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‘ Class Information
I

Course Topics

Probabilistic Graphical Models, Structural causal models,The
Causal Hierarchy.

1.Representing independencies by graphs. d-seperation.

2.Algorithms (Bucket-elimination, Join-trees, The induced-width.).

3.Sampling schemes for graphical models (MCMC, IS)

4. AND/OR search

5.Structural Causal Models; Identification of Causal Effect;
6.The Back-Door and Front-Door Criteria and the Do-Calculus.
7.Linear Causal Models.

8.Counterfactuals.

9.Algorithms for identification. The ID algorithm.

10.Learning Bayesian networks and Causal graphs (causal
discovery).

Class page: https://ics.uci.edu/~dechter/courses/ics-276/fall_2024/

Grading

» Four or five homeworks (the highest 4 will count)

* Project: Class presentation and a report: Students will present
a paper and write a report

276 slides1 F-2024

Textbooks

[P] Judea Pearl, Madelyn Glymour, Nicholas P.
Jewell,
Causal Inference in Statistics: A Primer,
Cambridge Press, 2016.
[C] Judea Pearl,
Causality: Models, Reasoning, and Inference,
Cambridge Press, 20009.
[W] Judea Pearl, Dana Mackenzie,
The Book of Why,
Basic books, 2018.

s[Darwiche] Adnan Darwiche, "Modeling and Reasonin
with Bayesian Networks"

*[Dechter] Rina Dechter, "Reasoning with Probabilistic
and Deterministic Graphical Models: Exact Algorithms'



https://ics.uci.edu/~dechter/courses/ics-276/2023-24_Q2-Winter/
http://bayes.cs.ucla.edu/PRIMER/
http://bayes.cs.ucla.edu/BOOK-2K/
http://bayes.cs.ucla.edu/WHY/
http://www.amazon.com/dp/0521884381/
http://www.amazon.com/dp/0521884381/
http://www.amazon.com/dp/0521884381/
http://www.amazon.com/dp/0521884381/
https://dl.acm.org/doi/10.5555/3348514
https://dl.acm.org/doi/10.5555/3348514

‘Outline
|

Graphical Models

Inference Tasks

Basic probabilisty
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The Primary Al Challenges

A neural network

AT
« Machine Learning focuses on ‘1( 2’;&“{*’
replicating humans learning tpm .

input layer

Automated reasoning focuses on
* g hidden layer 1 hidden layer 2

replicating how people reason.

A Graphical Model

o Large Language Models (LLMs)
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‘ Automated Reasoning

Medical Doctor

Lawyer

Policy Maker

Queries:

Prediction: what will happen?

Diagnosis: what had happened?

Situation assessment: What is going on?

Planning, decision making: what to do?

Explanation: need causal models

Counterfactuals: What if? need Structural causal models

Same with any common-sense agent
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| Automated Reasoning
|

Causal Models Data

Queries:

e Prediction

» Diagnosis

« Situation assessment

e Planning, decision making
» Explanation, causal effect
« Counterfactuals

Knowledge is huge, so How to identify what’s relevant? = ———p Causal Graphical Models

**The field of Automated Reasoning developing general purpose
formalisms (languages, models) that enable us to represent knowledge in such a way
that we can exploit the relevance and causal relationship quickly.

Answer query in the 3 levels of the causal hierarchy
276 slides1 F-2024



(Graphical Models
|

Describe structure and interdependence in a model of the world

Examples:
« Markov Random Fields: correlations

Map coloring & constraint satisfaction problems

Semantic segmentation: fine-grain object recognition

grass

276 slides1 F-2024



(Graphical Models
I

Describe structure and interdependence in a model of the world

Examples:
« Markov Random Fields: correlations
e Bayesian Networks: conditional dependence

“Alarm” network: patient monitoring Pedigree network: genetic inheritance




‘Graphlcal Models

Descrlbe structure and interdependence in a model of the world

Examples:

« Markov Random Fields: correlations

e Bayesian Networks: conditional dependence

« Causal Networks: effect of intervention - what would happen if?

Impact of COVID & assistance
on mental health (survey)
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‘Graphlcal Models

Descrlbe structure and interdependence in a model of the world

Examples:

« Markov Random Fields: correlations

e Bayesian Networks: conditional dependence

« Causal Networks: effect of intervention - what would happen if?
« Influence Diagrams: actions and rewards - what should we do if?

