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Causal and Probabilistic Reasoning
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Darwiche chapter 4
Pearl (probabilistic): chapter 3
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Outline

* Bayesian Networks, DAGS, Markov(G)
» Graphoids axioms for Conditional Independence
* d-separation: Inferring Cls in graphs
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Outline

* Bayesian Networks, DAGS, Markov(G)

* From a distribution to a BN
* From BN to distributions, DAGs, Markov(G)
 Parameterization
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Outline

* Bayesian Networks, DAGS, Markov(G)
* From a distribution to a BN

276 slides2 F24



Bayesian Networks (BNs) in 2 ways:

From a distribution to a BN:

* A Bayesian network is factorize probability distribution along an ordering.

 The DAG emerging is a Bayesian network of the distribution

* The factorization is guided by a set of Markov assumption that transform
the chain product formula into a Bayesian network.
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Overcome the problem of exponential size by exploiting conditional independence

m [he chain rule of probabilities:

P(X1,X3) = P(X1)P(X2|X1)
P(X1, X2, X3) = P(X1)P(Xa|X1)P( X5 X1, X2)

P(X1,X2.....Xn) = PX)P(X2|X1) ... P(Xal X1, ... Xn=1)

= JIPCIXe, ... Xizw).
=1

m No gains yet. The number of parameters required by the factors is:
2n—l 4ol  4+1=2"-1.




m About P(X;|X1,...,Xi_1):

m Domain knowledge usually allows one to identify a subset
pa(X;) € {X1,...,Xi_1} such that

m Given pa(X;), X; is independent of all variables in
{X1,.... Xi1} \ pa(Xi), i.e.

P(XilXi, ..., Xi—1) = P(Xi|pa(X:))
m [hen

P(Xl, X2, Ce . ,Xn) = ﬁ P(X,|pa(X,))
i=1

m Joint distribution factorized.

m The number of parameters might have been substantially reduced.
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Example Earthqa\ke ‘/Burglary

Alarm

Nevin L. Zhang (HKUST) Bayesian Networks Spring 2007 12 /54




Earthquake /Burglary

'm

rry

m Conditional probabilities tables (CPT)

B P(E)
B _P(B) - EBE A B E P(A|B, B
Y .01 ro.0z2
N 0g Y Y Y .95
N .99 ' N Y Y .05
Y Y N .94
N Y N .08
N N .95 N N .99
Nevin L. Zhang (HKUST) Bayesian Networks

Spring 2007 12 / 54



m Model size reduced from 31 to 1+1+4+2+42=10

m Model construction easier

m Fewer parameters to assess.
m Parameters more natural to assess:e.g.

P(B=Y),P(E=Y),P(A=Y|B=Y.E=Y),

P(J=Y|A=Y),P(M=Y|A=Y)

m Inference easier.Will see this later.

Nevin L. Zhang (HKUST) Bayesian Networks Spring 2007 13 / 54



Outline

* Bayesian Networks, DAGS, Markov(G)

* From BN to distributions, DAGs, Markov(G)
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Capturing Independence Graphically

The causal interpretation

Earthquake? Burglary?
(E) _(B)

Assume that edges in this
graph represent direct causal
— influences among these

Radio? Alarm? .
(R) @ variables.
|
Call?
(C)

The alarm triggering (A) is a direct cause of receiving a call from a

neighbor (C).
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Capturing Independence Graphically

But influences can be indirect as well.
For example...

We expect our belief in C to be
influenced by evidence on R.

Eart quake 9 Burglary? Exam ple
(E) (B)

If we get a radio report that an
Radio?
(R

earthquake took place in our
Alarm? neighborhood, our belief in the

(A) ] - -

S/ alarm triggering would probably
| increase, which would also

: increase our belief in receiving

"all? :
catr ™ a call from our neighbor.
© )
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Capturing Independence Graphically

“all?
©_~/

We would not change this
belief, however, if we knew for
sure that the alarm did not
trigger. That is, we would find
C independent of R given —A
in the context of this causal
structure.
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Capturing Independence Graphically

We would clearly find a visit to
Asia relevant to our belief in
the X-Ray test coming out

