

Causal and Probabilistic Reasoning

Rina Dechter, UCI

Linear Structural Causal Models

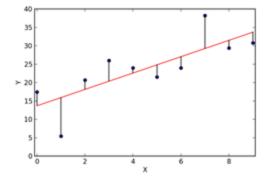
Slides: Daniel Kumor, Elias Bareinboim (reading: Primer 3, Causality 5)

276 slides12, F24

- 1. Linear Regression
- 2. Introduction to Linear Structural Causal Models
- 3. Examples of when regression can and cannot be used to find causal effects.
- 4. Modern algorithmic approaches to identification in linear SCM

Regression

- Predict the value of Y based on X
- Used in Machine Learning too
- How to create a regression line?
 - O Plot data values of X, Y
 - O "Fit" them to y = mx + b



- O The least square regression is the line that minimize the sum of the squared error average $\sum (y b mx)^2$
- O Need to find b and m
 - What do they represent on the graph?

Regression Coefficient

- R_{YX} is slope of regression line of Y on X • $m = R_{YY} = \sigma_{YY}/\sigma_{Y}^2$
 - O $R_{YX} = R_{XY}$?
 - O When is it?
- Slope gives correlation
 - Positive number \rightarrow positive correlation
 - Negative number \rightarrow negative correlation
 - Zero \rightarrow independent or non-linear

$$\sigma_{XY} \stackrel{\Delta}{=} E[(X - E(X))(Y - E(Y))]$$

The covariance σ_{XY} is often normalized to yield the *correlation coefficient*

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

- $y = r_0 + r_1 \cdot x + r_2 \cdot z$
- How do we visualize?
- o 3d plane
- What happens if we hold x at a value?
- \circ r₁·x becomes a constant
- o r₂ is now the 2d slope of slice along X-axis
- What happens if we hold z at a value?
- \circ r₂·z becomes a constant
- o r₁ is now the 2d slope of slice along Z-axis

Partial Regression Coefficient

Symbol for regression coefficient of Y on X?

 $\circ R_{YX}$

Symbol for regression coefficient of Y on X when holding Z constant?

 $\circ \ R_{YX\cdot Z}$

• Called partial regression coefficient

• What happens when R_{YX} is positive and R_{YXZ} is negative?

$$Y = r_0 + r_1 X_1 + r_2 X_2 + \dots + r_k X_k + \epsilon$$
(1.24)

then, regardless of the underlying distribution of Y, X_1, X_2, \ldots, X_k , the best least-square coefficients are obtained when ϵ is uncorrelated with each of the regressors X_1, X_2, \ldots, X_k . That is,

$$Cov(\epsilon, X_i) = 0$$
 for $i = 1, 2, ..., k$

To see how this *orthogonality principle* is used to our advantage, assume we wish to compute the best estimate of X = Die I given the sum

Y = Die 1 + Die 2

Writing

$$X = \alpha + \beta Y + \epsilon$$
$$E[X] = \alpha + \beta E[Y]$$
(1.25)

Further multiplying both sides of the equation by X and taking the expectation gives

$$E[X^2] = \alpha E[X] + \beta E[YX] + E[X\epsilon].$$
(1.26)

The orthogonality principle dictates $E[X\epsilon] = 0$, and (1.25) and (1.26) yield two equations with two unknowns, α and β . Solving for α and β , we obtain

$$\alpha = E(X) - E(Y) \frac{\sigma_{XY}}{\sigma_Y^2}$$
$$\beta = \frac{\sigma_{XY}}{\sigma_Y^2}$$

- 1. Linear Regression
- 2. Introduction to Linear Structural Causal Models
- 3. Examples of when regression can and cannot be used to find causal effects.
- 4. Modern algorithmic approaches to identification in linear SCM

Linear SCM are defined as a system of linear equations representing ground-truth:

$$Y := \sum_{i} \lambda_{x_i y} X_i + \mathcal{E}_y$$

- 1. All correlations between ${\mathcal E}$ are explicitly specified.
- 2. X_i are the direct causes of Y, and λ_{x_iy} is the change in Y per X_i .
- 3. WLOG assume normalized data (E[X] = 0 and E[XX] = 1) to simplify math
- 4. Assume $\mathcal{E}_{y} \sim \mathcal{N}$, meaning that the distribution is fully specified by covariance matrix Σ (σ_{ij}).

Causal Inference In Linear Systems

Examples:

- What is the effect of birth control use on blood pressure after adjusting for confounders; or the total effect of an after-school study program on test scores;
- What is the **direct effect** or the unmediated by other variables, of the program on test scores.
- What is the effect of enrollment in an optional work training program on future earnings, when enrollment and earnings are confounded by a common cause (e.g., motivation).
- **Continuous variables:** We need to model with continuous variables. These traditionally been formulated as linear equation models .
- We will assume linear functions and Normal distributions of errors .