(Partially Observable) Markov Decision
Process
(Planning, Reinforcement Learning)

0

- »| Policy \ /

& Gud
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“Oil Wildcatter” Decision Network
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|Why Causality?
|
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layers/rungs of the causal hierarchy

This course
last part (20%)

This course
main part (40%)

This course,
first part (40%)



‘Complexity of Automated Reasoning
I

. Prediction v 1 Approximation, anytime
- Diagnosis \

«  Planning and scheduling 7 ctanm e —
e L. Bounded error —
. Probabilistic Inference .

«  Explanation

- Decision-making I T
o Causal reasoning
Linear / Polynomial /
Exponential
1200
Reasoning is computationally hard /
€ o 2 poiona
- - - _>
Complexity is exponential - /
0 >——-n=éé:::
12 3 456 7 8 910

Reasoning models is hard. Reasoning with functions is easy. So?
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Books on Graphical Models & Causality

Adnan Darwiche

MODELING AND REASONING
with
BAYESIAN NETWORKS

Class page
2009
PROBABILISTIC REASONING
IN INTELLIGENT SYSTEMS:
Networks of Plausible Inference CAUSALI I I
iy '. . “ SECONDEDITION  \
‘ : .‘\‘

“MODELS, REASONING,
AND INFERENCE

" 4 Y
\ “
‘.'-. \ /
NS 4
X S

Judea Pearl
Rotnampmreflotmode®
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Reasoning with Probabslistic
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Graphical ~
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A Primer
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https://www.ics.uci.edu/~dechter/courses/ics-276/fall_2024/

‘Why graphical models?

Comblne domain knowledge with learning and data
« Domain knowledge

— Problem structure: potential causation or interactions
— Model parameters: known dependency mechanisms, probabilities

« Learning and data

— ldentify (in)dependence from data
— Estimate model parameters to explain observations

« Scalable and Composable

— Models over large systems may be composed of smaller parts
— Efficient representation allows learning from relatively few data



‘ Graphical Models
|

Example: diagnosing liver disease (Onisko et al., 1999)

Gallstones @
.
o e Queries:

pain

Histary of
suigery

P e Prediction
tenid ) o « Diagnosis, explanation
o e Sjtuation assessment

carbohydiate

I metabosm ° Plann”‘]g’ deC|S|0n maklng
<

History of

Blood hospiaization
tiansfusion

Presence of
antibodies to History of viral
HBsAg in blood hepatitis Dupuytren’s

contracture
Presence of
antibodies to
Fresence of HDV in blood
anti
Presence toHBcAgin Alkaline

of hepatitis blood phosphatase

B anti
] =y 7

Teching i > ot
= biliubin
CEESD
pregnancy i 5 .
ok usculo-skeletal otal proteins
pain

—a /
- — e Automated Reasoning:

< . e « Develop methods to answer these questions
Joint Alpha? @ eruptions p q .

= aa Lo  Learning the models: from experts and data.

spot

|

Sk e Counterfactual reasoning
2D
G

Presence of
hepatits B
suface antigen
in bload

]

Intemational
normalized ratio
N of prothrombin

Increased
liver density

i

sweling
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‘Ex: Model composability

| Large models may be defined by many repeated, interrelated structures

Pedigree model, 6 people, 3 markers

Al Y

é )

Individual’s genotype

CORCE,
()

determines phenotype

\.

fEach parent

Cop G
&

G

passes one gene copy to

\ their child )

G A
|

Gz

Gene position
correlates which
copy is inherited

over several
genes

J




‘Example domains for graphical models

R Natural Language processing

— Information extraction, semantic parsing, translation, topic models, ...
« Computer vision

— Object recognition, scene analysis, segmentation, tracking, ...
« Computational biology

— Pedigree analysis, protein folding and binding, sequence matching, ...
« Networks

— Webpage link analysis, social networks, communications, citations, ....
- Robotics

— Planning & decision making

« Social sciences, man-machine interaction requires causality



In more details...



|Bayesian networks

Use independence and conditional independence to simplify a joint probability

« Joint probability, p(X=x,Y=y,Z=z2)
— The probability that event (x,y,z) happens.

