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Lecture Outline

1. Linear Regression
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3. Examples of when regression can and cannot be used to find causal effects.

4. Modern algorithmic approaches to identification in linear SCM
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Regression

● Predict the value of Y based on X

● Used in Machine Learning too

● How to create a regression line?

○ Plot data values of X, Y

○ “Fit” them to y = mx + b

○ The least square regression is the line that minimize the sum of the 

squared error average  ∑ (y - b - mx)²

○ Need to find b and m

■ What do they represent on the graph?



Regression Coefficient

● RYX is slope of regression line of Y on X

● m = RYX = σXY/σX² 

○ RYX = RXY?

○ When is it?
● Slope gives correlation

○ Positive number → positive correlation

○ Negative number → negative correlation
○ Zero → independent or non-linear



Multiple Regression

○ y = r₀ + r₁·x + r₂·z

○ How do we visualize?

○ 3d plane

○ What happens if we hold x at a value?

○ r₁·x becomes a constant

○ r₂ is now the 2d slope of slice along X-axis

○ What happens if we hold z at a value?

○ r₂·z becomes a constant

○ r₁ is now the 2d slope of slice along Z-axis



Partial Regression Coefficient

● Symbol for regression coefficient of Y on X?

○ RYX
● Symbol for regression coefficient of Y on X when holding Z constant?

○ RYX·Z
○ Called partial regression coefficient

● What happens when RYX is positive and RYX·Z is negative?
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Linear Structural Causal Models
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Causal Inference In Linear Systems

Examples: 
• What is the effect of birth control use on blood pressure after adjusting for 

confounders;  or the total effect of an after-school study program on test 

scores;
• What is the direct effect or the unmediated by other variables, of the program 

on test scores. 
• What is the effect of enrollment in an optional work training program on future 

earnings, when enrollment and earnings are confounded by a common cause 
(e.g., motivation). 

• Continuous variables: We need to model with continuous variables. These 
traditionally been formulated as linear equation models .

• We will assume linear functions and Normal distributions of errors .



Linear systems are useful because

Multivariate Gaussian can be expressed with expectation and covariance on pairs of variables at most.
Also conditional probability can be captures by conditional expectation 



Non-Parametric to Linear

i

4

The only substantive change we are making is that the function f becomes linear:

X

j|Vj ∈pai

Vi ← fi (pai , Ui ) ⇒ V ← λ ji Vj + Ei

1. λji is called the “Structural Coefficient”.

2. Instead of using Ui , we rename it to Ei by convention.

3. If we know all λji , we can find the causal effect of Vj on Vi .



Example

Y

X1 X2

X1 = fx1(Ux1)

X2 = fx2(Ux2)

Y = fy (X1, X2, Uy )

=====⇒
becomes

Y

X1 X2

5

X1 = εx
1

X2 = ε x
2

1 2
Y = λ X + λ X + εx y 1 x y 2 y

We can draw the structural coefficients directly on the graph, which then fully specifies 

the model.



Latent Confounding

The covariance between ei and ej is represented by e ij , and is used as the value of a 

bidirected edge:

ex

X

ey

Y

=⇒ X Y

e xy

e xy ≡ IE[exey]

e xy is unobserved, since it is covariance of latent variables. It is mathematically useful, 

however, so we draw it on the graph just like structural coefficients.

This is different from graph of non-parametric S CM, where a bidirected edge 

represents an explicit latent variable. 6



Linear SC M: Interventions

X Y
λ

IE[Y |do(X = x)] =?
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Linear SC M: Interventions

X Y
λ

IE[Y |do(X = x)] = IE[λx + ey]

= λx + IE[ey ]

= λx



Identification In Linear SC M: T he Problem Statement

• Graph: We are assuming that you have a hypothesized 

causal graph structure. In other words, you think you 

know what causes what, and which variables have an 

unknown common cause.

• Observational Data: You have a set of datapoints 

with measurements of all of the observable variables.

• Goal: Structural Coefficients You  do NOT have

knowledge of the underlying structural coefficients. These 

represent the actual causal effects that we want to find.

X Y

(x1, y1)

(x2, y2)

...

(xn, yn)

X Y

e xy

λxy



Connecting Observed with Unobserved

Remember that we assumed e ∼ N , meaning that the distribution is fully specified by 

covariance matrix Σ (σij ).

