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How could adjustment help 

in real data analysis?
(The Problem of Confounding)

slides9 276 2024
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Confounding Bias

age
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Increase exercise → increase cholesterol?

Exercise (hours/week)

What’s the causal effect of Exercise on Cholesterol?  

What about P(cholesterol | exercise) ?

exercise
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What’s the causal effect of Exercise on Cholesterol?  

What about P(cholesterol | exercise) ?

exercise

More exercise → Lower cholesterol (per age group)

Age I Age II Age III
Exercise (hours/week)

Age IV Age V
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Adjustment by Direct Parents

Thm. Given a causal diagram G of any Markovian  

system, the causal quantity Q = P(y | do(x)) is  

identifiable whenever {X, Y, Pax}  V, that is,

whenever X, Y, and all the parents of variables X  

are measured. The expression of Q is then  

obtained by adjustment for PAx, or

P(y|do(x)) = ∑ P (y|x, pax) P (pax)

13

pax

Quiz: 1) derive from previous slide

2) derive for non-Markovian models

What if the parents are not visible?



If Season is latent,

is the effect still computable?
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If Season is latent,

is the effect still computable?

Queries:

Q2 = P(wet | do(Sprinkler = on))

season

sprinkler rain

wet

slippery

p1

p2

By conditioning on rain,

- p2 (the non-causal path) is blocked, and

- p1 (the causal path) remains unaffected!



3.3 The Backdoor Criterion

Rationale:
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The Back-door Adjustment

Theorem 3.3.2 (Back-door Adjustment)

If a set Z satisfies the bdc w.r.t the pair X,Y, the  

effect of X on Y is identifiable and given by:
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season

sprinkler rain

wet

slippery

back-door

path

Back-Door Sets as Substitutes

of  the Direct Parents of X

Rain satisfies the back-door criterion  

relative to Sprinkler and Wet:

(i) Rain is not a descendant of Sprinkler, and

(ii)Rain blocks the only back-door path from

Sprinkler to Wet.

Adjusting for the direct parents of Sprinkler,  we

have:

Adjustment by Rain

Direct derivation, 
showing it works
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Adjustment by Direct Parents

→ Back-door Adjustment

More Generally:

(i) no node in Z is a descendent of X; and

(ii)Z blocks every path between X and Y

that contains an arrow into X.

Adjustment by Z is equivalent to  

adjustment by direct parents  

whenever Z is bd-admissible!

⟹

⟹

(X ⫫Z | Pax)

(Y ⫫Pax | Z, X)



How do we find these bd-sets?

Graphical Condition

P(y | do(x)) is identifiable if there is a set Z

that d-separates X from Y in Gx

25

Z6

Z3 Z5

X Y

Z4

G

Z

Z6

Z3

Z2 Z2

Z5

Z1 Z1

X Y

Z4

Gx

(the graph G where all arrows 
emanating from X are removed.)
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Back-door Examples

X Y

Z

Z=

Z6X Y

Are there admissible back-door sets (relative to

X,Y ) for the following graphs?

Z2

Z5

Z4

Z={Z4, Z2}, {Z4, Z5},

{Z4, Z2, Z5}
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Back-door Examples

X Y

Z

Z=

Z6X Y

Are there admissible back-door sets (relative to

X,Y ) for the followinggraphs?

Z2

Z5

Z4

Z={Z4, Z2}, {Z4, Z5},

{Z4, Z2, Z5}
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Examples

P(Y|do(X))?

No backdoors between X and Y and therefore: P(Y|do(X))= P(Y|X)

What if we adjust for W? … wrong!!!

But what if we want to determine P(Y|do(X),w)? What do we do with the spurious path 𝑋 → 𝑊 ← 𝑍 <- 𝑇 → 𝑌 ?

if we condition on 𝑇, we would block the spurious path 𝑋 → 𝑊 ← 𝑍 <- 𝑇 → 𝑌. We can compute: 

Example: W can be post-treatment pain
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Adjusting for Colliders?