« Conditional probability

— The chain rule of probability tells us
p(X=x,Y=y,Z=2) = p(X=x) p(Y=y | X=x) p(Z=z | X=x,Y=y)

(x,y,z all happen) (x happens) (y happens (z happens
given x happened) given x,y happened)

— Can use any order, e.g. (Z,X,Y):
p(X=x,Y=y,Z=2) = p(Z=2) p(X=x | Z=z) p(Y=y | X=x,Z=2)

276 slides1 F-2024



Independence

« X, Yindependent:
— p(X]Y)=p(X) or p(Y[X)=p(Y)

(if p(Y), p(X) > 0)

— Intuition: knowing X has no information about Y (or vice versa)

— Leads to: p(X=x,Y=y) = p(X=x) p(Y=y)

— Shorthand: p(X,Y) = P(X) P(Y)

Independent probability distributions:

0

0.4

0

0.7

0

0.1

1

0.6

1

0.3

1

0.9

This reduces representation size!

for all x,y

Joint:

===
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Independence

— p(X=x,Y=y) = p(X=x) p(Y=y)

« X, Yindependent:
— p(X]Y) =p(X) or p(Y|X)=p(Y)

(if p(Y), p(X) > 0)
— Intuition: knowing X has no information about Y (or vice versa)

for all x,y

— Shorthand: p(X,Y) = P(X) P(Y)

Independent probability distributions:

0

0.4

0

0.7

0

0.1

1

0.6

1

0.3

1

0.9

This reduces representation size!

Note: it is hard to “read” independence

from the joint distribution.

We can “test” for it, however.

Joint:

===
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|Conditional Independence

R X, Y independent given Z

— p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z) forallx,y,z
— Equivalent: p(X|Y,Z2) = p(X|Z) or p(Y|X,Z) =p(Y|2) (if all > 0)
— Intuition: X has no additional info about Y beyond Z’s

« Example

X = height p(height|reading, age) = p(height|age)
Y = reading ability p(reading| height, age) = p(reading|age)
/= age

Height and reading ability are dependent (not independent), but are
conditionally independent given age



|Conditional Independence

l X, Y independent given Z

— p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z) forallx,y,z
— Equivalent: p(X|Y,Z2) = p(X|Z) or p(Y|X,Z) =p(Y|2)
— Intuition: X has no additional info about Y beyond Z’s

« Example: Dentist

(T 1L D|C)? Joint prob: Conditional prob:
independent of C given D? ololo| 0.576 ololo 0.90
Again, hard to “read” from the 0j0j1] 0.008 0]0]1 0.40

joint probabilities; only from 0/1/0] 0.144 0/1/0 0.90
the conditional probabilities. 0j1]1 | 0.072 i> 011 0.40
11/0]0 0.064 100 0.10

Like independence, reduces 1/0[1| 0.012 1101 0.60
representation size! 1/1/0| 0.016 110 0.10
People knows dependence information 1|1 ] 0108 o 0.60

But not the actual numbers. 276 slides1 F-2024



‘Baye5|an hetwo

rks

Directed graphical model

» Nodes associated with variables

-  “Draw” independence in conditional probability expansion

— Parents in graph are the RHS of conditional

. Ex: p(%,y,2) =p(x) ply| )

O—@—@
)
OO0

p(z

y)

= pla) p(bla) p(c|a,b) p(d|D)
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/ Graph must be acyclic \

Corresponds to an order

over the variables
\(chain rule) /




Example adapted from Pearl!

[Example

3 Consider the following 5 binary variables:
— B =aburglary occurs at your house
— E = an earthquake occurs at your house
— A =the alarm goes off
— W = Watson calls to report the alarm
— H = Mrs. Hudson calls to report the alarm

— Whatis P(B | H=1, W=1) ? (for example)

— We can use the full joint distribution to answer this question
« Requires 25 = 32 probabilities

« Can we use prior domain knowledge to come up with a Bayesian
network that requires fewer probabilities?

276 slides1 F-2024



|Constructing a Bayesian network

« Define probabilities:

 @Given

p(W,H, A, E,B) =p(E) p(B) p(A|E, B) p(W|A) p(H|A)

1 + 1 + 4

« Where do these come from?

