ny ) <1

° This specification is complete and consistent because the product
form

Pa(xy, ., X)) =TT F(x;, ny) (3.31)
i

constitutes a joint probability distribution that supports the
assessed quantities.

Y P,(xq.., X,)
Pa (xi9 “X.-) X; e (x; Unx.)

Pa (I‘lx',)

P,(x;Ing) = =F; (x;, ny 332

E Pa(xl,..., X")
X; € nx‘

. DAGs constructed by this method will be called Bayesian belief
networks or causal networks interchangeably.
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Blankets and Boundaries

Let Pr be a distribution over variables X. A Markov blanket for a
variable X € X is a set of variables B C X such that X ¢ B and

A Markov blanket for X is a set of variables which, when known,
will render every other variable irrelevant to X.

Definition

A Markov blanket B is minimal iff no strict subset of B is also a
Markov blanket. A minimal Markov blanket is a Markov Boundary.

The Markov Boundary for a variable is not unique, unless the
distribution is strictly positive.



Blanket Examples

If Pr is induced by DAG G, then a Markov blanket for variable X
with respect to Pr can be constructed using its parents, children,
and spouses in DAG G. Here, variable Y is a spouse of X if the
two variables have a common child in DAG G.

@ (@

{S¢—1,S¢11, O} is a Markov

blanket for every variable S;,
What is a Markov blanket of C? where t > 1
276 slides3 F24 n B N
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Blanket Examples

If Pr is induced by DAG G, then a Markov blanket for variable X
with respect to Pr can be constructed using its parents, children,
and spouses in DAG G. Here, variable Y is a spouse of X if the
two variables have a common child in DAG G.

(o) (0,) (0

{St—1,S¢11. O} is a Markov

(S.P, T} is a Markov blanket for blanket for every variable S,
_ where t > 1

variable C - - -
276 slides3 F24




* Markov Blanket

..
\

W

276 slides3 F24



iOutIine

* DAGS, Markov(G), Bayesian networks

» Graphoids: axioms of for inferring conditional
independence (CI)

- D-separation: Inferring CIs in graphs
» Soundness, completeness of d-seperation
« I-maps, D-maps, perfect maps
= Construction a minimal I-map of a distribution
- Markov boundary and blanket
- Markov networks, Markov Random Fields

276 slides3 F24



Undirected Graphs as I-maps of Distributions

= Wesay <X,Z,Y >, iff once you remove Z from the graph X
and Y are not connected

= Can we completely capture probabilistic independencies by the
notion of separation in a graph?

= Example: 2 coins and a bell.



Graphoids vs Undirected graphs

Graphoids: Conditional Independence Seperation in Graphs

Symmetry: 1(X,z2,Y) > I(Y,ZX) Symmetry: 1xzy) > IY,zX)

Decomposition: I(X,z,YW)> I(X,2,Y) and I(X,Z,W) Decomposition: 1(x,z,Yyw)> 1(X,zY)and I(X,Z,Y)

Weak union: 06z, YW)>IOLZW,Y) Intersection: 1(x,zw,Y) and 1(X,2Y,W)>1(X,Z,YW)
Strong union: 1(X,z,Y) > I(X,ZW, Y)

Contraction: 1(X,zY) and I(X,ZY,W)->I(X,Z,YW) o
Transitivity: I(X,Z,Y) > exists t s.t. I(X,Z,t) or

I(t,Z,Y)
Intersection: 1(X,zY,W) and I(X,ZW,Y) > I(X,Z,YW)

See Pearl’s book
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* Markov Networks

= An undirected graph G which is a minimal I-map of a
probability distribution Pr, namely deleting any edge
destroys its i-mappness relative to (undirected)
seperation, is called a Markov network of P.



MARKOV NETWORK AS A KNOWLEDGE BASE

M,
How can we construct a probability
Distribution that will have all these
F, Fy independencies?
M,

Figure 3.2. An undirected graph representing
interactions among four individuals.

QUANTIFYING THE LINKS

. If couple (M, F,) meet less frequently than the couple (M, F ),
then the first link should be weaker than the second

. The model must be consistent, complete and a Markov field of G.

e  Arbitrary specification of P(M, F,), P(F\,M,), P(M,,F,), and
P(F,, M) might lead to inconsistencies.

. If we specify the pairwise probabilities of only three pairs,
incompleteness will result.



Markov Random Field (MRF)

. A safe method (called Gibbs’' potential) for constructing a
complete and consistent quantitative model while preserving the
dependency structure of an arbitrary graph G.

1. Identify the cliquest of G, namely, the largest subgraphs
whose nodes are all adjacent to each other.

2. For each clique C;, assign a nonnegative compatibility
function g;(c;), which measures the relative degree of
compatibility associated with the value assignment ¢; to the
variables included in C;.

3. Form the product IT g, (c;) of the compatibility functions over
i

all the cliques.

4. Normalize the product over all possible value combinations
of the variables in the system

P(xy,...x,)=K Il g(c;), (3.13)
So, How do we learn i

Markov networks From data2?'here

-1
> ngi(ci)]
S

Lrvr An

K=

T We use the term cligue for the more common term maximal clique.



+

Examples of Bayesian and Markov
Networks
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Markov Networks

H](A'B) Hz(B,C)
@)
<
z."".
D E H(D,E)
S 0 0 20.2
2
oo 0 1 12
(H) 1 0 23.4
H,,(G.H) H,,(H.]) 1 1 11.7
(a) (b)

Figure 2.6: (a) An example 3 x 3 square Grid Markov network (ising model) and (b) An
example potential Hg(D, E)

network represents a global joint distribution over the variables X given by:

P =1 . 2= [[

zcX i=1
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Sample Applications for Graphical

_L Models

Computer Vision

Genetic Linkage

'
—'1—»

-

C

)]

C

J U
B Crossover /G ametes\

6 people, 3 markers

Sensor Networks

Figure 1: Application areas and graphical models used to represent their respective systems: (a) Finding
correspondences between images, including depth estimation from stereo; (b) Genetic linkage analysis and
pedigree data; (c) Understanding patterns of behavior in sensor measurements using spatio-temporal models.
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