X Y
λ

11

What happens when we compute the covariance σxy ?



Connecting Observed with Unobserved

Remember that we assumed e ∼ N , meaning that the distribution is fully specified by 

covariance matrix Σ (σij ).

X Y
λ

11

σxy = IE[XY ]

= IE[X (λX + ey )]

= IE[λXX + Xey ]

= λIE[XX] + IE[Xey ]

= λ1 + 0

= λ

Remember, we normailize
The mean to 0 and variance to 1



Connecting Observed with Unobserved

Solve for σxy in terms of the structural coefficients λ and e xy

.

X

Y

λ e xy

12

σxy =?



Connecting Observed with Unobserved

Solve for σxy in terms of the structural coefficients λ and e xy

.

X

Y

λ e xy

12

σxy = IE[XY ]

= IE[X (λX + ey )]

= IE[λXX + Xey ]

= λIE[XX] + IE[Xey ]

= λ1 + IE[Xey ]

= λ1 + IE[exey ]

= λ + e xy



A Curious Property

Z

X

λxz

λzy

Y

13

σxy =?



A Curious Property

X

Z

Y

λxz

λzy

13

σxy = IE[XY ]

= IE[X (λzyZ + ey )]

= IE[λzyXZ + Xey ]

= λzyIE[XZ] + IE[Xey ]

= λzyIE[XZ]

= λzyIE[X (λxzX + ez)]

= λzyλxzIE[XX] + λzyIE[Xez]

= λzyλxz

We replace X with e_x



A Curious Property

X

Z

λxz

λzy

Y

e xz

14

σxy =?



A Curious Property

X

Z

Y

λxz

λzy

14

e_xz

σxy = IE[XY ]

= IE[X (λzyZ + ey )]

= IE[λzyXZ + Xey ]

= λzyIE[XZ] + IE[Xey ]

= λzyIE[XZ]

= λzyIE[X (λxzX + ez)]

= λzyλxzIE[XX] + λzyIE[Xez]

= λzyλxz + λzy e xz



Paths & Covariances

There seems to be a relationship between covariances and paths in the graph.

X

Y

Z

λxy

λzx

e zy

15

σxy = IE[XY ] = IE[X (λxyX + ey )]

xy y
= λ IE[XX] + IE[Xe ]

= λxy + IE[(λzxZ + ex)ey ]

xy zx z y
= λ + λ IE[e e ] + IE[e_x, e_y]

= λxy + λzx e zy



Y

Paths & Covariances

There seems to be a relationship between covariances and paths in the graph.

Z

λzx

X

λxy

e zy

15

σxy = λxy + λzx e zy

The resulting terms correspond to paths between X

and Y in the causal graph



X

Y

Treks & Wright’s Rule

The covariance between variables X and Y is the sum of paths between them in the 

causal graph, i.e. any non-self-intersecting path without colliding arrowheads (→←):

x ← ... ... → y x ← ... ← w → ... → y x ← ... ← y x → ... → y

Z

λxy

λzx

e zy

16

σxy
= (X 

λxy λzx e_zy

−→ Y ) + (X ←− Z ←→ Y )

σxy = λxy + λzx e zy



X

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in 

the causal graph, so paths with no colliding arrowheads (→←):

x ← ... ... → y x ← ... ← w → ... → y x ← ... ← y x → ... → y

W

Z

λxy

λwx

e wy

Y
17

σxy =



X

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in 

the causal graph, so paths with no colliding arrowheads (→←):

x ← ... ... → y x ← ... ← w → ... → y x ← ... ← y x → ... → y

W

Zλwx

e wy

λxy

Y
17

σxy =

+

+

λxy



X

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in 

the causal graph, so paths with no colliding arrowheads (→←):

x ← ... ... → y x ← ... ← w → ... → y x ← ... ← y x → ... → y

W

Z

λxy

λwx

e wy

Y
17

σxy =

+

+

λxy 

λwx ewy



X

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in 

the causal graph, so paths with no colliding arrowheads (→←):

x ← ... ... → y x ← ... ← w → ... → y x ← ... ← y x → ... → y

W

Z

λxy

λwx

e wy

Y
17

σxy =

+

+

λxy 

λwx wy 

λzxλwz e wy

e_zx



Wright’s Rules (1921)

Wright’s Rules [9]

σxy = Sum of products of path coefficients 

along all open paths between X and Y

• σxy is 0 only when X and Y are d-separated.

