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Reasoning with Graphical Models

Slides Set 3: 
Rina Dechter

Reading:  
Darwiche  chapter 4  
Pearl: chapter 3
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Outline

■ DAGS, Markov(G),  Bayesian networks 
■ Graphoids: axioms of for inferring 

conditional independence (CI) 
■ D-separation: Inferring  CIs in graphs 

■ I-maps, D-maps, perfect maps 
■ Markov boundary and blanket 
■ Markov networks
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Properties of Probabilistic Independence 
(Pearl ch 3)

■ Symmetry: 
■  I(X,Z,Y)   I(Y,Z,X)   

■ Decomposition:  
■ I(X,Z,YW) I(X,Z,Y) and I(X,Z,W) 

■ Weak union:  
■ I(X,Z,YW)I(X,ZW,Y) 

■ Contraction:  
■ I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW) 

■ Intersection: 
■ I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)

Theorem: Let X, Y, and Z be three disjoint subsets of variables from a set U. 
If I(X,Z,Y) stands for the relation: “X is independent of Y given Z”  in the 
probabilistic distribution P, then I must satisfy the following independent 
conditions:

Graphoid axioms: 
Symmetry, decomposition 
Weak union and contraction 
Positive graphoid: 
+intersection 
In Pearl: the 5 axioms  
are called Graphoids,  
the 4, semi-graphoids
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Outline

■ Bayesian Networks, DAGS, Markov(G) 
■ Graphoids axioms for Conditional 

Independence 
■ D-separation: Inferring  conditional 

independences (Cis) in directed graphs
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What we know so far on BN?
■ A probability distribution of a Bayesian network having 

directed graph G, satisfies all the Markov assumptions 
of independencies. 

■ 5 graphoid, (or positive) axioms allow inferring more 
conditional independence relationship for the BN. 

■ d-separation in G will allow deducing easily many of 
the inferred independencies. 

■ G with d-separation yields an I-MAP of the probability 
distribution. 
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d-speration
■ To test whether X and Y are d-separated by Z in dag G, we need 

to consider every path between a node in X and a node in Y, 
and then ensure that the path is blocked by Z. 

■ A path is blocked by Z if at least one valve (node) on the path 
is ‘closed’ given Z. 

■ A divergent valve or a sequential valve is closed if it is in Z 
■ A convergent valve is closed if it is not on Z nor any of its 

descendants are in Z.
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No path  
Is active = 
Every path is 
blocked

Example
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Bayesian Networks as i-maps 

■ E: Employment 
■ V: Investment 
■ W: Wealth 
■ H: Health 
■ C: Charitable contributions 
■ P: Happiness

E
E
E

C

E V

W

C P

H

Are C and V d-separated give E and P? 
Are C and H d-separated?
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d-Seperation Using Ancestral Graph

■ X is d-separated from Y given Z (<X,Z,Y>d) iff: 
■ Take the ancestral graph that contains X,Y,Z and their ancestral subsets. 
■ Moralized the obtained subgraph 
■ Apply regular undirected graph separation 
■ Check:  <E,{},V>,<E,P,H>,<C,EW,P>,<C,E,HP>?

E
E
E

C

E V

W

C P

H

E
E
E
E V

W

P

H

<E,P,H>

Moralized Ancestral graph
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d-Seperation Using Ancestral Graph

■ X is d-separated from Y given Z (<X,Z,Y>d) iff: 
■ Take the ancestral graph that contains X,Y,Z and their ancestral subsets. 
■ Moralized the obtained subgraph 
■ Apply regular undirected graph separation 
■ Check:  <E,{},V>,<E,P,H>,<C,EW,P>,<C,E,HP>?

E
E
E

C

E V

W

C P

H

E
E
E
E V

W H

<E,P,H>

Moralized Ancestral graph
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d-Seperation Using Ancestral Graph

■ X is d-separated from Y given Z (<X,Z,Y>d) iff: 
■ Take the ancestral graph that contains X,Y,Z and their ancestral subsets. 
■ Moralized the obtained subgraph 
■ Apply regular undirected graph separation 
■ Check:  <E,{},V>,<E,P,H>,<C,EW,P>,<C,E,HP>?
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Moralized Ancestral graph

CC P
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d-Seperation Using Ancestral Graph

■ X is d-separated from Y given Z (<X,Z,Y>d) iff: 
■ Take the ancestral graph that contains X,Y,Z and their ancestral subsets. 
■ Moralized the obtained subgraph 
■ Apply regular undirected graph separation 
■ Check:  <E,{},V>,<E,P,H>,<C,EW,P>,<C,E,HP>?

