Causal and Probabilistic Reasoning

Rina Dechter

The Identification Problem The Front-Door Criterion, The Do-calculus

Based on Elias Bareinboim slides

Primer, chapter 3, Causality 3.3, 3.4, 2.5, (Biometrica 1995)

Outline

The backdoor criterion and the adjustment formula Computing bd: Inverse probability weighting Conditional intervention Front door condition The do calculus

Outline

The backdoor criterion and the adjustment formula

Computing bd: Inverse probability weighting Conditional intervention Front door condition The do calculus

How could adjustment help in real data analysis? (The Problem of Confounding)

slides9 276 2024

How could adjustment help in real data analysis? (The Problem of Confounding)

slides9 276 2024

Confounding Bias

Confounding Bias

What's the causal effect of Exercise on Cholesterol? What about *P*(*cholesterol* / *exercise*)?

Adjustment by Direct Parents

$$P(\mathbf{y} | do(\mathbf{x})) = \sum_{pa_{\mathbf{x}}} P(\mathbf{y} | \mathbf{x}, pa_{\mathbf{x}}) P(pa_{\mathbf{x}})$$

Quiz: 1) derive from previous slide 2) derive for non-Markovian models

If Season is latent, is the effect still computable?

If Season is latent, is the effect still computable?

Queries:

 $Q_2 = P(wet \mid do(Sprinkler = on))$

 $= \sum_{ra} P(we | Sp = on, ra)P(ra)$

By conditioning on rain,

- p2 (the non-causal path) is blocked, and
- p1 (the causal path) remains unaffected!

Definition 3.3.1 (The Backdoor Criterion) Given an ordered pair of variables (X, Y) in a directed acyclic graph G, a set of variables Z satisfies the backdoor criterion relative to (X, Y) if no node in Z is a descendant of X, and Z blocks every path between X and Y that contains an arrow into X.

If a set of variables Z satisfies the backdoor criterion for X and Y, then the causal effect of X on Y is given by the formula

$$P(Y = y | do(X = x)) = \sum_{z} P(Y = y | X = x, Z = z) P(Z = z)$$

Rationale:

- 1. We block all spurious paths between X and Y.
- 2. We leave all directed paths from X to Y unperturbed.
- 3. We create no new spurious paths.

The Back-door Adjustment

If a set Z satisfies the bdc w.r.t the pair X,Y, the effect of X on Y is identifiable and given by:

$$P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{z}} P(\mathbf{y} | \mathbf{x}, \mathbf{z}) P(\mathbf{z})$$

Back-Door Sets as Substitutes of the Direct Parents of X

path

rain

Adjustment by Direct Parents → Back-door Adjustment

How do we find these bd-sets? **Graphical Condition**

 $P(y \mid do(x))$ is identifiable if there is a set Z that d-separates X from Y in $G_{\underline{x}}$ (the graph G where all arrows)

emanating from X are removed.)

 z_1, z_4

25

Back-door Examples

Are there admissible back-door sets (relative to X, Y) for the following graphs?

Back-door Examples

Are there admissible back-door sets (relative to X, Y) for the following graphs?

Examples

P(Y|do(X))?

No backdoors between X and Y and therefore: P(Y|do(X)) = P(Y|X)

What if we adjust for W? ... wrong!!!

But what if we want to determine P(Y|do(X),w)? What do we do with the spurious path $X \rightarrow W \leftarrow Z < T \rightarrow Y$?

if we condition on T, we would block the spurious path $X \rightarrow W \leftarrow Z < T \rightarrow Y$. We can compute:

$$P(Y = y | do(X = x), W = w) = \sum_{t} P(Y = y | X = x, W = w, T = t) P(T = t | W = w)$$

Example: W can be post-treatment pain

Adjusting for Colliders?