+ 2

+ 2

— Expert knowledge; estimate from data; some combination

0.05

1

0.90

e N
4

0

0.001

0.001

0.29

0.94

B
0
1
0
1

0.95
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“CPT” = conditional
probablility table

0

0.01

1

0.70




|Constructing a Bayesian network

Joint distribution

® ®

\
Al

W)

Full joint distribution:
25 = 32 probabilities

Structured distribution:
specify 10 parameters

0/0/0/0|0| .93674
0(0|0|0O|1/| .00133
0(0|0|1|0/| .00005
0/0/0|1|1 .00000
0(0O|1]|0|0/| .00003
0(O0O|1|0|1/| .00002
0/0/1/1|0/| .00003
0(O|1|1|1/| .00000
0(1/0/0|0/| .04930
0O/1/0/0|1, .00007
0O(1/0|1|0/| .00000
0O(1/0|1|1/| .00000
O(1/1/0|0,| .00027
O(1/1]/0|1/| .00016
Of(1]1]1|0/| .00025
O(1/1/1|1, .00000
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1/0/0/0| 0| .00946
1/0/0/0/1| .00001
1/0/0/1/0| .00000
1/0(0/1/1| .00000
1/0/1/0/0| .00007
1/0/1/0/1| .00004
1/0(1/1/0/| .00007
1/0/1/1/1| .00000
1/1/0/0|0| .00050
1/1/0/0/1/| .00000
1/1/0/1/0| .00000
1/1/0/1/1| .00000
1/1/1/0/0/| .00063
1/1/1/0/1| .00037
1/1/1/1/0 | .00059
1/1(1/1/1| .00000




‘Alarm NetWOrK s et 109,
I

The “alarm” network (Patient monitoring):
37 variables, 509 parameters (rather than 237 = 1011 !)
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(Graphical models

Example:
| A graphical model consists of: A€ {0,1}
X ={Xi,...,X,} bles B e {0,1}
D=1{D,,...,D,} 3ins (we’ll assume discrete) C e {0,1}

ions or “factors”
FZ{fOCl?"'?fOCm}

fas(A,B), fpc(B,C)
and a combination operator

The combination operator defines an overall function from the individual factors,

uxn

©8, " ' F(A,B,C) = fap(A,B) - fzc(B,C)

Notation:
Discrete X :values called “states”

“Tuple” or “configuration”: states taken by a set of variables
“Scope” of f: set of variables that are arguments to a factor f
often index factors by their scope, e.g., fo(Xa), Xo CX
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|Some terminology

. Parents & Children
pa(A) = {E,B}
— Parents pa(A) = {E,B} ® (®)

— Children ch(A) = {W,H} h(A):{W,H}
® ® @ ©

» Ancestors & Descendants

— Ancestors an(W) = {A,E,B} an(W) = {A,E,B}
()
de(E) = {A,W,H}

— Descendants de(E) = {AW,H} QO Q
o &b

« Roots & Leaves

« Paths
— Directed paths, undirected paths

276 slides1 F-2024



‘Outline
|

Graphical Models

Inference Tasks

Variable Elimination
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‘Inference

| Enable us to answer queries about our model

- Some probabilities are directly accessible
« Some are only implicit, and require computation

0.94

p(B=1) = .001
Explicitly in model parameters

(p(A=1) =7 ) 0 0.001
Implicit only: o[ 1[0

0 0.05

p(A=1| E=0,B=0) p(E=0) p(B=0) +
_ P(A=1]|E=1,B=0) p(E=1) p(B=0) + ..

0 0.01
1 0.70

(p(W=1) =?
Implicit:

p(W=1|A=0) p(A=0) + p(W=1|A=1) p(A=1)
\ p(A) =? (may need to compute recursively!) )

276 slides1 F-2024



Types of queries

I Ex: Robot position over time ‘

Y, : robot location at time t

O—O—O—O—O
® O ® ©® Lo

X, : hoisy observations

¢ Summation Query (marginal probailitiies, probability of evidence):

p(}/t|$0 . .[Ct) X Z s Zp<y;,7xt7yt—17 s 7$0)

Yi— Yo, .
kWhat do my model and observations tell me about my uncertainty?

" Maximization Query (MAP: maximum a posteriori estmation):

*

Y = a’rgyma’}; p(yhxt)yt—l)"wx())
O,..., t

\What is the most probable value of the unobserved variables?

J\.
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|Causal Bayesian networks

. Typical BNs capture conditional independence

« May not correspond to causation; but if so:

"Causal Effect Query ("Intervention’): N
p(W|do(K = 1))

What is the probability when we intervene to turn on the sprinkler?