• If there is an edge X −→αY in the model, then

σxy = α + other paths between x and y.

Thus σxy = α if X and Y are d-separated in Gα (graph where edge α is removed)

• Wright’s rules are defined for acyclic models



One More Example

X Z Y

W V

λxz λzy

e xzλwx

λwv

19

σxy =?



One More Example

X Z Y

W V

λxz λzy

e xzλwx

λwv

19

σxy = (λxz + e xz)λzy + λwxλwvλvy



Testing D-Separation With Regression

Remember: alpha, beta are regression 
Coefficients and lambdas are causal



Be Careful With Regression

34

Remember: alpha, beta are regression 
Coefficients and lambdas are causal



Be Careful With Regression

34

Remember: alpha, beta are regression 
Coefficients and lambdas are causal



Be Careful With Regression

Z

W

X Y
λxy

Y = βX + αW + γZ + e

34

𝑒𝑧𝑦
𝑒𝑥𝑧



Be Careful With Regression

Z

W

X Y
λxy

34

Y = βX + αW + e

β = λxy

𝑒𝑥𝑧 𝑒𝑧𝑦



How to Use Regression Correctly?



Single-Door Criterion

Z X Y
λzx λxy

e zy

36

We want to find λxy .

ryx = σxy =??



Single-Door Criterion

Z X Y
λzx λxy

36

We want to find λxy . How can it be isolated?

ryx = σxy = λxy + λzx e zy

e zy



Single-Door Criterion: Multiple Regression

Z X Y
λzx λxy

e zy

What if we find the least squares regression parameters of this model?

Y = αX + βZ + e

α = λxy  

β = ezy



Single-Door Criterion

Theorem Single-Door (Identification of Direct Effects) [Causality, Pearl]

Let G be any path diagram in which λ is the path coefficient associated with the link 

X → Y , and let Gλ denote the diagram that results when X → Y is removed from G. 

The coefficient λ is identifiable if there exists a set Z such that

1. Z contains no descendants of Y , and

2. Z D-separates X from Y in Gλ

Moreover, if Z satisfies these conditions, λ = ryxz

Here, we use the notation ryxz to be the regression coefficient of x when performing 

regression y on x and z.



Example

A

λay

B

λby

Y

λby =?

41



Example

A

λay

B

λby

Y

λby = ryba

λay =?

41



Example

A

λay

B

λby

Y

λby = ryba

λay = ryab

41



Try It

X Y Z

W

λxy λyz

e xy

e zy

42

λxy =?



Try It

X Y Z

W

λxy λyz

xy

zy

42

λxy = ryx

All paths between X and Y are blocked in G_lambax,y



Try It Again

X Y Z

W

λxy λyz

xy

zy

43

λwz =?



Try It Again

X Y Z

W

λxy λyz

xy

zy

43

λwz = rzwyx



Back-Door Criterion

Theorem Back-Door (Identification of Total Effects) [8]

For any two variables X and Y in a causal diagram G, the total effect of X on Y is 

identifiable if there exists a set of measurements Z such that

1. No member of Z is a descendant of X, and

2. Z d-separates X from Y in the subgraph GX

Moreover, if Z satisfies these conditions, the total effect of X on Y is given by ryxz

Remember that GX means delete all edges outgoing from X .



Example

X

Y

Z1

Z2

λz2y

47

What is the total effect of X on Y ?



Example

X

Y

Z1

Z2

λz2y

47

λxz1λz1y + λxyWhat is the total effect of X on Y ?

Can we find it using the back-door?



Example

X

Y

Z1

Z2

λz2y

What is the total effect of X on Y ?

Can we find it using the back-door?

λxz1λz1y + λxy

ryxz2



Algorithmic Identification Methods







T he General Idea of Identification

Given a SCM and an observational dataset, is it possible to uniquely determine λxy ?

Can λxy be solved in terms of σ?

X

Y

Z

λxy

λzx

e zy

50

σxz = λzx

σxy = λxy + λzx e zy

σzy= λzxλxy + e zy

The σ are known, the λ, unknown



T he General Idea of Identification

Given an SCM and an observational dataset, is it possible to uniquely determine λxy ?

Can λxy be solved in terms of σ?

