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Causal and Probabilistic Reasoning  

Slides Set 2: 
Rina Dechter

Reading:  
Darwiche  chapter 4  
Pearl (probabilistic): chapter 3
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• Bayesian Networks, DAGS, Markov(G)
• Graphoids axioms for Conditional Independence
• d-separation: Inferring  CIs in graphs
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Bayesian Networks (BNs) in 2 ways: 

From a distribution to a BN:
• A Bayesian network is factorize probability distribution along an ordering.
• The DAG emerging is a  Bayesian network of the distribution
• The factorization is guided by a set of Markov assumption that transform 
    the chain product formula into a Bayesian network.

From a BN to a distribution: 
• Generate a DAG with its Markov assumptions.
• Parameterize the DAG yielding a Bayesian network which corresponds to a 

single probability distribution obtained by product.

• The BN distribution obeys additional independence assumption read from the DAG 
     and can be proved using the Graphoid axioms.
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P(B,E,A,J,M)=?

P(B)P(E|B)P(A|B,E)P(J|B,E,A)P(M|B,E,A,J) =
P(B)P(E|B)P(A|B,E)P(J|A)P(M|A) =

pa(B) = {}, pa(E)={B},P(A)= {B,E}, pa(J) = {A}, pa(M) = {A}

Earthquake Burglary

Alarm

John Marry

Example
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The causal interpretation
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But influences can be indirect as well. 
For example… 
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Graphs Convey Independence Statements

• Directed graphs by graph’s d-separation
• Undirected graphs by graph separation
• Goal: capture probabilistic conditional independence by graphs.
• We focus on directed graphs.
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E B

A

W H

E B

A

W H

Capturing Independence Graphically

• Parents & Children
• Parents   pa(A) = {E,B}
• Children  ch(A) = {W,H}

• Ancestors & Descendants
• Ancestors an(W) = {A,E,B}
• Descendants de(E) = {A,W,H}
• Non_descendants of E = {B}

• Roots & Leaves
• Paths

• Directed paths, undirected paths

pa(A) = {E,B}

ch(A) = {W,H}

E

H

B

H

an(W) = {A,E,B}
de(E) = {A,W,H}
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What are the Markov assumptions here?
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What are the Markov assumptions here?
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A Causal Bayesian Network A non-causal Bayesian Network
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Use GeNie/Smile
To create this network
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 Bayesian Networks: Representation 

	 = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea
P(D|C,B)

P(B|S)

P(S)

P(X|C,S)

P(C|S)

P(S, C, B, X, D)

   Conditional  Independencies Efficient  Representation

CPD:    
C  B   D=0 D=1 
0  0    0.1  0.9 
0  1    0.7  0.3 
1  0    0.8  0.2 
1  1    0.9  0.1 



Inference

Enable us to answer queries about our model
• Some probabilities are directly accessible
• Some are only implicit, and require computation

Earthquake Burglary

Alarm

Watson Mrs Hudson

E B P(A|E,B)

0 0 0.001

0 1 0.29

1 0 0.94

1 1 0.95

P(B)

0.001

P(E)

0.002

A P(W|A)

0 0.05

1 0.90

A P(H|A)

0 0.01

1 0.70

p(B=1) = .001
Explicitly in model parameters

p(A=1) = ?
Implicit only:  
   p(A=1|E=0,B=0) p(E=0) p(B=0) +  
   p(A=1|E=1,B=0) p(E=1) p(B=0) + …

p(W=1) = ?
Implicit:  
   p(W=1|A=0) p(A=0) + p(W=1|A=1) p(A=1)
   p(A) =?    (may need to compute recursively!)
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• Basic of Probability Theory
• Bayesian Networks, DAGS, Markov(G)
• Graphoids axioms for Conditional Independence
• d-separation: Inferring  CIs in graphs
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R and C are independent given A

This independence follows from the Markov assumption



Properties of Probabilistic Independence  
(Pearl ch 3)

• Symmetry:
•  I(X,Z,Y)   I(Y,Z,X)  

• Decomposition: 
• I(X,Z,YW) I(X,Z,Y) and I(X,Z,W)

• Weak union: 
• I(X,Z,YW)I(X,ZW,Y)

• Contraction: 
• I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW)

• Intersection:
• I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)

Theorem: Let X, Y, and Z be three disjoint subsets of variables from a set U.
If I(X,Z,Y) stands for the relation: “X is independent of Y given Z”  in the 
probabilistic distribution P, then I must satisfy the following independent 
conditions:



276 slides2 F24



276 slides2 F24

Pearl’s  language: 
If two pieces of information are irrelevant to X then each one is irrelevant to X
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Example: Two coins (C1,C2,) and a bell (B) 
The bell rings if the coins fall on the same side!
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When there are no constraints
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Y= Value of A
W = value of C
X= value of X So, logical constraints violate intersection axiom



Properties of Probabilistic Independence  
(Pearl ch 3)

• Symmetry:
•  I(X,Z,Y)   I(Y,Z,X)  

• Decomposition: 
• I(X,Z,YW) I(X,Z,Y) and I(X,Z,W)

• Weak union: 
• I(X,Z,YW)I(X,ZW,Y)

• Contraction: 
• I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW)

• Intersection:
• I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)

Theorem: Let X, Y, and Z be three disjoint subsets of variables from a set U.
If I(X,Z,Y) stands for the relation: “X is independent of Y given Z”  in the 
probabilistic distribution P, then I must satisfy the following independent 
conditions:

Graphoid axioms: 
Symmetry, decomposition 
Weak union and contraction 
Positive graphoid: 
+intersection 
In Pearl: the 5 axioms  
are called Graphoids,  
the 4, semi-graphoids
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• DAGS, Markov(G),  Bayesian networks
• Graphoids: axioms  for inferring conditional independence (CI)
• D-separation: Inferring  CIs in graphs

• I-maps, D-maps, perfect maps
• Markov boundary and blanket
• Markov networks