E
E
E

C

E V

W

C P

H

V

H

<C,EW,P>

Moralized Ancestral graph

CC P



276 slides3 F24

d-Seperation Using Ancestral Graph

■ X is d-separated from Y given Z (<X,Z,Y>d) iff: 
■ Take the ancestral graph that contains X,Y,Z and their ancestral subsets. 
■ Moralized the obtained subgraph 
■ Apply regular undirected graph separation 
■ Check:  <E,{},V>,<E,P,H>,<C,EW,P>,<C,E,HP>?
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Idsep(R,EC,B)?
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Idsep(C,S,B)=?
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Is S1 conditionally on S2 independent of S3 and S4 
In the following Bayesian network?
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Outline
■ DAGS, Markov(G),  Bayesian networks 
■ Graphoids: axioms of for inferring conditional 

independence (CI) 
■ D-separation: Inferring  CIs in graphs 

■ Soundness, completeness of d-seperation 
■ I-maps, D-maps, perfect maps 
■ Construction a minimal I-map of a distribution 
■ Markov boundary and blanket 
■ Markov Networks
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It is not a d-map
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This is sometimes called “Faithfullness”
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So how can we construct an I-MAP of a probability distribution? 
And a minimal I-Map
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Earthquake Burglary

Radio
Alarm

Call
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Perfect Maps for DAGs
■ Theorem 10 [Geiger and Pearl 1988]: For any dag D 

there exists a P such that D is a perfect map of P 
relative to d-separation. 

■ Corollary 7: d-separation identifies any implied 
independency that follows logically from the set of 
independencies characterized by its dag.
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Bayesian Networks as 
Knowledge-Bases
■ Given any distribution, P, and an ordering we can 

construct a minimal i-map. 

■ The conditional probabilities of x given its parents is 
all we need. 

■ In practice we go in the opposite direction: the 
parents must be identified by human expert… they 
can be viewed as direct causes, or direct influences.
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Blanket Examples

What is a Markov blanket of C?
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Blanket Examples
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Markov Blanket
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Outline
■ DAGS, Markov(G),  Bayesian networks 
■ Graphoids: axioms of for inferring conditional 

independence (CI) 
■ D-separation: Inferring  CIs in graphs 

■ Soundness, completeness of d-seperation 
■ I-maps, D-maps, perfect maps 
■ Construction a minimal I-map of a distribution 
■ Markov boundary and blanket 
■ Markov networks, Markov Random Fields
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Undirected Graphs as I-maps of Distributions

■
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Graphoids vs Undirected graphs

■ Symmetry:   I(X,Z,Y)   I(Y,Z,X)   

■ Decomposition:  I(X,Z,YW) I(X,Z,Y) and I(X,Z,W) 

■ Weak union:  I(X,Z,YW)I(X,ZW,Y) 

■ Contraction:  I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW) 

■ Intersection: I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)

Symmetry:   I(X,Z,Y)   I(Y,Z,X)   
Decomposition:  I(X,Z,YW) I(X,Z,Y) and I(X,Z,Y) 

Intersection:  I(X,ZW,Y) and I(X,ZY,W)I(X,Z,YW) 
Strong union: I(X,Z,Y)  I(X,ZW, Y) 
Transitivity: I(X,Z,Y)  exists t s.t. I(X,Z,t) or 
I(t,Z,Y)

See Pearl’s book

Graphoids: Conditional Independence Seperation in Graphs 
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Markov Networks

■ An undirected  graph G which is a minimal I-map of  a 
probability distribution Pr, namely deleting any edge 
destroys its i-mappness relative to (undirected) 
seperation, is called a Markov network of P.
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How can we construct a probability 
Distribution that will have all these  
independencies?
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So, How do we learn 
Markov networks From data?

Markov Random Field (MRF)
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Examples of Bayesian and Markov 
Networks
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Markov Networks 
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Sample Applications for Graphical 
Models