D 8"
_/ positive, but we would find the
visit irrelevant if we know for

< 'Eber(%losis? ) o
\/ ( fl;r;.:g;ms? \/ . )
B —r have Tuberculosis. That is, X
| is dependent on A, but is
independent of A given — T

Tuberculosis or Cancer?
|

___L___ <"'f Cancer? >
- sure that the patient does not

N ®
T ."
‘\ |
I S

____-_x_( T, _
Positive X-Ra)h |? Dyspnoea?
. 4 N D
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Graphs Convey Independence Statements

* Directed graphs by graph’s d-separation

* Undirected graphs by graph separation

» Goal: capture probabilistic conditional independence by graphs.
* We focus on directed graphs.
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Capturing Independence Graphically

These examples of independence are all implied by a formal
interpretation of each DAG as a set of conditional independence
statements.

Given a variable V in a DAG G:

Parents(V') are the parents of V in DAG G, that is, the set of
variables N with an edge from N to V.

Descendants( V') are the descendants of V' in DAG G, that is, the
set of variables N with a directed path from V to N
(we also say that V is an ancestor of N in this case).

Non_Descendants( V') are all variables in DAG G other than V/,
Parents(V') and Descendants(V'). We will call these
variables the non-descendants of V in DAG G.
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Capturing Independence Graphically

* Parents & Children
« Parents pa(A) = {E,B}
» Children ch(A) = {W,H}

* Ancestors & Descendants
* Ancestors an(W) = {A,E,B}
* Descendants de(E) = {A,W,H}
* Non_descendants of E = {B}

* Roots & Leaves

* Paths
* Directed paths, undirected paths

276 slides1 F-2024

{E B}
| = {W,H}
@ (R) @ t*)
an(W) ={A,E,B}

{AWH}

3 o?f%



Capturing Independence Graphically

We will formally interpret each DAG G as a compact
representation of the following independence statements
(Markovian assumptions):

[(V,Parents(V), Non_Descendants(V)),

for all variables V' in DAG G.

@ If we view the DAG as a causal structure, then Parents( V)
denotes the direct causes of V' and Descendants( V') denotes
the effects of V.

@ Given the direct causes of a variable, our beliefs in that
variable will no longer be influenced by any other variable
except possibly by its effects.
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Capturing Independence Graphically

What are the Markov assumptions here?

Burglary?
B

Earthquake?
(E)

(©)

Note that variables B and E have no parents, hence, they are
marginally independent of their non-descendants.
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Capturing Independence Graphically

What are the Markov assumptions here?

@Bqu @ Burglarb
__(E»)__ _(Bi_ /(C’ A’ {B’ E’ R})
I(R,E.{A,B,C})
Radi Al—\q I(A” {B* E}* R)
a ) I(B.0.{E.R})
o T I(E. 0, B)

Note that variables B and E have no parents, hence, they are
marginally independent of their non-descendants.
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Capturing Independence Graphically

The formal interpretation of a DAG as a set of conditional
independence statements makes no reference to the notion of
causality, even though we have used causality to motivate this
Interpretation.

If one constructs the DAG based on causal perceptions, then one
would tend to agree with the independencies declared by the DAG.

It is perfectly possible to have a DAG that does not match our
causal perceptions, yet we agree with the independencies declared

by the DAG.
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Capturing Independence Graphically

Farthquake? ™ G["‘glm‘yfﬁ. Barthquake? N uraary ™
ﬂ;té\/;;zll‘;? ﬁ{:u’li:»ﬁ / //;Jurn*l“m
B N LI @

| |

| )
-y B A
Call? ™\ /7 cal?
-_( ) C)_/ \-_(E)_-

Every independence which is declared (or implied) by the second
DAG is also declared (or implied) by the first one. Hence, if we
accept the first DAG, then we must also accept the second.
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Capturing Independence Graphically

1:1 ftﬁfl@\ Cg urel "‘N Ez;;l hq ua—k-c‘-\, . ﬁl;lg—ll;\ 27N
mi;‘é\jk;ar n: v / i;adi:\“m / /z;m;{:\
N B \ @ N ® @
| |
| I
v . A
Call? "\ 77 can?
--_( ) C)_/ \-_(E )_-

Every independence which is declared (or implied) by the second
DAG is also declared (or implied) by the first one. Hence, if we
accept the first DAG, then we must also accept the second.