Figure 3.7: A graphical model in which the backdoor criterion requires that we condition on a collider (Z) in order to ascertain the effect of X on Y

There are 4 backdoor paths. We must adjust for Z, and one of E or A or both

Example: Backdoor

Backdoor for the effect of X on Y

backdoor 1: *A, Z* backdoor 2: *E, Z* backdoor 3: *A, E, Z*

enumerating backdoor paths

Outline

The backdoor criterion and the adjustment formula Computing bd: Inverse probability weighting Conditional intervention Front door condition The do calculus

Outline

The backdoor criterion and the adjustment formula Computing bd: Inverse probability weighting Conditional intervention Front door condition The do calculus

Evaluating BD Adjustment

• The backdoor provides a criterion for deciding *when* a set of covariates *Z* is admissible for adjustment, i.e.,

$$P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{z}} P(\mathbf{y} | \mathbf{x}, \mathbf{z}) P(\mathbf{z})$$

- In practice, how should backdoor expressions be evaluated?
- There are sample & computational challenges entailed by the eval. of such expressions since one needs to
 - estimate the different distributions, and
 - evaluate them, summing over a possibly highdimensional Z (i.e., time O(exp(|Z|))).

Is it really exp in Z?

• Let's rewrite the bd-expression,

$$P(\mathbf{y} | do(\mathbf{X} = \mathbf{x})) = \sum_{\mathbf{z}} P(\mathbf{y} | \mathbf{x}, \mathbf{z}) P(\mathbf{z})$$

$$= \sum_{\mathbf{z}} \frac{P(\mathbf{y}, \mathbf{x}, \mathbf{z})}{P(\mathbf{x}, \mathbf{z})} P(\mathbf{z})$$

$$= \sum_{\mathbf{z}} \frac{P(\mathbf{y}, \mathbf{x}, \mathbf{z})}{P(\mathbf{x} | \mathbf{z}) P(\mathbf{z})} P(\mathbf{z})$$

$$= \sum_{\mathbf{z}} \frac{P(\mathbf{y}, \mathbf{x}, \mathbf{z})}{P(\mathbf{x} | \mathbf{z})} F(\mathbf{z})$$

Fit a function $g(z)$ that approximates this probability
Inverse Propensity score

• Assume we have *N* samples, then

$$P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{z}} \frac{P(\mathbf{y}, \mathbf{x}, \mathbf{z})}{P(\mathbf{x} | \mathbf{z})}$$

=
$$\sum_{\mathbf{z}} \frac{\frac{1}{N} \sum_{i=1}^{N} 1_{\mathbf{Y}_{i}=\mathbf{y}, \mathbf{X}_{i}=\mathbf{x}, \mathbf{Z}_{i}=\mathbf{z}}{g(\mathbf{z})}$$

=
$$\frac{1}{N} \sum_{i=1}^{N} \sum_{\mathbf{z}} \frac{1_{\mathbf{Y}_{i}=\mathbf{y}, \mathbf{X}_{i}=\mathbf{x}, \mathbf{Z}_{i}=\mathbf{z}}{g(\mathbf{z})}$$

=
$$\frac{1}{N} \sum_{i=1}^{N} \frac{1_{\mathbf{Y}_{i}=\mathbf{y}, \mathbf{X}_{i}=\mathbf{x}, \mathbf{Z}_{i}=\mathbf{z}}{g(\mathbf{z})} \rightarrow \text{Requires time proportional to}$$

the number of samples N

 In practice, evaluating the expr. can be seen as:

 In practice, evaluating the expr. can be seen as:

This provides us with a simple procedure of estimating P(Y = y | do(X = x)) when we have finite samples. If we weigh each available sample by a factor = 1/P(X = x | Z = z), we can then treat the reweighted samples as if they were generated from P_m , not P, and proceed to estimate P(Y = y | do(x)) accordingly.