There are 4 backdoor paths. We must adjust for Z, and one of E or A or both
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Example: Backdoor

enumerating backdoor paths 

backdoor 1: A, Z 

backdoor 2: E, Z 

backdoor 3: A, E, Z 
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Backdoor for the effect of X on Y



Outline

The backdoor criterion and the adjustment formula

Computing bd: Inverse probability weighting

Conditional intervention

Front door condition

The do calculus
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Evaluating BD Adjustment

• The backdoor provides a criterion for deciding when a  

set of covariates Z is admissible for adjustment, i.e.,

P(y|do(x)) = ∑ P(y|x, z)P(z)
z

• In practice, how should backdoor expressions be  

evaluated?

• There are sample & computational challenges entailed  

by the eval. of such expressions since one needs to

• estimate the different distributions, and

• evaluate them, summing over a possibly  high-

dimensional Z (i.e., time O(exp(|Z|)) ).
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Is it really exp in Z?



Inverse Probability Weighting (IPW)

• Let’s rewrite the bd-expression,

Inverse Propensity score
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P(y|do(x)) =
∑

z

P(y, x,z)

P(x ∣ z)

= ∑
N

z

1 ∑N

i=1
1Yi=y,Xi=x,Zi=z

g(z)

=
1

N ∑ ∑
i=1 z

N 1Yi=y,Xi=x,Zi=z

g(z)

=
1 N

N ∑
i=1

1Yi=y,Xi=x,Zi=z

g(z)

• Assume we have N samples, then

Requires time proportional to  

the number of samples N
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Inverse Probability Weighting (IPW)



• In practice, evaluating the expr.  

can be seen as:

g(z1) = 0.33

1/ g(z1)

1/g(z2)

1/g(z2)

1

2

n

g(z2) = 0.5

Inverse

Probability Weighting
“pseudo”  

causal samples
Observational samples

30
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1/ g(z1)

1/g(z2)

• In practice, evaluating the expr.  

can be seen as:

g(z1) = 0.33

1

2

n

Any statistics computed on the  

re-weighted samples is causal, in  

the sense that the samples come  

from a pseudo-population that

mimics the intervened population.
1/g(z2)

Inverse

Probability Weighting “pseudo”  

causal samples
Observational samples 31
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This provides us with a simple procedure of estimating 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥)) when we
have finite samples. If we weigh each available sample by a factor = 1/𝑃(𝑋 = 𝑥|𝑍 = 𝑧),
we can then treat the reweighted samples as if they were generated from 𝑃𝑚, not 𝑃, and
proceed to estimate 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑥)) accordingly.

X=yes, and normalizing
(dividing by 0.49)

Rewighting by  1/P(x=yes|Z=male) =0.233
Or P(X=yes|Z=female)= 0.765
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Inverse Probability Weighting (IPW)

This will provide saving if the number of samples is far smaller than domain of Z
Here
P(Y|DO(X=yes) =
0.476+0.357=0.833



Outline

Computing bd: Inverse probability weighting

Conditional intervention

Front door condition

The do calculus
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Conditional Intervention

We can often get it through z-specific  effect of P(Y|do(X=x),Z=z)

Suppose a policy maker contemplates an age-dependent policy whereby an amount 𝑥 of drug
is to be administered to patients, depending on their age 𝑍. We write it as 𝑑𝑜(𝑋 = 𝑔(𝑍)).
To find out the distribution of outcome 𝑌 that results from this policy, we seek to estimate
𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑔(𝑍))).
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Conditional Intervention

So if we can compute conditional interventions we can compute conditional policies.