X

Y

Z

λxy

e zy

λzx

Know the value λzx = σxz

50

σxz = λzx

σxy = λxy + λzx e zy

σzy= λzxλxy + e zy



T he General Idea of Identification

Given an SCM and an observational dataset, is it possible to uniquely determine λxy ?

Can λxy be solved in terms of σ?

X

Y

Z

λxy

e zy

λzx

50

σxz = λzx

σxy = λxy + σxz e zy

σzy= σxzλxy + e zy

Substitute in other equations



T he General Idea of Identification

Given an SCM and an observational dataset, is it possible to uniquely determine λxy ?

Can λxy be solved in terms of σ?

X

Y

Z

λzx

λxy

e zy

σxz= λzx

σxy = λxy + σxz e zy

σzy = σxzλxy + e zy

2 full-rank∗ linear equations in two unknowns.



A Familiar Graph

X Y

xy 

λxy

51

"

xxσ σxy

σyx σyy

=

# "
1 λ +

λxy + xy

xy xy

1

#



A Familiar Graph

X Y

51

"

xxσ σxy

σyx σyy

=

# "
1 λ +

λxy + xy

xy xy

1

#



A Familiar Graph

Is it possible to solve for λxy here?

X

λxy

Y

e xy

52

σxy= λxy + e xy

One equation in two unknowns: infinite number of 

values of λxy and exy give same covariance matrix!



Another Possibility

X

W

λxz e xz

53

σxw = λxw + exw

σxz= λxz + exz

σxy = λxy + exy

Z Y

σwz = λxw λxz + λxz e xw + λxw e xz

σwy = λxw λxy + λxw e xy + λxy e xw

σzy = λxzλxy + λxz e xy + λxy e xz



Another Possibility

X

W

λxz e xz

53

0 =(σxwσxz − σwz )λ
2
xy

Z Y

+ 2(σxy σwz  − σxwσxz σxy )λxy

yw xz  xy yz  xw xy
2
xy wz yz  yw+ (σ σ σ + σ σ σ − σ σ − σ σ )



Another Possibility

X

ZW Y

λxz xz

λxy =
x y  wz xw   x z   x y

√
−(σ  σ −σ σ σ )+ (σ σ − σ σ 2 2

x yx y     wz x w x z x y x w x z wz y w x z x y y z x w x y wz y z y wσ  ) − (σ σ − σ )(σ σ σ + σ σ σ − σ σ − σ σ )

(σ σ −σ )xw x z wz√
−(σx y σwz −σxw σxz σx y )− (σ σ − σ σ 2 2

x yx y     wz x w x z x y x w x z wz y w x z x y y z x w x y wz y z y wσ  ) − (σ σ − σ )(σ σ σ + σ σ σ − σ σ − σ σ )

(σxw σxz −σwz )

53



T he 3 Cases of Linear ID

• Identifiable - Single value of λxy consistent with observational data

• Not Identifiable - Infinite values of λxy consistent with observations

• Finite ID - A finite number of possible values for λxy consistent with data



Identification in Linear S CM

X

Y

Z

λxy

λwx

wy

55

Given an SCM and an observational dataset, is it possible to uniquely determine λxy ?

Can λxy be solved in terms of σ?

W
σwz = λwz

σwx = λwx + λwz (λzx + e zx)

σzx = λzx + e zx + λwzλwx

σwy = (λwx + λwz (λzx + zx))λxy + e wy

σzy = (λzx + e zx + λwzλwx)λxy + λwz

e wy σxy = (λwzλzx + λwx) e wy + λxy



Identification in Linear S CM

X

Z

λxy

λwx

wy

55

Given an SCM and an observational dataset, is it possible to uniquely determine λxy ?

Can λxy be solved in terms of σ?

W
σwz = λwz

σwx = λwx + λwz (λzx + e zx)

σzx = λzx + e zx + λwzλwx

σwy = (λwx + λwz (λzx + e zx))λxy + e wy

σzy = (λzx + e zx + λwzλwx)λxy + λwz e wy

σxy = (λwzλzx + λwx) e wy + λxy

Y

Computer algebra approach doubly exponential in # params [2, 6]



T he Starting Point: Instrumental Variables

X Y

Suppose that an independent doctor’s recommendation was added to the original 

drug/biomarker dataset, which influences how much drug patients take.

e xy

λzx λxy

Ex , Ey correlated 58

Z
Z := eZ

X := λzxZ + ex

Y := λxyX + ey Is λxy identifiable non-parametrically?