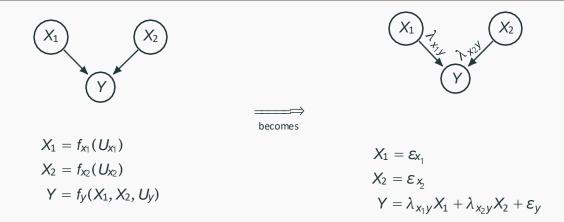
- 1. Efficient representation
- 2. Substitutability of expectations for probabilities
- 3. Linearity of expectations
- 4. Invariance of regression coefficients

Multivariate Gaussian can be expressed with expectation and covariance on pairs of variables at most. Also conditional probability can be captures by conditional expectation The only substantive change we are making is that the function f becomes linear:

$$V_i \leftarrow f_i(pa_i, U_i) \quad \Rightarrow \quad V_i \leftarrow \sum_{j \mid V_j \in pa_i} \lambda_{ji} V_j + \mathcal{E}_i$$

- 1. λ_{ji} is called the "Structural Coefficient".
- 2. Instead of using U_i , we rename it to \mathcal{E}_i by convention.
- 3. If we know all λ_{ji} , we can find the causal effect of V_j on V_i .

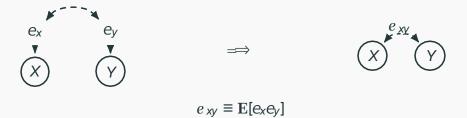
Example



We can draw the structural coefficients directly on the graph, which then fully specifies the model.

Latent Confounding

The covariance between e_i and e_j is represented by e_{ij} , and is used as the value of a bidirected edge:



 e_{xy} is unobserved, since it is covariance of latent variables. It is mathematically useful, however, so we draw it on the graph just like structural coefficients.

This is different from graph of non-parametric SCM, where a bidirected edge represents an explicit latent variable.

Linear SCM: Interventions

$$X \rightarrow Y$$

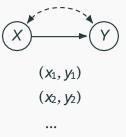
$$\mathbf{E}[Y|do(X=x)] = ?$$

$$X \rightarrow Y$$

$$\mathbf{E}[Y|do(X = x)] = \mathbf{E}[\lambda x + \mathbf{e}_{y}]$$
$$= \lambda x + \mathbf{E}[\mathbf{e}_{y}]$$
$$= \lambda x$$

Identification In Linear SCM: The Problem Statement

- **Graph**: We are assuming that you have a hypothesized causal graph structure. In other words, you think you know what causes what, and which variables have an unknown common cause.
- Observational Data: You have a set of datapoints with measurements of all of the observable variables.
- Goal: Structural Coefficients You do NOT have knowledge of the underlying structural coefficients. These represent the actual causal effects that we want to find.



 (x_n, y_n)



Remember that we assumed $e \sim N$, meaning that the distribution is fully specified by covariance matrix Σ (σ_{ij}).

What happens when we compute the covariance σ_{xy} ?

Connecting Observed with Unobserved

Remember that we assumed $e \sim N$, meaning that the distribution is fully specified by covariance matrix Σ (σ_{ij}).

$$X \rightarrow Y$$

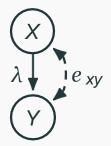
Remember, we normailize The mean to 0 and variance to 1

$$\sigma_{XY} = \mathbf{E}[XY]$$

= $\mathbf{E}[X(\lambda X + \mathbf{e}_Y)]$
= $\mathbf{E}[\lambda XX + X\mathbf{e}_Y]$
= $\lambda \mathbf{E}[XX] + \mathbf{E}[X\mathbf{e}_Y]$
= $\lambda 1 + 0$

 $=\lambda$

Solve for σ_{xy} in terms of the structural coefficients λ and e $_{xy}$

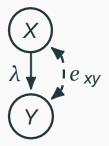


.

 $\sigma_{XY} = ?$

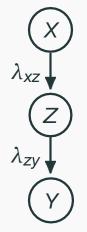
Connecting Observed with Unobserved

Solve for σ_{xy} in terms of the structural coefficients λ and e $_{xy}$



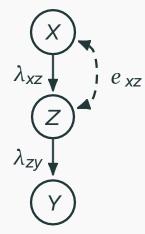
.