Table 3.3 Joint probability distribution P(X, Y, Z) for the drug-gender-recovery story of Chapter 1 (Table 1.1)

X	Y	Z	% of population
Yes	Yes	Male	0.116
Yes	Yes	Female	0.274
Yes	No	Male	0.01
Yes	No	Female	0.101
No	Yes	Male	0.334
No	Yes	Female	0.079
No	No	Male	0.051
No	No	Female	0.036

X=yes, and normalizing (dividing by 0.49)

Table 3.4 Conditional probability distribution P(Y, Z|X) for drug users (X = yes) in the population of Table 3.3

X	Y	Z	% of population
Yes	Yes	Male	0.232
Yes	Yes	Female	0.547
Yes	No	Male	0.02
Yes	No	Female	0.202

Rewighting by 1/P(x=yes|Z=male) =0.233 Or P(X=yes|Z=female)= 0.765

Table 3.5 Probability distribution for the population of Table 3.3 under the intervention do(X = Yes), determined via the inverse probability method

X	Y	Ζ	% of population
Yes	Yes	Male	0.476
Yes	Yes	Female	0.357
Yes	No	Male	0.041
Yes	No	Female	0.132

This will provide saving if the number of samples is far smaller than domain of Z

Here P(Y|DO(X=yes) = 0.476+0.357=0.833

Outline

Computing bd: Inverse probability weighting Conditional intervention

Front door condition The do calculus

Conditional Intervention

Suppose a policy maker contemplates an age-dependent policy whereby an amount x of drug is to be administered to patients, depending on their age Z. We write it as do(X = g(Z)). To find out the distribution of outcome Y that results from this policy, we seek to estimate P(Y = y | do(X = g(Z))).

We can often get it through z-specific effect of P(Y|do(X=x),Z=z)

Rule 2 The z-specific effect P(Y = y | do(X = x), Z = z) is identified whenever we can measure a set S of variables such that $S \cup Z$ satisfies the backdoor criterion. Moreover, the z-specific effect is given by the following adjustment formula

$$P(Y = y | do(X = x), Z = z)$$

=
$$\sum_{s} P(Y = y | X = x, S = s, Z = z) P(S = s)$$

Conditional Intervention

We now show that identifying the effect of such policies is equivalent to identifying the expression for the z-specific effect P(Y = y | do(X = x), Z = z).

To compute P(Y = y | do(X = g(Z))), we condition on Z = z and write

$$P(Y = y | do(X = g(Z)))$$

= $\sum_{z} P(Y = y | do(X = g(Z)), Z = z) P(Z = z | do(X = g(Z)))$
= $\sum_{z} P(Y = y | do(X = g(z)), Z = z) P(Z = z)$ (3.17)

The equality

$$P(Z = z | do(X = g(Z))) = P(Z = z)$$

stems, of course, from the fact that Z occurs before X; hence, any control exerted on X can have no effect on the distribution of Z. Equation (3.17) can also be written as

$$\sum_{z} P(Y = y | do(X = x), z) |_{x = g(z)} P(Z = z)$$

which tells us that the causal effect of a conditional policy do(X = g(Z)) can be evaluated directly from the expression of P(Y = y | do(X = x), Z = z) simply by substituting g(z) for x and taking the expectation over Z (using the observed distribution P(Z = z)).

So if we can compute conditional interventions we can compute conditional policies.

Outline

Computing bd: Inverse probability weighting Conditional intervention Front door condition The do calculus

Incompleteness of Backdoor Criterion

causal effect of smoking on cancer Pr(c|do(s))

Reminder: Truncated Product in Semi-Markovian Models

The distribution generated by an intervention do(X=x)in a Semi-Markovian model *M* is given by the (generalized) truncated factorization product, namely,

$$P(\mathbf{v} | do(\mathbf{x})) = \sum_{\mathbf{u}} \prod_{\{V_i \in \mathbf{V} \setminus \mathbf{X}\}} P(v_i | pa_i, u_i) P(\mathbf{u})$$

And the effect of such intervention on a set Y is

$$P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{v} \setminus (\mathbf{y} \cup \mathbf{x})} \sum_{\mathbf{u}} \prod_{\{V_i \in \mathbf{V} \setminus \mathbf{X}\}} P(v_i | pa_i, u_i) P(\mathbf{u})$$