T he Starting Point: Instrumental Variables

X

Suppose that an independent doctor’s recommendation was added to the original 

drug/biomarker dataset, which influences how much drug patients take.

e xy

λzx λxy

Ex , Ey correlated

58

Z

Z := eZ

X := λzxZ + ex

Y := λxyX + ey

Y

σzx= λzx



T he Starting Point: Instrumental Variables

X

Suppose that an independent doctor’s recommendation was added to the original 

drug/biomarker dataset, which influences how much drug patients take.

xy

λzx λxy

Ex , Ey correlated

58

Z

Z := EZ

X := λzxZ + Ex

Y := λxyX + Ey

Y

σzx= λzx 

σzy= λzxλxy



T he Starting Point: Instrumental Variables

X

Suppose that an independent doctor’s recommendation was added to the original 

drug/biomarker dataset, which influences how much drug patients take.

xy

λzx λxy

Z

Z := EZ

X := λzxZ + Ex

Y := λxyX + Ey

Y

σzx= λzx 

σzy= λzxλxy

σzyλxy = σ
zx

Ex , Ey correlated

58



T he Starting Point: Instrumental Variables

X YZ

Suppose that an independent doctor’s recommendation was added to the original 

drug/biomarker dataset, which influences how much drug patients take.

xy

λzx λxy

A variable Z is an IV (p. 248 [Causality]) for λxy from X to Y if

• Z is d-separated from Y in the subgraph Gλxy ,

• Z is not d-separated from X in Gλxy



Conditional Instrumental Variables

Conditional IV Definition [3]

A variable Z qualifies as a conditional IV given a set W for structural coefficient λxy

from X to Y if

• W contains only non-descendants of Y

• W d-separates Z from Y in the subgraph Gλxy

• W does not d-separate Z from X in Gλxy

Z

X Y

xy  

λxy Z X Y

W

λzx

xy  

λxy



IV in Practice [1]

• Goal: Estimate effect of tutoring program on GPA

• The relationship between attending the tutoring program and GPA may be 

confounded: students attending the program may care more about their grades or 

may be struggling with their work.

• If students are assigned dormitories at random, the proximity of the dorm to the 

tutors is a natural candidate instrumental variable

Proximity Tutoring GPA

276 slides12, F24



IV in Practice

What if the tutoring program is located in the college library? In that case, Proximity 

may also cause students to spend more time at the library, which in turn improves their 

GPA

Proximity Tutoring GPA

Library

276 slides12, F24



IV in Practice

Now, suppose the student’s “natural ability" affects his or her number of hours in the 

library as well as his or her GPA.

Proximity Tutoring GPA

Library

276 slides12, F24



IV in Practice

Finally, suppose that Library Hours does not actually affect GPA because students who 

do not study in the library simply study elsewhere

Proximity Tutoring GPA

Library

276 slides12, F24



Summary on direct and total effects in SEM

Regression is essential for identification and causal effect 

computation.

To estimate causal effect we need to do a particular regression and 

specify:

What variables should be included
Which coefficient we are interested in.

As long as we have a Markovian system every structural parameter 

can be identified this way. We can use various regression equations.

But when some variables are not measurable or errors are correlated 

G_alpha can be used.

276 slides12, F24



Mediation in Linear Systems

In nonlinear systems, on the other hand, the direct effect is defined through expressions such as (3.18), or
                              𝐷𝐸 = 𝐸[𝑌 |𝑑𝑜(𝑥, 𝑧)] − 𝐸[𝑌 |𝑑𝑜(𝑥′, 𝑧)

where 𝑍 = 𝑧 represents a specific stratum of all other parents of 𝑌 (besides 𝑋). 

Even when the identification conditions are satisfied, and we are able to reduce the 𝑑𝑜() operators (by

adjustments) to ordinary conditional expectations, the result will still depend on the specific
values of 𝑥, 𝑥′, and 𝑧.

 Moreover, the indirect effect cannot be given a definition in terms as 𝑑𝑜-expressions, since we cannot disable the 
capacity of 𝑌 to respond to 𝑋 by holding variables constant. Nor can the indirect effect be defined as the difference 

between the total and direct effects, since differences do not faithfully reflect operations in non-linear systems. 

276 slides12, F24
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