 $\sigma_{XY} = E[XY]$ = $E[X(\lambda X + e_Y)]$ = $E[\lambda XX + Xe_Y]$ = $\lambda E[XX] + E[Xe_Y]$ = $\lambda 1 + E[Xe_Y]$ = $\lambda 1 + E[e_xe_y]$ = $\lambda 1 + e_{XY}$

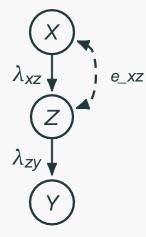


 $\sigma_{XY} = ?$

 $\sigma_{XV} = E[XY]$ $= \mathrm{E}[X(\lambda_{ZV}Z + e_V)]$ $= E[\lambda_{ZV}XZ + Xe_V]$ $= \lambda_{ZV} \mathbf{E}[XZ] + \mathbf{E}[Xe_V]$ We replace X with e x $=\lambda_{ZV} E[XZ]$ $= \lambda_{ZY} \mathbb{E}[X(\lambda_{XZ}X + e_Z)]$ $= \lambda_{ZY} \lambda_{XZ} \mathbf{E}[XX] + \lambda_{ZY} \mathbf{E}[Xe_{Z}]$ $=\lambda_{zy}\lambda_{xz}$



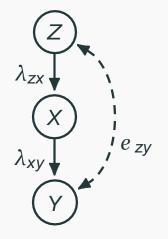
 $\sigma_{xy} = ?$



 $\sigma_{XV} = E[XY]$ $= \mathbf{E}[X(\lambda_{ZY}Z + \mathbf{e}_{Y})]$ $= \mathbf{E}[\lambda_{ZV}XZ + Xe_V]$ $= \lambda_{ZV} \mathbf{E}[XZ] + \mathbf{E}[Xe_V]$ $= \lambda_{ZV} \mathbf{E}[XZ]$ $= \lambda_{zv} \mathbf{E}[X(\lambda_{xz}X + e_z)]$ $= \lambda_{ZV} \lambda_{XZ} \mathbf{E}[XX] + \lambda_{ZV} \mathbf{E}[Xe_{Z}]$ $=\lambda_{ZY}\lambda_{XZ}+\lambda_{ZY}e_{XZ}$

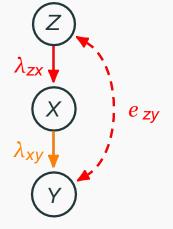
There seems to be a relationship between covariances and paths in the graph.

 σ



$$\begin{aligned} xy &= \mathbf{E}[XY] = \mathbf{E}[X(\lambda_{xy}X + e_y)] \\ &= \lambda_{xy}\mathbf{E}[XX] + \mathbf{E}[Xe_y] \\ &= \lambda_{xy} + \mathbf{E}[(\lambda_{zx}Z + e_x)e_y] \\ &= \lambda_{xy} + \lambda_{zx}\mathbf{E}[e_ze_y] + \mathbf{E}[e_x, e_y] \\ &= \lambda_{xy} + \lambda_{zx} e_zy \end{aligned}$$

There seems to be a relationship between covariances and paths in the graph.



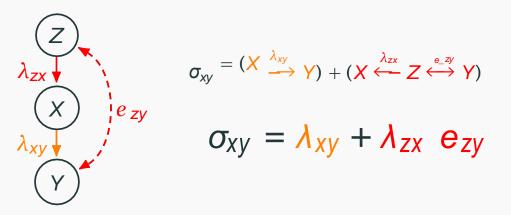
 $\sigma_{xy} = \lambda_{xy} + \lambda_{zx} e_{zy}$

The resulting terms correspond to paths between X and Y in the causal graph

Treks & Wright's Rule

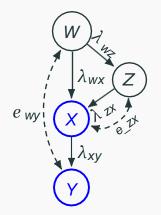
The covariance between variables X and Y is the sum of paths between them in the causal graph, i.e. any non-self-intersecting path without colliding arrowheads ($\rightarrow \leftarrow$):

 $x \leftarrow \dots \leftrightarrow \dots \rightarrow y$ $x \leftarrow \dots \leftarrow w \rightarrow \dots \rightarrow y$ $x \leftarrow \dots \leftarrow y$ $x \rightarrow \dots \rightarrow y$



The covariance between variables X and Y is the sum of open paths between them in the causal graph, so paths with no colliding arrowheads ($\rightarrow \leftarrow$):

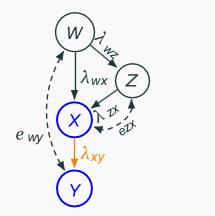
$$x \leftarrow \dots \leftrightarrow \dots \rightarrow y$$
 $x \leftarrow \dots \leftarrow w \rightarrow \dots \rightarrow y$ $x \leftarrow \dots \leftarrow y$ $x \rightarrow \dots \rightarrow y$



 $\sigma_{xy} =$

The covariance between variables X and Y is the sum of open paths between them in the causal graph, so paths with no colliding arrowheads ($\rightarrow \leftarrow$):

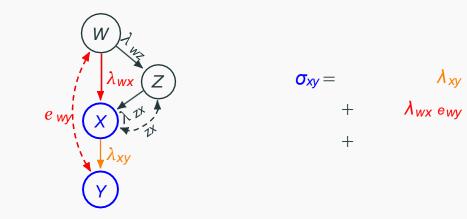
$$x \leftarrow \dots \leftrightarrow \dots \rightarrow y$$
 $x \leftarrow \dots \leftarrow w \rightarrow \dots \rightarrow y$ $x \leftarrow \dots \leftarrow y$ $x \rightarrow \dots \rightarrow y$