Real world

Real world

Re-writing the interventional distribution,

$$P(\mathbf{v} | do(x)) = \sum_{u_x, u_y, u_{xy}} P(x | u_{xy}, u_x) P(y | x, u_{xy}, u_y) P(u_x, u_y, u_{xy})$$
$$= \left(\sum_{u_{xy}} \left(\sum_{u_y} P(y | x, u_{xy}, u_y) P(u_y) \right) P(u_{xy}) \right) \left(\sum_{u_x} P(u_x) \right)$$

Alternative world

$$P(y | do(x)) = \sum_{u_{xy}} P(y | x, u_{xy}) P(u_{xy})$$

We can get rid of U_y But not of U_xy

$$M_x = \begin{cases} X \leftarrow f_X(u_{xy}, u_x) \ X = x_{\zeta} \\ Y \leftarrow f_Y(x, u_{xy}, u_y) \end{cases}$$

These distributions are not observed, and nothing more can be removed.

The Front-door Case

1. $(Y \perp X \mid Z, U_{xy})$ The Front-door Case

Re-writing the interventional distribution...

$$P(\mathbf{v} | do(x)) = \sum_{\mathbf{u}} P(x | u_{xyy}, u_{x}) P(z | x, u_{z}) P(y | z, u_{xyy}, u_{y}) P(\mathbf{u})$$

$$= \left(\sum_{u_{z}} P(z | x, u_{z}) P(u_{z})\right) \left(\sum_{u_{xyy}, u_{y}} P(y | z, u_{xyy}, u_{y}) P(u_{xyy}, u_{y})\right) \left(\sum_{u_{x}} P(u_{x})\right)$$

$$= P(z | x) \sum_{u_{xy}} P(y | z, u_{xy}) P(u_{xy} | x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y | z, x', u_{xy}) P(u_{xy} | x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y | z, x', u_{xy}) P(u_{xy} | x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y | z, x', u_{xy}) P(u_{xy} | x', z) P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y | z, x', u_{xy}) P(u_{xy} | x', z) P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y | z, x', u_{xy}) P(u_{xy} | x', z) P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y | z, x', u_{xy}) P(u_{xy} | x', z) P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

$$= P(z | x) \sum_{x', u_{xy}} P(y, u_{xy} | z, x') P(x')$$

Alternative world

2. $(Z \perp U_{xy} / X)$

$$P(\mathbf{v} | do(x)) = P(z | x) \sum_{x'} P(y | z, x') P(x')$$

$$P(y | do(x)) = \sum_{z} \frac{P(z | x)}{x} \sum_{x'} \frac{P(y | z, x') P(x')}{x}$$

e computed distribution

Front-door Condition

Definition 3.4.1 (Front-Door)

A set of variables Z is said to satisfy the front-door criterion relative to an ordered pair of variables (X, Y) if

- 1. Z intercepts all directed paths from X to Y.
- 2. There is no unblocked backdoor path from X to Z.
- 3. All backdoor paths from Z to Y are blocked by X.

Theorem 3.4.1 (Front-Door Adjustment)

If Z satisfies the front-door criterion relative to (X,Y) and if P(x,z) > 0, then the causal effect of X on Y is identifiable and is given by the formula

$$P(y|do(x)) = \sum_{z} P(z|x) \sum_{x'} P(y|x', z) P(x').$$
(3.16)

Example (Front-door)

Table 3.1: A hypothetical dataset of randomly selected samples showing the percentage of cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

	Tar 400		No 4	No tar 400		All subjects 800	
	Smokers	Nonsmokers	Smokers	Nonsmokers 380	Smokers	Nonsmokers	
No cancer	323	1	18	38	341	39	
Cancer	(85%) 57	(5%) 19	(90%) 2	(10%) 342	(85%) 59	(9.75%) <u>361</u>	
	(15%)	(95%)	(10%)	(90%)	(15%)	(90.25%)	

Tobaco industry: Only 15% of smoker developed cancer while 90% from the nonsmoker

Antismoke lobbyist:

If you smoke you have 95% tar vs no smokers (380/400 vs 20/400)

 Table 3.2
 Reorganization of the dataset of Table 3.1 showing the percentage of cancer cases in each smoking-tar category (number in thousands)

	SMOKERS 400		NON-SMOKERS 400		ALL SUBJECTS 800	
	Tar	No tar	Tar	No tar	Tar	No tar
	380	20	20	380	400	400
No cancer	323	18	1	38	324	56
	(85%)	(90%)	(5%)	(10%)	(81%)	(19%)
Cancer	57	2	19	342	76	344
	(15%)	(10%)	(95%)	(90%)	(9%)	(81%)

If you have more tar, you increase the chance of cancer in both smoker (from 10% to 15%) and non-smokers (from 90% To 95%).