\_
) P(S)
P(KIS) A - P(R]S) do(K=1) - P(R[S)
G o
P(W|K,R) =

Y K %
BOETET PIWIK.S) POWK.S)

0.2 0.8

0.1 0.9

= | = | O| O
= | O | = | O

0.01 | 0.99
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Influence diagrams

| Random variables, plus actions (policy) and utilities (outcome values)

"Maximum Expected Utility Query: )

What actions should | take in a given situation?
What is the expected value of my policy over the actions?

. J
The “oil wildcatter” problem: Chance variables: y _ e
Ui —> Decision variables: D=dy... d,
\ / CPDs for chance variables: P = Plai|rn, )
@- Drlll Produced - »| Policy Reward ComponentSZ
T - _ r={ry,...,r;}
/ Utility function:
w(X) =), ri(X)

@ Underground

e.g., [Raiffa 1968; Shachter 1986]
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\Structural Causal Models

| Deterministic mechanisms involving (random) underlying causes

" Unobservable random variables: {A} )
Observable variables: {B,C}
Deterministic mechanism: -> C =f(A,B)

\_

Ex: Sprinkler

@ @ e p(S): season a function of (unobserved) month

e p(K|S): sprinkler on due to watering schedule:
randomness in K due to (unobserved) day of week

e p(R|S) caused by humidity and temperature

« p(W]|R,K) also caused by humidity and temperature
(effects of evaporation, etc.)

276 slides1 F-2024



\Structural Causal Models

| Deterministic mechanisms involving (random) underlying causes

"Counterfactual Query: )

Probability of an event in contradiction with the observations

kWhat would have happened if the sprinkler had been turned off? )

Requires that we transfer information about random
outcomes that happened, to a different setting
Ex: Sprinkler Observe the sprinkler is on & grass is wet: (K=1,W=1)

What is the probability it would still be wet if we had
turned the sprinkler off?

Observing K=1 tells us it is more likely to be summer;
Observing K=1,W=1 tells us it is not too hot & dry.

Then, apply this knowledg to corlnpute the
counterfactual: PIVE=0 1K -




Bayesian Networks (Pearl 1988)

An early example

From medical diagnosis P(S)

BN = (G, 0)
P(C|S) P(B[S)

CPD:
C B [P(D|C,B)

00 (0.1 0.9
01 1]0.7 0.3
10 (0.8 0.2
11 (0.90.1

P(X|C,S) P(D|C,B)

P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B) Combination: Product
Marginalization: sum/max
« Posterior marginals, probability of evidence, MPE
Is this a causal model?

P(D=0) = Z P(S)- P(CIS)- P(BIS)- P(XIC.S)- P(DIC,B
S,L,B,.X
MAP(P)= maxs.1 p.x P(S)- P(C]S): P(B]S), P(X|C,S)- P(D|C,B)



Constraint Networks

Example: map coloring

Variables - countries (A,B,C,etc.)
Values - colors (red, green, blue)

Constraints:

A B

red green
red yellow
green red
green yellow
yellow green
yellow red

A#B, A¥D, D#E, etc.

276 slides1 F-2024
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Propositional Reasoning

Example: party problem

//v //Q)
- If Alex goes, then Becky goes: A—B
o IthLi&%g%,_then Ale)@go%:i C-A
N\ N
e v
« Question:
Is it possible that Chris goes to
the party but Becky does not?
Is the propositional theory d

¢ ={A - B,C—-> A, -B, C} satisfiable?
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|Probabilistic reasoning (directed)
I

Party example: the weather effect

o Alex is-likely-to-go in bad weather @—@ P(A|W=bad)=.9
« Chris rarely-goes in bad weather @—@) r(c|w=bad)=.1
« Becky is indifferent but unpredictable @@ e wobad)-s
Questions: w [ A P(AIW)
- Given bad weather, which group of individuals is most good | © o1
likely to show up at the party? o(W) 9:‘:' ; '919
- What is the probability that Chris goes to the party T '9
but Becky does not? '
P(W,A,C,B) = P(B|W) * P(C|W) * P(A|W) * P(W V
( ) =P(B|W) " P(C|W) *P(A|W) - P(W) ‘P(AlW)

P(A,C,B|W=bad) = 0.9 0.1 0.5 P(B|W) P(C|W)
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Mixed Probabilistic and Deterministic networks

Alex is-likely-to-go in bad weather
Chris rarely-goes in bad weather
PN Becky is indifferent but unpredictable

CN

P(W)

A—-B C->A

Query:
Is it likely that Chris goes to the

party if Becky does not but the
weather is bad?