+

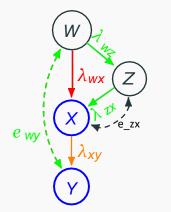
The covariance between variables X and Y is the sum of open paths between them in the causal graph, so paths with no colliding arrowheads ($\rightarrow \leftarrow$):

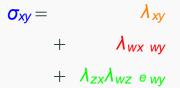
$$x \leftarrow \dots \leftrightarrow \dots \rightarrow y$$
 $x \leftarrow \dots \leftarrow w \rightarrow \dots \rightarrow y$ $x \leftarrow \dots \leftarrow y$ $x \rightarrow \dots \rightarrow y$



The covariance between variables X and Y is the sum of open paths between them in the causal graph, so paths with no colliding arrowheads ($\rightarrow \leftarrow$):

$$x \leftarrow \dots \leftrightarrow \dots \rightarrow y$$
 $x \leftarrow \dots \leftarrow w \rightarrow \dots \rightarrow y$ $x \leftarrow \dots \leftarrow y$ $x \rightarrow \dots \rightarrow y$





Wright's Rules [9]

 σ_{xy} = Sum of products of path coefficients

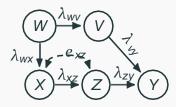
along all open paths between X and Y

- σ_{xy} is 0 only when X and Y are d-separated.
- If there is an edge $X \xrightarrow{q} Y$ in the model, then

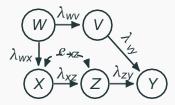
 $\sigma_{xy} = \alpha$ + other paths between x and y.

Thus $\sigma_{xy} = \alpha$ if X and Y are d-separated in G_a (graph where edge α is removed)

• Wright's rules are defined for acyclic models



 $\sigma_{XY} = ?$



$$\sigma_{xy} = (\lambda_{xz} + e_{xz})\lambda_{zy} + \lambda_{wx}\lambda_{wv}\lambda_{vy}$$

Remember: alpha, beta are regression Coefficients and lambdas are causal

Regression is deeply related to D-separation:

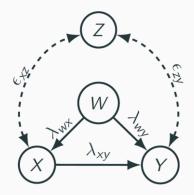
$$(X \perp \!\!\!\perp Y | Z)$$
 iff $r_{y \times z} = 0$

We can test d-separation by performing the following regression:

$$Y = \beta X + \alpha Z$$

If $\beta = 0$, we know that Z d-separates X from Y. If $\beta \neq 0$, we know that $(X \not\perp Y | Z)$.

Remember: alpha, beta are regression Coefficients and lambdas are causal

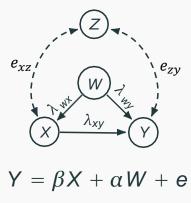


Remember: alpha, beta are regression Coefficients and lambdas are causal

$$Y = \beta X + e$$

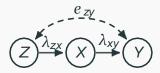
$$\beta = \sigma_{xy} = \lambda_{xy} + \lambda_{wx} \lambda_{wy}$$

 $e_{xz'}$ e_{zy} W λ_{xy} $Y = \beta X + \alpha W + \gamma Z + e$ $\beta = \lambda_{xy} - \frac{\epsilon_{xz}\epsilon_{zy}}{1 - \lambda_{wx}^2 - \epsilon_{xz}^2}$



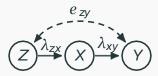
$$\beta = \lambda_{xy}$$

How to Use Regression Correctly?



We want to find λ_{xy} .

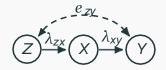
$$r_{yx} = \sigma_{xy} = ??$$



We want to find λ_{xy} . How can it be isolated?

$$r_{yx} = \sigma_{xy} = \lambda_{xy} + \lambda_{zx} e_{zy}$$

Single-Door Criterion: Multiple Regression



What if we find the least squares regression parameters of this model?

$$\mathsf{Y} = \alpha \mathsf{X} + \beta \mathsf{Z} + \mathsf{e}$$

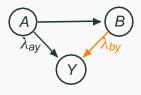
$$\alpha = \lambda_{xy}$$
$$\beta = \mathbf{e}_{zy}$$

Theorem Single-Door (Identification of Direct Effects) [Causality, Pearl] Let G be any path diagram in which λ is the path coefficient associated with the link $X \rightarrow Y$, and let G_{λ} denote the diagram that results when $X \rightarrow Y$ is removed from G. The coefficient λ is identifiable if there exists a set Z such that

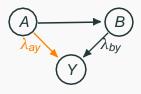
- 1. Z contains no descendants of Y, and
- 2. Z D-separates X from Y in G_{λ}

Moreover, if Z satisfies these conditions, $\lambda = r_{yxZ}$

Here, we use the notation r_{yxz} to be the regression coefficient of x when performing regression y on x and z.