The Syntactical Goal on Identification of Causal Effects

- For both back- and front-door settings, the goal was to reduce the quantity Q = P(y/do(x)) into an expression with no do(.), i.e., estimable from the observational distribution P(v).
- We are interested in rules or a set of axioms that allow the systematic transformation of a *do(.)* expression into a *do*-free expression while preserving the equivalence to the target effect.

Outline

Computing bd: Inverse probability weighting Conditional intervention Front door condition The do calculus

Rules of Do-Calculus

Theorem 3.4.1. The following transformations are valid for any do-distribution induced by a causal model *M*:

Rule 1: Adding/removing Observations P(y/do(x), z, w) = P(y/do(x), w) if $(Z \perp Y / W)_{G_{\overline{x}}}$

Rule 2: Action/observation exchange P(y/do(x), do(z), w) = P(y/do(x), z, w) if $(Z \perp Y \mid X, W)_{G_{XZ}}$

Rule 3: Adding/removing Actions P(y/do(x), do(z), w) = P(y/do(x), w) if $(Z \perp Y \mid X, W)_{G_{\overline{XZ(W)}}}$

23

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in G_X^- .

Adding/removing observations

In the original model, Z and Y may be not separable, e.g.:

 $(Z \not \amalg Y), (Z \not \amalg Y / X)$

However, in the the do(X)-world (model M_x), Y and Z are d-separated, that is,

$$(Z \amalg Y)_{G_{\overline{X}}}$$

P(y/do(x),z) = P(y/do(x))Let's verify this equality!

slides10 276 2024

Try it yourself

Adding/removing observations

P(y/do(x),z) = P(y/do(x))?

First, let's write the interventional distribution,

 $P(\mathbf{v} | do(x))$

$$= \sum_{\mathbf{u}} P(z \mid u_z) P(y \mid x, u_y, u_{xy}) P(\mathbf{u})$$

$$= P(z) \sum_{u_{xy}} P(y | x, u_{xy}) P(u_{xy})$$

Let's keep the truncated in this form and ...

Adding/removing observations

P(y/do(x),z)=P(y/do(x))?

And, let's rewrite the conditional effects,

$$P(y|do(x),z) = \frac{P(y,z|do(x))}{P(z|do(x))}$$

$$P(y,z|do(x)) = P(z) \sum_{u_{xy}} P(y|x,u_{xy})P(u_{xy}) \qquad P(z|do(x)) = \sum_{y} P(z) \sum_{u_{xy}} P(y|x,u_{xy})P(u_{xy})$$

$$= P(z)$$

Adding/removing observations

P(y/do(x),z)=P(y/do(x))?

Substituting the factors back...

 $P(y | do(x), z) = \frac{P(z) \sum_{u_{xy}} P(y | x, u_{xy}) P(u_{xy})}{P(z)}$ $= \sum_{u_{xy}} P(y | x, u_{xy}) P(u_{xy})$ $= \sum_{z} P(z) \sum_{u_{xy}} P(y | x, u_{xy}) P(u_{xy})$ $= \sum_{z} P(z) P(y | do(x)) = P(y | do(x))$

Action/Observation Exchange

After observing *Z*, variable *Y* reacts to *X* in the same way, with and without intervention.

Note that given Z, Y is correlated with X only through causal paths, hence, see(X=x) will be equiv. to do(X=x).