Outline 

Computing bd: Inverse probability weighting

Conditional intervention

Front door condition

The do calculus
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Incompleteness of Backdoor Criterion

Smoking Cancer

Genotype  (hidden)

Smoking Tar Cancer

Genotype  (hidden)

no backdoor

causal effect is not identifiable

no backdoor

causal effect is identifiable!

causal effect of smoking on cancer
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Reminder: Truncated Product 

in  Semi-Markovian Models

4

3

The distribution generated by an intervention do(X=x)  

in a Semi-Markovian model M is given by the  

(generalized) truncated factorization product, namely,
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Interventions - Another Example

X Y

Real world

Z
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Interventions - Another Example

X Y

Real world

Uxy
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Interventions - Another Example

X Y

Real world

Uxy

X Y

Alternative world

Uxy

Intervention
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U_xy



Interventions - Another Example

uxy uy

= ∑ ∑ P(y|x, uxy, uy)P(uy) P(uxy)

ux

∑ P(ux)

uxy

P(y|do(x)) = ∑ P(y|x, uxy)P(uxy)

X Y

Alternative world

Uxy

xM =
{ Y xy yY ← f (x, u , u )

X ← fX(uxy, ux) X = x

ux,uy,uxy

P(v|do(x)) = ∑ P(x|uxy, ux)P(y|x, uxy, uy)P(ux, uy, uxy)

These distributions are not observed,  

and nothing more can be removed.

Re-writing the interventional distribution,

slides10 276 2024

We can get rid of U_y
But not of U_xy



The Front-door Case

do(X=x)M = Mx =

intervention

u

P(v) = ∑ P(x|uxy, ux)P(z|x, uz)

P(y|z, uxy, uy)P(u)
u

P(v|do(x)) = ∑ P(x|uxy, ux)P(z|x, uz)

P(y|z, uxy, uy)P(u)

X

Real world

Uxy

Z Y

X ← fX(uxy, ux)  

Z ← fZ(x, uz)

Y ← fY(z, uxy,uy)

X

Alternative world

Uxy

Z Y

X ← fX(uxy, ux) X = x 

Z ← fZ(x, uz)

Y ← fY(z, uxy,uy)
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The Front-door Case

= ∑ P(z|x, uz)P(uz) ∑ P(y|z, uxy, uy)P(uxy, uy)

ux

∑ P(ux)

x′

P(v|do(x)) = P(z|x)∑ P(y|z, x′)P(x′)

u

P(v|do(x)) = ∑ P(x|uxy, ux)P(z|x, uz)P(y|z, uxy, uy)P(u)

X Y

Alternative world

Uxy

Z

uxy

uz uxy,uy

= P(z|x)∑ P(y|z, uxy)P(uxy)

x′,uxy

= P(z|x) ∑ P(y|z, uxy)P(uxy|x′)P(x′)

x′,uxy

= P(z|x) ∑ P(y|z, x′, uxy)P(uxy|x′)P(x′)

x′,uxy

= P(z|x) ∑ P(y|z, x′, uxy)P(uxy|x′, z)P(x′)

x′ uxy

= P(z|x)∑ ∑ P(y, uxy|z, x′)P(x′)

P(y|do(x)) = ∑ P(z|x)∑ P(y|z, x′)P(x′)

z x′

Summing over X

xy(Y ⫫ X | Z, U )

(Uxy ⫫ Z |X)

Chain rule and sum out Uxy

Re-writing the interventional distribution…

1. (Y ⫫ X | Z, Uxy)

2. (Z ⫫ Uxy | X)

These factors can be computed
 from the observed distribution
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Example (Front-door)

Tobaco industry:
Only 15% of smoker developed 
cancer while 90% from the non-
smoker

Antismoke lobbyist:
If you smoke you have 95% tar vs 
no smokers (380/400 vs 20/400)

If you have more tar, you increase 
the chance of cancer in both smoker 
(from 10% to 15%) and non-smokers (from 90% 
To 95%). 



The Syntactical Goal on  

Identification of Causal Effects

12

• For both back- and front-door settings, the  

goal was to reduce the quantity Q = P(y|do(x))  

into an expression with no do(.), i.e., estimable  

from the observational distribution P(v).