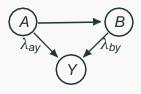


 $\lambda_{by} = ?$



$$\lambda_{by} = r_{yba}$$

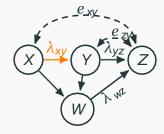
 $\lambda_{ay} = ?$



$$\lambda_{by} = r_{yba}$$

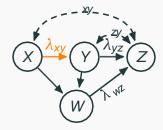
 $\lambda_{ay} = r_{yab}$

Try It



 $\lambda_{xy} = ?$

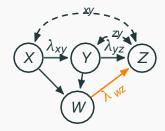
Try It



$$\lambda_{xy} = r_{yx}$$

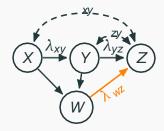
All paths between X and Y are blocked in G_lambax,y

Try It Again



 $\lambda_{WZ} = ?$

Try It Again



 $\lambda_{wz} = r_{zwyx}$

Theorem Back-Door (Identification of Total Effects) [8]

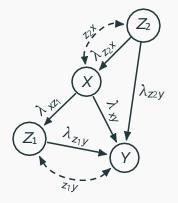
For any two variables X and Y in a causal diagram G, the total effect of X on Y is identifiable if there exists a set of measurements Z such that

- 1. No member of Z is a descendant of X, and
- 2. Z d-separates X from Y in the subgraph G_X

Moreover, if Z satisfies these conditions, the total effect of X on Y is given by ryxz

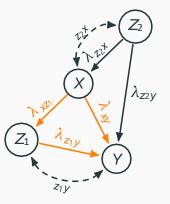
Remember that G_X means delete all edges outgoing from X.

Example



What is the total effect of X on Y?

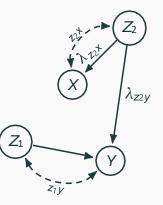
Example



What is the total effect of X on Y? $\lambda_{XZI}\lambda_{ZIY} + \lambda_{XY}$

Can we find it using the back-door?

Example



What is the total effect of *X* on *Y*? $\lambda_{XZI}\lambda_{ZIY} + \lambda_{XY}$

Can we find it using the back-door? r_{yxz2}

Algorithmic Identification Methods

The Equations of Linear Identification

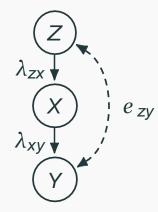
$$\begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} 1 & \lambda_{xy} + \lambda_{zx}\epsilon_{zy} & \lambda_{zx} \\ \lambda_{xy} + \lambda_{zx}\epsilon_{zy} & 1 & \lambda_{zx}\lambda_{xy} + \epsilon_{zy} \\ \lambda_{zx} & \lambda_{zx}\lambda_{xy} + \epsilon_{zy} & 1 \end{bmatrix}$$

The Equations of Linear Identification

 λ_{xy} $\begin{bmatrix} \sigma_{XX} & \sigma_{Xy} & \sigma_{Xz} \\ \sigma_{yX} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{ZX} & \sigma_{Zy} & \sigma_{Zz} \end{bmatrix} = \begin{bmatrix} 1 & \lambda_{Xy} + \lambda_{ZX}\epsilon_{Zy} & \lambda_{ZX} \\ \lambda_{Xy} + \lambda_{ZX}\epsilon_{Zy} & 1 & \lambda_{ZX}\lambda_{Xy} + \epsilon_{Zy} \\ \lambda_{ZX} & \lambda_{ZX}\lambda_{Xy} + \epsilon_{Zy} & 1 \end{bmatrix}$

4

Given a SCM and an observational dataset, is it possible to uniquely determine λ_{xy} ? Can λ_{xy} be solved in terms of σ ?



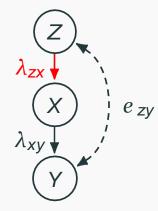
$$\sigma_{XZ} = \lambda_{ZX}$$

$$\sigma_{XY} = \lambda_{XY} + \lambda_{ZX} e_{ZY}$$

$$\sigma_{ZY} = \lambda_{ZX}\lambda_{XY} + e_{ZY}$$

The σ are known, the λ , unknown

Given an SCM and an observational dataset, is it possible to uniquely determine λ_{xy} ? Can λ_{xy} be solved in terms of σ ?



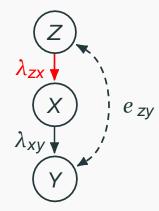
$$\sigma_{XZ} = \lambda_{ZX}$$

$$\sigma_{XY} = \lambda_{XY} + \lambda_{ZX} e_{ZY}$$

$$\sigma_{ZY} = \lambda_{ZX}\lambda_{XY} + e_{ZY}$$

Know the value $\lambda_{ZX} = \sigma_{XZ}$

Given an SCM and an observational dataset, is it possible to uniquely determine λ_{xy} ? Can λ_{xy} be solved in terms of σ ?