276 slides2 F24



Outline

* Bayesian Networks, DAGS, Markov(G)

 Parameterization
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Parameterizing the Independence Structure

@ The DAG G is a partial

specification of our state of belief

Eahquiet™ ( Burglay? ™ Pr.
. ® ~_ B S . .
< 7 @ By constructing G, we are saying
/\ -/ that the distribution Pr must
( Rf(';if‘?) C Al(«':")"‘-’j. satisfy the independence
o T assumptions in Markov(G).
| : : :
Py @ This clearly constrains the possible

o choices for the distribution Pr, but
does not uniquely define it.

We can augment the DAG G by a set of conditional probabilities
that together with Markov(G) are guaranteed to define the
distribution Pr uniquely.




Parameterizing the Independence Structure

'<E“"':2‘;“ke?> <Buru;?r)7> For every variable X in the DAG G,
as / and its parents U, we need to provide
/Rm/\\m_m?\{ the probability Pr(x|u) for every value
N’ N x of variable X and every instantiation
T| u of parents U.
4 '"Ealu_?_-’\.
_©_

We need to provide the following conditional probabilities:

Pr(c|a), Pr(rle), Pr(a|lb,e), Pr(e), Pr(b),

where a, b, ¢, e and r are values of variables A. B, C. E and R.
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Parameterizing the Independence Structure

The conditional probabilities required for

- variable C:
g™, (BT
<E " k> ‘\--.__“’;’j--./ A C Pr(cla)
N / true true | .80
4 ] true false | .20
(" Radio? ™ ‘ l\lar_m'?\\, false true | .001
~2 \"-(fl—)---'/ false false | .9909
L The above table is known as a Conditional
/7 cam B _
\_© Probability Table (CPT) for variable C.

Pr(c|a) + Pr(cla) = 1 and Pr(c|a) + Pr(c|a) = 1.

Two of the probabilities in the above CPT are redundant and can
be inferred from the other two. We only need 10 independent
probabilities to completely specify the CPTs for this DAG.
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Parameterizing the Independence Structure

A Bayesian network for variables Z is a pair (G, ©), where

@ G is a directed acyclic graph over variables Z, called the
network structure.

@ O is a set of conditional probability tables (CPTs), one for
each variable in Z, called the network parametrization.

® Oxy: the CPT for variable X and its parents U.
@ XU: a network family.

® 0y the value assigned by CPT © x|y to the conditional
probability Pr(x|u). Called a network parameter.

We must have ) 6,), = 1 for every parent instantiation u.
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Parameterizing the Independence Structure

,/ Winter? \'

> (A) /
- — \\\_\ A B @3| A A C @C |A
. /‘ ™~ true  true | .2 true  true | .8
.;/ Sprinkler? 'I. R(mc';? ) true  false | .8 true  false | .2
\\..._(i-..-/ N false true | .75 false true | .1
~ /\ \ false false | .25 false false | .9
C |y
\__/ l.\\ ppe(};) ¢ /
B C D Opis,c
true  true  true .95
true true false | .05 C E OF|c
A | ©a true false true | .9 true  true | .7
true | .6 true false false | .1 true false | .3
false | .4 false true true | .8 false true | O
false true false | .2 false false | 1
false false true | O
false false false | 1
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To create this network



Parameterizing the Independence Structure

Chain rule for Bayesian networks

A Bayesian network is an implicit representation of a unique
probability distribution Pr given by

Pr(z) = T bxu.
9x|uNz

The probability assigned to a network instantiation z is simply the
product of all network parameters that are compatible with z.
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Parameterizing the Independence Structure

Chain rule for Bayesian networks

A Bayesian network is an implicit representation of a unique
probability distribution Pr given by

Pr(z) = T bxu.
9x|uNz

The probability assigned to a network instantiation z is simply the
product of all network parameters that are compatible with z.
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Parameterizing the Independence Structure

Pr(a, b,c,d, &)
0, 9b|a 9(‘:|a 9d|b,E 9é|<‘:

(:6)(:2)(-2)(-9)(1)
= .0216
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Parameterizing the Independence Structure

Pr(a, b,c,d, &)
02 Obja Oz)a Odibe 05z

= (6)(:2)(:2)(:9)(1)
= .0216




Parameterizing the Independence Structure

Pr(a, b,c,d, &)
02 Obja Oz)a Od|be O5c

= (:6)(:2)(:2)(:9)(1)
= .0216

—~"

Pr(3. b, ¢, d, )

) y ~
0

(

0513 V213 Y35, b7z

4)(.25)(.9)(1)(1)

09
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Parameterizing the Independence Structure

o The CPT ©xy is exponential in the number of parents U.