• We are interested in rules or a set of axioms  

that allow the systematic transformation of a  

do(.) expression into a do-free expression while  

preserving the equivalence to the target effect.
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Outline

Computing bd: Inverse probability weighting

Conditional intervention

Front door condition

The do calculus
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Rules of Do-Calculus

23

Theorem 3.4.1. The following transformations are valid  

for any do-distribution induced by a causal model M:

Rule 1: Adding/removing Observations

P(y|do(x),z,w)=P(y|do(x),w) (Z ⫫ Y | W)GX

Rule 3: Adding/removing Actions

P(y|do(x),do(z),w)=P(y|do(x),w) (Z ⫫ Y | X, W)GX Z(W)

if

Rule 2: Action/observation exchange

P(y|do(x),do(z),w)=P(y|do(x),z,w) if (Z ⫫ Y | X, W)GXZ

if

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in GX .



Insight 1: Adding/removing Observations

• Adding/removing observations

do(X=x)

However, in the the do(X)-world (model Mx), Y and Z

are d-separated, that is,

(Z ⫫ Y) GX

In the original model, Z and Y

may be not separable, e.g.:

(Z ∦ Y), (Z ∦ Y | X)

⟹

YZ X YZ

G

X

GX

P(y|do(x),z)=P(y|do(x))

Let’s verify this equality!
slides10 276 2024 Try it yourself



• Adding/removing observations

P(y|do(x),z)=P(y|do(x)) ?

do(X=x)
GFirst, let’s write the interventional distribution,

P(v|do(x))

YZ X YZ X

GX

= ∑ P(z|uz)P(y|x, uy, uxy)P(u)

u

= P(z)∑ P(y|x, uxy)P(uxy)

uxy

Let’s keep the truncated in this form and …

Insight 1: Adding/removing Observations



• Adding/removing observations

uxy

P(y, z|do(x)) = P(z)∑ P(y|x, uxy)P(uxy)

P(y|do(x), z) =
P(y, z|do(x))

P(z|do(x))

uxy

P(z|do(x)) = ∑ P(z)∑ P(y|x, uxy)P(uxy)

y

= P(z)

do(X=x)
G

P(y|do(x),z)=P(y|do(x)) ?

And, let’s rewrite the conditional effects,

YZ X YZ X

GX

Insight 1: Adding/removing Observations
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• Adding/removing observations

P(y|do(x), z) =
P(z)∑

uxy
P(y|x, uxy)P(uxy)

P(z)

uxy

= ∑ P(y|x, uxy)P(uxy)

z uxy

= ∑ P(z)∑ P(y|x, uxy)P(uxy)

z

= ∑ P(v|do(x)) = P(y|do(x))
X

do(X=x)
G

P(y|do(x),z)=P(y|do(x)) ?

Substituting the factors back…

YZ X YZ X

GX

Insight 1: Adding/removing Observations

(Z ⫫ Y)G
slides10 276 2024



• Action/Observation Exchange

After observing Z, variable Y

reacts to X in the same way,

with and without intervention.

18

(Y ⫫ X | Z)GX
P(y|do(x),z)=P(y|x,z)⟹

X

Z

Y

Z

Y X

do(X=x)
G GX

Insight 2: Action/Observation Exchange

Let’s verify this equality!

Note that given Z, Y is correlated with X only through  

causal paths, hence, see(X=x) will be equiv. to do(X=x).

Idea. If Z blocks all bd-paths w.r.t (X, Y), then cond. on Z,  

all the remaining association is equal to the causation.



19

• Action/Observation Exchange

P(y|do(x),z)=P(y|x,z) ?

P(y, z|do(x)) = ∑ P(z|uz)P(y|

u

= P(z)P(y|x, z)

X

Z

Y

Z

x, z, uy)P(u) P(z|do(x)) = ∑ P(z)P(y|x, z)

y

= P(z)

P(y|do(x), z) =
P(z, y |do(x))

=
P(z)P(y|x, z)

= P(y|x, z)
P(z|do(x)) P(z)

GX

(Y ⫫ X | Z)

Y X

do(X=x)
G GX

Insight 2: Action/Observation Exchange

First, let’s write the interventional distributions,
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19

• Action/Observation Exchange

P(y|do(x),z)=P(y|x,z) ?