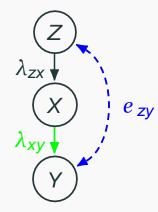
$$\sigma_{XZ} = \lambda_{ZX}$$

$$\sigma_{XY} = \lambda_{XY} + \sigma_{XZ} e_{ZY}$$

$$\sigma_{ZY} = \sigma_{XZ}\lambda_{XY} + e_{ZY}$$

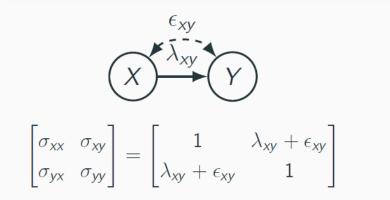
Substitute in other equations

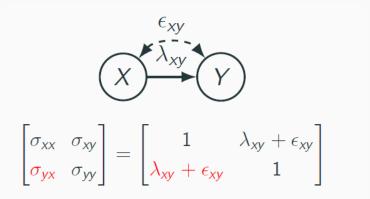
Given an SCM and an observational dataset, is it possible to uniquely determine λ_{xy} ? Can λ_{xy} be solved in terms of σ ?



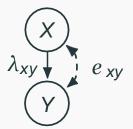
 $\sigma_{\rm X7} = \lambda_{\rm 7X}$ $\sigma_{XV} = \lambda_{XV} + \sigma_{XZ} \mathbf{e}_{ZV}$ $\sigma_{zy} = \sigma_{xz} \lambda_{xy} + e_{zy}$

2 full-rank* linear equations in two unknowns.





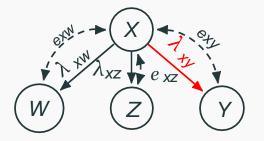
Is it possible to solve for λ_{xy} here?



$$\sigma_{xy} = \lambda_{xy} + e_{xy}$$

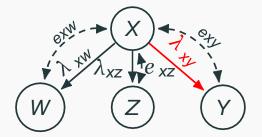
One equation in two unknowns: infinite number of values of λ_{xy} and e_{xy} give same covariance matrix!

Another Possibility



 $\sigma_{xw} = \lambda_{xw} + e_{xw} \qquad \sigma_{wz} = \lambda_{xw}\lambda_{xz} + \lambda_{xz} e_{xw} + \lambda_{xw} e_{xz}$ $\sigma_{xz} = \lambda_{xz} + e_{xz} \qquad \sigma_{wy} = \lambda_{xw}\lambda_{xy} + \lambda_{xw} e_{xy} + \lambda_{xy} e_{xw}$ $\sigma_{xy} = \lambda_{xy} + e_{xy} \qquad \sigma_{zy} = \lambda_{xz}\lambda_{xy} + \lambda_{xz} e_{xy} + \lambda_{xy} e_{xz}$

Another Possibility



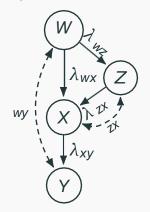
$$0 = (\sigma_{xw}\sigma_{xz} - \sigma_{wz})\lambda_{xy}^{2} + 2(\sigma_{xy}\sigma_{wz} - \sigma_{xw}\sigma_{xz}\sigma_{xy})\lambda_{xy} + (\sigma_{yw}\sigma_{xz}\sigma_{xy} + \sigma_{yz}\sigma_{xw}\sigma_{xy} - \sigma_{xy}^{2}\sigma_{wz} - \sigma_{yz}\sigma_{yw})$$

Another Possibility

$$\lambda_{xy} = \frac{-(\sigma_{xy}\sigma_{wz} - \sigma_{xw}\sigma_{xz}\sigma_{xy}) + \sqrt{(\sigma_{xy}\sigma_{wz} - \sigma_{xw}\sigma_{xz}\sigma_{xy})^{2} - (\sigma_{xw}\sigma_{xz} - \sigma_{wz})(\sigma_{yw}\sigma_{z}\sigma_{xy} - \sigma_{zy}\sigma_{yz}\sigma_{zy}\sigma_{yz} - \sigma_{zy}\sigma_{yz}\sigma_{y}\sigma_{yz}\sigma_$$

- Identifiable Single value of λ_{xy} consistent with observational data
- Not Identifiable Infinite values of λ_{xy} consistent with observations
- Finite ID A finite number of possible values for λ_{xy} consistent with data

Given an SCM and an observational dataset, is it possible to uniquely determine λ_{xy} ? Can λ_{xy} be solved in terms of σ ?