Idea. If Z blocks all bd-paths w.r.t (X, Y), then cond. on Z, all the remaining association is equal to the causation.

$$(Y \perp X / Z)_{G_{\underline{X}}} \implies P(y/do(x),z) = P(y/x,z)$$

Let's verify this equality! 18

Action/Observation Exchange

Great, but what about the equality

$$P(y|do(x)) = P(y|x)?$$
$$(Y \not \perp X)_{G_X}$$

Let's compare left and right-hand sides:

$$P(y | do(x)) = \sum_{z} \sum_{\mathbf{u}} P(y | x, z, u_y) P(z | u_z) P(\mathbf{u})$$
$$= \sum_{z} P(y | x, z) P(z)$$

Almost any model compatible with this causal graph, P(y|x) and P(y | do(x)) will **not** be equal since $P(z) \neq P(z | x)$ almost surely.

 $P(y|x) = \sum P(y|x,z)P(z|x)$

Rules of Do-Calculus

Theorem 3.4.1. The following transformations are valid for any do-distribution induced by a causal model *M*:

Rule 1: Adding/removing Observations P(y/do(x), z, w) = P(y/do(x), w) if $(Z \perp Y / W)_{G_{\overline{X}}}$

Rule 2: Action/observation exchange P(y/do(x), do(z), w) = P(y/do(x), z, w) if $(Z \perp Y \mid X, W)_{G_{XZ}}$

Rule 3: Adding/removing Actions P(y/do(x), do(z), w) = P(y/do(x), w) if $(Z \perp Y \mid X, W)_{G_{\overline{XZ(W)}}}$

23

where Z(W) is the set of Z-nodes that and not 2024 cestors of any W-node in G_X^- .

Insight 3: Adding/Removing Actions

Adding/Removing Actions

If there is no causal path from *X* to *Z*, then an intervention on *X* will have no effect on *Z*.

$$(Z \perp X)_{G_{\overline{X}}} \implies P(z|do(x)) = P(z)$$

Let's verify this equality!

Insight 3: Adding/Removing Actions

X

 \boldsymbol{Y}

do(X=x)

 G_X

Adding/Removing Actions

P(z|do(x)) = P(z)?

Rules of Do-Calculus

Theorem 3.4.1. The following transformations are valid for any do-distribution induced by a causal model *M*:

Rule 1: Adding/removing Observations P(y/do(x), z, w) = P(y/do(x), w) if $(Z \perp Y / W)_{G_{\overline{X}}}$

Rule 2: Action/observation exchange P(y/do(x), do(z), w) = P(y/do(x), z, w) if $(Z \perp Y \mid X, W)_{G_{XZ}}$

Rule 3: Adding/removing Actions P(y/do(x), do(z), w) = P(y/do(x), w) if $(Z \perp Y \mid X, W)_{G_{\overline{XZ(W)}}}$

23

where Z(W) is the set of Z-nodes that and not 2024 cestors of any W-node in G_X^- .

Properties of Do-Calculus

Theorem (soundness and completeness of docalculus for causal identifiability from P(v)).

The causal quantity Q = P(y/do(x)) is identifiable from P(v) and G if and only if there exists a sequence of application of the rules of do-calculus and the probability axioms that reduces Q into a do-free expression.

Syntactic goal: Re-express original Q without do()!

Derivation in Do-Calculus

 $P(c \mid do(s)) \neq \sum_{t} P(c \mid do(s), t) P(t \mid do(s))$

- $= \sum_{t} P(c \mid do(s), do(t)) P(t \mid do(s))$
- $= \sum_{t} P(c \mid do(t)) P(t \mid do(s))$

 $= \sum \sum P(c \mid t, s')P(s')P(t \mid s)$

 $= \sum P(c \mid do(t))P(t \mid s)$

Rule 2 $(T \perp C \mid S)_{G_{\underline{T}}}$ Rule 3 $(S \perp C \mid T)_{G_{\overline{C},\overline{T}}}$.