P(y, z|do(x)) = ∑ P(z|uz)P(y|

u

= P(z)P(y|x, z)

X

Z

Y

Z

x, z, uy)P(u) P(z|do(x)) = ∑ P(z)P(y|x, z)

y

= P(z)

P(y|do(x), z) =
P(z, y |do(x))

=
P(z)P(y|x, z)

= P(y|x, z)
P(z|do(x)) P(z)

Looks familiar?  

BD perhaps?

GX

(Y ⫫ X | Z)

Y X

do(X=x)
G GX

Insight 2: Action/Observation Exchange

First, let’s write the interventional distributions,
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20

P(y|do(x)) = ∑ ∑ P(y|x, z, uy)P(z|uz)P(u)

z u

= ∑ P(y|x, z)P(z)

X

Z

Y

Z

Almost any model compatible with this  

causal graph, P(y|x) and P(y | do(x)) will not  

be equal since P(z) ≠ P(z | x) almost surely.

(Y ∦ X)G

Y X

do(X=x)
G GX

z

P(y|x) = ∑ P(y|x, z)P(z|x)

Insight 2: Action/Observation Exchange

• Action/Observation Exchange

Great, but what about the equality

P(y|do(x))=P(y|x)?

X

Let’s compare left and right-hand sides:



Rules of Do-Calculus

23

Theorem 3.4.1. The following transformations are valid  

for any do-distribution induced by a causal model M:

Rule 1: Adding/removing Observations

P(y|do(x),z,w)=P(y|do(x),w) (Z ⫫ Y | W)GX

Rule 3: Adding/removing Actions

P(y|do(x),do(z),w)=P(y|do(x),w) (Z ⫫ Y | X, W)GX Z(W)

if

Rule 2: Action/observation exchange

P(y|do(x),do(z),w)=P(y|do(x),z,w) if (Z ⫫ Y | X, W)GXZ

if

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in GX .slides10 276 2024



Insight 3: Adding/Removing Actions

• Adding/Removing Actions

If there is no causal path from

X to Z, then an intervention on

X will have no effect on Z.

(Z ⫫ X)GX

P(z|do(x))=P(z)⟹

Z X Y Z X Y

G GX

do(X=x)

Let’s verify this equality!
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Insight 3: Adding/Removing Actions

• Adding/Removing Actions

(Z ⫫ X)GX

P(z|do(x))=P(z) ?

P(z|do(x)) = ∑ P(v|do(x))

y uzy,uzx

y

= ∑ ∑ P(z|uzy, uzx)P(y|x, uzy)P(uzy, uzx)

uzy,uzx

= P(z)

= ∑ P(z|uzy, uzx)P(uzy, uzx)

Z X Y Z X Y

G GX

do(X=x)
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Rules of Do-Calculus

23

Theorem 3.4.1. The following transformations are valid  

for any do-distribution induced by a causal model M:

Rule 1: Adding/removing Observations

P(y|do(x),z,w)=P(y|do(x),w) (Z ⫫ Y | W)GX

Rule 3: Adding/removing Actions

P(y|do(x),do(z),w)=P(y|do(x),w) (Z ⫫ Y | X, W)GX Z(W)

if

Rule 2: Action/observation exchange

P(y|do(x),do(z),w)=P(y|do(x),z,w) if (Z ⫫ Y | X, W)GXZ

if

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in GX .slides10 276 2024



Properties of Do-Calculus

Theorem (soundness and completeness of do-

calculus for causal identifiability from P(v)).

The causal quantity Q = P(y|do(x)) is identifiable  

from P(v) and G if and only if there exists a  

sequence of application of the rules of

do-calculus and the probability axioms that  

reduces Q into a do-free expression.