$$\sigma_{WZ} = \lambda_{WZ}$$

$$\sigma_{WX} = \lambda_{WX} + \lambda_{WZ}(\lambda_{ZX} + e_{ZX})$$

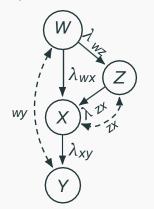
$$\sigma_{ZX} = \lambda_{ZX} + e_{ZX} + \lambda_{WZ}\lambda_{WX}$$

$$\sigma_{WY} = (\lambda_{WX} + \lambda_{WZ}(\lambda_{ZX} + z_X))\lambda_{XY} + e_{WY}$$

$$\sigma_{ZY} = (\lambda_{ZX} + e_{ZX} + \lambda_{WZ}\lambda_{WX})\lambda_{XY} + \lambda_{WZ}$$

$$e_{WY} \sigma_{XY} = (\lambda_{WZ}\lambda_{ZX} + \lambda_{WX}) e_{WY} + \lambda_{XY}$$

Given an SCM and an observational dataset, is it possible to uniquely determine λ_{xy} ? Can λ_{xy} be solved in terms of σ ?



$$\sigma_{WZ} = \lambda_{WZ}$$

$$\sigma_{WX} = \lambda_{WX} + \lambda_{WZ}(\lambda_{ZX} + e_{ZX})$$

$$\sigma_{ZX} = \lambda_{ZX} + e_{ZX} + \lambda_{WZ}\lambda_{WX}$$

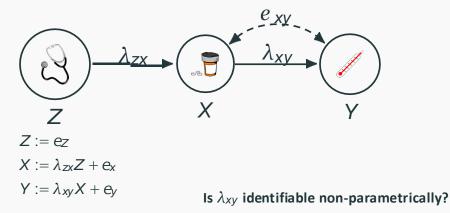
$$\sigma_{WY} = (\lambda_{WX} + \lambda_{WZ}(\lambda_{ZX} + e_{ZX}))\lambda_{XY} + e_{WY}$$

$$\sigma_{ZY} = (\lambda_{ZX} + e_{ZX} + \lambda_{WZ}\lambda_{WX})\lambda_{XY} + \lambda_{WZ} e_{WY}$$

$$\sigma_{XY} = (\lambda_{WZ}\lambda_{ZX} + \lambda_{WX}) e_{WY} + \lambda_{XY}$$

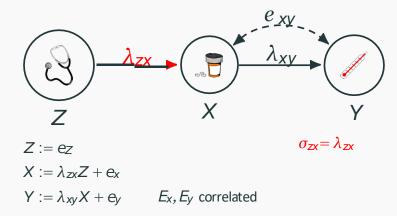
Computer algebra approach doubly exponential in # params [2, 6]

Suppose that an independent doctor's recommendation was added to the original drug/biomarker dataset, which influences how much drug patients take.

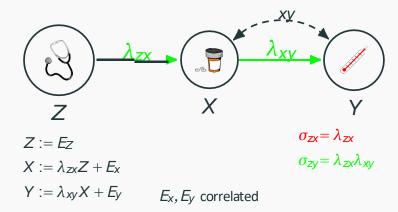


 E_x, E_y correlated

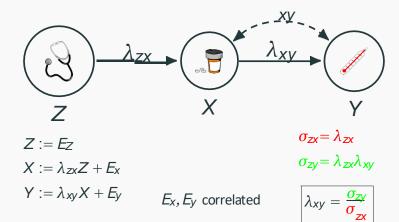
Suppose that an independent doctor's recommendation was added to the original drug/biomarker dataset, which influences how much drug patients take.



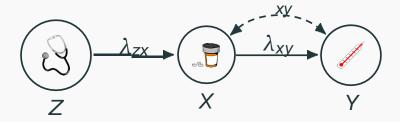
Suppose that an independent doctor's recommendation was added to the original drug/biomarker dataset, which influences how much drug patients take.



Suppose that an independent doctor's recommendation was added to the original drug/biomarker dataset, which influences how much drug patients take.



Suppose that an independent doctor's recommendation was added to the original drug/biomarker dataset, which influences how much drug patients take.



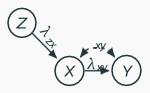
A variable Z is an IV (p. 248 [Causality]) for λ_{xy} from X to Y if

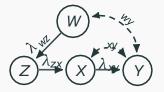
- Z is d-separated from Y in the subgraph $G_{\lambda_{xy}}$,
- Z is not d-separated from X in $G_{\lambda_{xy}}$

Conditional IV Definition [3]

A variable Z qualifies as a conditional IV given a set W for structural coefficient λ_{xy} from X to Y if

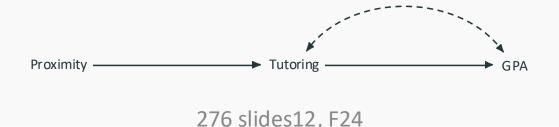
- W contains only non-descendants of Y
- W d-separates Z from Y in the subgraph $G_{\lambda_{XY}}$
- W does not d-separate Z from X in $G_{\lambda_{xy}}$