@ If every variable can take up to d values, and has at most k
parents, the size of any CPT is bounded by O(d**1).

@ If we have n network variables, the total number of Bayesian
network parameters is bounded by O(n- d**1).

@ This number is quite reasonable as long as the number of
parents per variable is relatively small.
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Bayesian Networks: Representation

P(S)

P(CI|S) P(B|S)

P(X]C,S)

P(S, G, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

Conditional Independencies ™= Efficient Representation
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Inference

Enable us to answer queries about our model
* Some probabilities are directly accessible
* Some are only implicit, and require compu

[ p(B=1) = .001 ] -
Explicitly in model parameters 0l0| 0001
AT =7 S ome
Implicit only: =

p(A=11E=0,B=0) p(E=0) p(B=0) + D=

p(A=1 |[E=1 ,B=O) p(E=1) p(B=O) + . o| oot
\_ ) 1| 070
[ p(W=1) =2 )

Implicit:
. P(A) =? (may need to compute recursively!),




Outline

» Graphoids axioms for Conditional Independence
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Properties of Probabilistic Independence

This independence follows from the Markov assumption

l/ E'n_rthqual;é\?.\ /~ Burglary? ™
. ® B

7

/\ /
/
I,/
'/ Radio? ™\ /Alarm‘?\x‘

|

B @
"

L
/7 car N
_©

The distribution Pr specified by a
Bayesian network (G, ©) is
guaranteed to satisfy every

independence assumption in
Markov(G).

These, however, are not the only independencies satisfied by the

distribution Pr.
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Properties of Probabilistic Independence
(Pearl ch 3)

Theorem: Let X, Y, and Z be three disjoint subsets of variables from a set U.
If 1(X,Z,Y) stands for the relation: “X is independent of Y given Z” in the
probabilistic distribution P, then I must satisfy the following independent
conditions:

* Symmetry:
« 1X,2Y) > I(Y,ZX)

Decomposition:
* 1(X,ZYW)>  1I(X,Z,Y) and I(X,Z,W)

Weak union:
o I(X,Z,YW)>1(X,ZW,Y)

Contraction:
« 1(X,Z,Y) and I(X,ZY,W)->1(X,Z,YW)

Intersection:
« 1(X,ZY,W) and I(X,ZW,Y) > I(X,Z,YW)



~ Barthquake? ™ ¢ Burglary? ™ .

o ® ~®B ~ (X, Z,Y) iff Ip.(Y,Z,X)
oo™ T |f Iearn!ng-y does not mflfjence
N’ @ our belief in x, then learning x

|l does not influence our belief in
™ y either.
RO ‘

From the independencies declared by Markov(G), we know that
by (A, {B,E}, R). Using Symmetry, we can then conclude that
lpr(R,{B, E}, A), which is not part of the independencies declared
by Markov(G).
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If some information is irrelevant, then any part of it is also
irrelevant.

Ipe(X, Z,Y UW) @) fp, (X, Z,Y) and Ip, (X, Z, W).

If learning yw does not influence our belief in x, then learning y
alone, or learning w alone, will not influence our belief in x either.

>

Pearl’s language:
If two pieces of information are irrelevant to X then each one is irrelevant to X
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The opposite of Decomposition, called Composition:
Ipr(X,Z,Y) and Ip,(X. Z, W) [E==)/p.(X.Z.Y UW)

does not hold in general.

w

Two pieces of information may each be irrelevant on their own, yet
their combination may be relevant.

Example: Two coins (C1,C2,) and a bell (B)
The bell rings if the coins fall on the same side!
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Decomposition
More generally...

Decomposition allows us to state the following:
o (X, Parents(X), W)  for every W C Non_Descendants(X).

Every variable X is conditionally independent of any subset of its
non-descendants given its parents.