Syntactic goal: Re-express original Q without do()!
slides10 276 2024



Derivation in Do-Calculus
Smoking Tar Cancer

Genotype (Unobserved)
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Example. Non-identifiable Effect

• Let M be a model compatible with G and inducing an observational  

distribution P(v):

X Y

U

P(1)(U) = P(2)(U) = P(U)

U ∼ P(u) P(x, y) > 0

M =
X ← U

Y{ Y  ← f (X, U)

M(1) =

X ← Uxy

Y ←
{

Y

0

f  (X,U) if U = X

otherwise

M(2) =

X ← Uxy

Y ← { Y

1

f  (X,U) if U = X

otherwise

• Without intervention, U is  

always equal to X in both  

models, hence Y always outputs  

fY(X, U) and P(1)(v)=P(2)(v)=P(v).

P(i)(x, y) 1[x = u]

∑ u

(i)= P ( (i)x ∣ u)P (y ∣ x,u) P(u)

=  P(i)(y ∣ x, U =  x)P(U = x)

=  P(y ∣ x)P(x)

=  P(x,y)

Both models induce the same graph G and have the same P(v)slides10 276 2024



Example. Non-identifiable Effect

• Let M be a model compatible with G and inducing an observational

29

X

distribution P(v):

U

P(1)(U) = P(2)(U) = P(U)

X ← Uxy

Y ←
{

Y

0

X ← Uxy

Y ←
{

Y

1

f  (X,U) if U = X

otherwise

• Under intervention do(X=x), U  

and X do not need to match,  

hence Mx(1) and Mx(2) will output  

Y=1 with different probability:Y

Uxydo(x)
⟼

Y X

f  (X,U) if U = X

otherwise

M(1) =
x

M(2) =
x

P(i)(y ∣ do(x))

Even though both models induce the same graph G and have the same

P(v), the causal effect P(1)(y|do(x)) ≠ P(2)(y|do(x))!

∑ u

(i)= P (y ∣

=  P(i)(y ∣ x, U =  x)P(U = x)

+P(i)(y ∣ x, U ≠  x)P(U ≠ x)

=  P(y ∣ x)P(x) +  1[i =  1](1 − P(x))

0 in Mx(1), 1 in Mx(2)

x, u)P(u)



Non-identifiability Machinery

Lemma (Graph-subgraph ID (Tian and Pearl, 2002))

• If Q = P(y | do(x)) is not identifiable in G, then  

Q is not identifiable in the graph resulting from  

adding a directed or bidirected edge to G.

• Converse. If Q = P(y|do(x)) is identifiable in G,  

Q is still identifiable in the graph resulting from  

removing a directed or bidirected edge from G.
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Non-identifiability Puzzle

• Is P(y | do(x)) identifiable from G?

• Is G of bow-shape?

• Is P(y | do(x), z2) identifiable from G?

• Is P(y | do(x, z1)) identifiable from G?

Z1 Z2

X

Y

G

P(Y|do(x) is not identifiable
But when conditioning on Z_1, or Z_2 they are.
So, computing the effect of a joint intervention can be easier than
Their individual interventions. 

[C] sec 35.

slides10 276 2024

Try it at home



Non-Identifiability Criterion

Theorem (Graphical criterion for non-identifiability  

of joint interventional distributions (Tian, 2002)).

If there is a bidirected path connecting X to any of  

its children in G, then P(v|do(x)) is not identifiable  

from P(v) and G.
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Some Identifiable Graphs
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Some Non-Identifiable Graphs
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Summary

•The do-calculus provides a syntactical characterization to

the problem of policy evaluation for atomic interventions.

•The problem of confounding and identification is  
essentially solved, non-parametrically.

•Simpson’s Paradox is mathematized and dissolved.

•Applications are pervasive in the social and health  
sciences as well as in statistics, machine learning, and  
artificial intelligence.
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