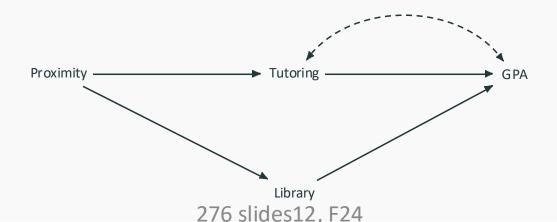
IV in Practice 🚺

- Goal: Estimate effect of tutoring program on GPA
- The relationship between attending the tutoring program and GPA may be confounded: students attending the program may care more about their grades or may be struggling with their work.
- If students are assigned dormitories at random, the proximity of the dorm to the tutors is a natural candidate instrumental variable



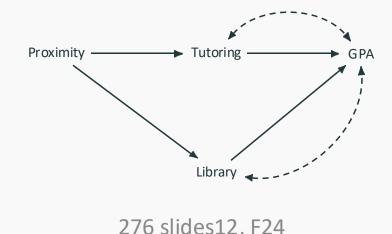
IV in Practice

What if the tutoring program is located in the college library? In that case, Proximity may also cause students to spend more time at the library, which in turn improves their GPA

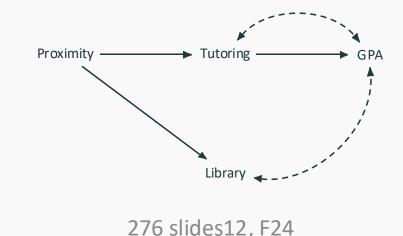


IV in Practice

Now, suppose the student's "natural ability" affects his or her number of hours in the library as well as his or her GPA.



Finally, suppose that Library Hours does not actually affect GPA because students who do not study in the library simply study elsewhere



Summary on direct and total effects in SEM

Regression is essential for identification and causal effect computation. To estimate causal effect we need to do a particular regression and specify:

What variables should be included Which coefficient we are interested in.

As long as we have a Markovian system every structural parameter can be identified this way. We can use various regression equations. But when some variables are not measurable or errors are correlated G_alpha can be used.

276 slides12. F24

In nonlinear systems, on the other hand, the direct effect is defined through expressions such as (3.18), or DE = E[Y | do(x, z)] - E[Y | do(x, z)]where Z = z represents a specific stratum of all other parents of Y (besides X).

Even when the identification conditions are satisfied, and we are able to reduce the do() operators (by adjustments) to ordinary conditional expectations, the result will still depend on the specific values of x, x, and z.

Moreover, the indirect effect cannot be given a definition in terms as do-expressions, since we cannot disable the capacity of Y to respond to X by holding variables constant. Nor can the indirect effect be defined as the difference between the total and direct effects, since differences do not faithfully reflect operations in non-linear systems.

276 slides12, F24

References

1 <u>https:</u>

//en.wikipedia.org/wiki/Instrumental variables estimation#Selecting suitable instruments.
Accessed: 2017-11-1.

- 2 M. Bardet. On the Complexity of a grobner Basis Algorithm. page 8, 2002.
- 3 C. Brito and J. Pearl. Generalized instrumental variables. In <u>Proceedings of the Eighteenth conference on</u> <u>Uncertainty in artificial intelligence</u>, pages 85–93, 2002.
- 4 B. Chen, J. Pearl, and E. Bareinboim. Incorporating knowledge into structural equation models using auxiliary variables. In <u>Proceedings of the 25th International Joint Conference on Artificial Intelligence</u>, pages 3577–3583, 2016.
- 5 C. Cinelli, D. Kumor, B. Chen, J. Pearl, and E. Bareinboim. Sensitivity analysis of linear structural causal models. In <u>Proceedings of the 36th International Conference on Machine Learning</u>, volume 97, pages 1252– 1261, Long Beach, CA, 2019.
- 6 L. D. Garcia-Puente, S. Spielvogel, and S. Sullivant. Identifying Causal Effects with Computer Algebra. page 8, 2010.

276 slides12, F24

- 7 D. Kumor, B. Chen, and E. Bareinboim. Efficient identification in linear structural causal models with instrumental cutsets. In <u>Advances in Neural Information Processing Systems 32</u>, pages 12477–12486, Vancouver, Canada, 2019.
- 8 J. Pearl. Causality: models, reasoning and inference. 2003.
- 9 S. Wright. Correlation and causation. Journal of agricultural research, 20(7):557–585, 1921.
- 10 C. Zhang, B. Chen, and J. Pearl. A simultaneous discover-identify approach to causal inference in linear models. In <u>Proceedings of the Thirty-fourth AAAI Conference on Artificial Intelligence</u>, 2020.

276 slides12, F24