Rule 2 $(S \perp T)_{G_c}$

Rule 3 $(T \perp S)_{G_{\pi}}$

Probability Axioms

Genotype (Unobserved)

Tar

Cancer

 $= \sum_{t} \sum_{s'} P(c \mid do(t), s') P(s' \mid do(t)) P(t \mid s) \text{ Probability Axioms}$ $= \sum_{t} \sum_{s'} P(c \mid t, s') P(s' \mid do(t)) P(t \mid s) \text{ Rule 2 } (T \perp C \mid S)_{G_T}$

Example. Non-identifiable Effect

• Let *M* be a model compatible with *G* and inducing an observational distribution P(v):

$$M^{(1)} = \begin{cases} X \leftarrow U_{xy} \\ Y \leftarrow \begin{cases} f_Y(X, U) & \text{if } U = X \\ 0 & \text{otherwise} \end{cases}$$

$$M^{(2)} = \begin{cases} X \leftarrow U_{xy} \\ Y \leftarrow \begin{cases} f_Y(X, U) & \text{if } U = X \\ 1 & \text{otherwise} \end{cases}$$

 $P^{(1)}(U) = P^{(2)}(U) = P(U)$

• Without intervention, U is always equal to X in both models, hence Y always outputs $f_{Y}(X, U)$ and $P^{(1)}(v) = P^{(2)}(v) = P(v)$. $P^{(i)}(x,y)$ $= \sum P^{(i)}(x \mid u) P^{(i)}(y \mid x, u) P(u)$ $= P^{(i)}(y \mid x, U = x)P(U = x)$ $= P(y \mid x)P(x)$ P(x, y)

Both models induce the same graph G and have the same P(v)

Example. Non-identifiable Effect

• Let *M* be a model compatible with *G* and inducing an observational distribution P(v):

 $P^{(1)}(U) = P^{(2)}(U) = P(U)$

 Under intervention do(X=x), U and X do not need to match, hence M_x⁽¹⁾ and M_x⁽²⁾ will output Y=1 with different probability:

 $P^{(i)}(y \mid do(x)) \quad 0 \text{ in } M_x^{(1)}, 1 \text{ in } M_x^{(2)}$ = $\sum_{u} P^{(i)}(y \mid x, u) P(u)$ = $P^{(i)}(y \mid x, U = x) P(U = x)$ + $P^{(i)}(y \mid x, U \neq x) P(U \neq x)$ = $P(y \mid x) P(x) + (1[i = 1](1 - P(x)))$

29

Even though both models induce the same graph G and have the same P(v), the causal effect $P^{(1)}(y|do(x)) \neq P^{(2)}(y|do(x))!$

Non-identifiability Machinery

Lemma (Graph-subgraph ID (Tian and Pearl, 2002))

- If Q = P(y / do(x)) is not identifiable in G, then
 Q is not identifiable in the graph resulting from
 adding a directed or bidirected edge to G.
- Converse. If Q = P(y/do(x)) is identifiable in G,
 Q is still identifiable in the graph resulting from removing a directed or bidirected edge from G.

Non-identifiability Puzzle

7

 \mathbb{Z}_2

Try it at home

X

 Z_1

- Is P(y | do(x)) identifiable from G?
 - Is G of bow-shape?

- Is P(y | do(x), z2) identifiable from G?
- Is P(y | do(x, z1)) identifiable from G?

P(Y|do(x) is not identifiable But when conditioning on Z_1, or Z_2 they are. So, computing the effect of a joint intervention can be easier than [C] sec 35. Their individual interventions.

Non-Identifiability Criterion

Theorem (Graphical criterion for non-identifiability of joint interventional distributions (Tian, 2002)).

If there is a bidirected path connecting *X* to any of its children in *G*, then P(v/do(x)) is not identifiable from P(v) and *G*.

Some Identifiable Graphs

Some Non-Identifiable Graphs

Summary

- The do-calculus provides a syntactical characterization to the problem of policy evaluation for atomic interventions.
- The problem of confounding and identification is essentially solved, non-parametrically.
- Simpson's Paradox is mathematized and dissolved.
- Applications are pervasive in the social and health sciences as well as in statistics, machine learning, and artificial intelligence.