This is a strengthening of the independence statements declared by
Markov(G), which is a special case when W contains all
non-descendants of X.
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Decomposition proves the chain rule for Bayesian networks. |

By the chain rule of probability calculus:

Pr(r,c,a, e, b) = Pr(r|c, a, e, b)Pr(c|a, e, b)Pr(ale, b)Pr(e|b)Pr(b).

~ Barthquake? ™ (Burglary? ™
/\Emlzgﬂw/ '\-».__‘{?’_l_../ By Decomposition:
_/\ e \ Pr(r|c,a,e,b) = Pr(r|e)
o %) Pr(cla,e,b) = Pr(cl|a)
E T Pr(elb) = Pr(e)
| r(e| = :
e N
@

This leads to the chain rule of Bayesian networks:

Pr(r,c,a,e,b) = Pr(r|le)Pr(c|a)Pr(ale, b)Pr(e)Pr(b)
— 9r|e 9c|a ea|e,b O Op.
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lPr(Xa Za YU W)- IPr(Xa ZU Ya W)

If the information yw is not relevant to our belief in x, then the
partial information y will not make the rest of the information, w,

relevant. |
Gty D I(C. A, {B.E,R})is part of
/\ Markov(G). By Weak Union:
L _J b.(C,{A.B. E},. R), which i
e ’_ﬁadio?\‘ ' ";;xlarm“;;\x Pl( { / } ) Whie .IS
B N not part of the independencies
J‘L declared by Markov(G).
7 ca
_©
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lor(X,Z.Y) and Ip(X.ZU Y, W) @) lp, (X, Z, Y UW)

If after learning the irrelevant information y, the information w is
found to be irrelevant to our belief in x, then the combined
information yw must have been irrelevant from the beginning.

Compare Contraction with Composition:
Ipr (X, Z.Y) and Ip,(X,Z, W) [E=]/p.(X,Z,Y UW)

One can view Contraction as a weaker version of Composition.
Recall that Composition does not hold for probability distributions.
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Strictly Positiye Distributions

nstraints

Definition
A strictly positive distribution assign a non-zero probability to
every consistent event.

: B

\x / u ;] A strictly positive distribution

\/ N4 cannot represent the behavior

CT [D of Inverter X as it will have to
'\L ‘ | assign the probability zero to
'\'Z the event A=true, C =true. |

E

A strictly positive distribution cannot capture logical constraints.



Intersection

Holds only for strictly positive distributions

Ipr (X, ZUW,Y) and lp(X,ZUY, W) @E)r:(X,Z,Y UW)
If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.
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Intersection
Holds only for strictly positive distributions

for (X, ZUW,Y) and fp (X, ZUY, W) @)l (X, Z, Y UW)

If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.

@ If we know the input A of
A B inverter X, its output C
becomes irrelevant to our belief
\x/ u v ‘l in the circuit output E.
\/ \\“ / @ If we know the output C of

inverter X, its input A becomes

C| P . o
,. ‘ ,< irrelevant to this belief.
N

- @ Yet, variables A and C are not

\Z/ irrelevant to our belief in the

Y= Value of A circuit output E.

W = value of C TE
X=value of X So, logical constraints violate intersection axiom



Properties of Probabilistic Independence

(Pearl ch 3)

Theorem: Let X, Y, and Z be three disjoint subsets of variables from a set U.
If 1(X,Z,Y) stands for the relation: “X is independent of Y given Z” in the
probabilistic distribution P, then I must satisfy the following independent

conditions:

* Symmetry:
« 1X,2Y) > I(Y,ZX)

Decomposition:
* 1(X,ZYW)>  1I(X,Z,Y) and I(X,Z,W)

Weak union:
o I(X,Z,YW)>1(X,ZW,Y)

Contraction:
« 1(X,Z,Y) and I(X,ZY,W)->1(X,Z,YW)

Intersection:
« 1(X,ZY,W) and I(X,ZW,Y) > I(X,Z,YW)

Graphoid axioms:
Symmetry, decomposition
Weak union and contraction

Positive graphoid:
+intersection

In Pearl: the 5 axioms
are called Graphoids,
the 4, semi-graphoids



Outline

» Graphoids: axioms for inferring conditional independence (Cl)
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