P(C,~B|w = bad,A — B,C - A)
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Causal Probabilistic and Deterministic networks

P(C,~B|w = bad,A — B,C - A)

Alex is-likely-to-go in bad weather
Chris rarely-goes in bad weather

Becky is indifferent but unpredictable
PN &S ®—©

P(W)

A—-B C->A

Causal effect query vs obs query:

« Isitlikely that Becky goes to the
party if Chris does not?

« Isitlikely that Becky goes to the

P(W) party if we force Chris to go.

P(B |do(C =go), w = bad)

B&E A A<EC P(B|C=go. w=bad)
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Complexity of Reasoning Tasks

« Constraint satisfaction

« Counting solutions

« Combinatorial optimization
« Belief updating

« Most probable explanation
« Decision-theoretic planning
« Causal reasoning

Reasoning is

computationally hard

Complexity is
Time and space(memory)

Given a full model

f(n)

1200

900

600

300

Linear / Polynomial / Exponential

L

1 2 3 4 5 6 7 8 9 10
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Complexity of Causal Tasks

« Constraint satisfaction

« Counting solutions

« Combinatorial optimization
« Belief updating

« Most probable explanation
« Decision-theoretic planning
« Causal reasoning

Reasoning is

computationally hard

Complexity is
Time and space(memory)

Given a partial model

And data...

f(n)

1200

900

600

300

Linear / Polynomial / Exponential

L

1 2 3 4 5 6 7 8 9 10
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Tree-solving is easy
I

CSP — consistency

Belief updating (projection-join)

(sum-prod)

mzy(Z)

myR(Y)

mry(Y) mpy(Y) my, 7(Z) mpz(Z)

MPE (max-prod) #CSP (sum-prod)

Trees are processed in linear time and memory
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[ Transforming into a Tree

g By Inference (thinking)

— Transform into a single, equivalent tree of sub-
problems

» By Conditioning (guessing)

— Transform into many tree-like sub-problems.

276 slides1 F-2024



Basics of Probabilistic Calculus (Chapter 3)



'The Burglary Example
I

Earthquake Burglary
/ Alarm
Radio

/

Call
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Degrees of Belief

@ Assign a degree of belief or probability in [0, 1] to each world
w and denote it by Pr(w).
@ The belief in, or probability of, a sentence a:

Pr(«a) e ZPI‘(w).

wiEa
world | Earthquake Burglary Alarm  Pr(.)
w1 true true true  .0190
Wo true true false  .0010
w3 true false true  .0560
w4 true false false .0240
Wws, false true true  .1620
We false true false .0180
w7 false false true  .0072
wg false false false .7128
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Properties of Beliefs

@ A bound on the belief in any sentence:

0 < Pr(a) <1 for any sentence «.
@ A baseline for inconsistent sentences:

Pr(a) =0 when « is inconsistent.
@ A baseline for valid sentences:

Pr(a) =1  when « is valid.
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Properties of Beliefs
o
—

@ The belief in a sentence given the belief in its negation:

PI’(Qﬁ) -+ PI’(—IQT) — 1.

Example

Pr(Burglary) = Pr(wi)+ Pr(ws) + Pr(ws) + Pr(we) = .2
Pr(w3) + Pr(ws) + Pr(w7) + Pr(wg) = .8

Pr(—Burglary)
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Properties of Beliefs

o B
N / .,_»___\
/ ,/\,_\ \__\
{ [ l |
lv || | I\
\ \ )

@ The belief in a disjunction:

Pr(a Vv 3) = Pr(a) + Pr(3) — Pr(a A 3).

o Example:
Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(ws) 4+ Pr(ws) = .1
Pr(Burglary) = Pr(wi)+ Pr(w2) + Pr(ws) 4+ Pr(ws) = .2
Pr(Earthquake A Burglary) = Pr(wi) + Pr(wp) = .02
Pr(Earthquake vV Burglary) = .1+ .2 —-.02 = .28
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Properties of Beliefs

a - p
7 o X
- |

@ The belief in a disjunction:

Pr(aVv3) = Pr(a)+Pr(3) when « and 3 are mutually exclusive.
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Quantify uncertainty about a variable X using the notion of
entropy:

ENT(X) < —Zpl ) logy Pr(x).

where 0log 0 = 0 by convention.

Earthquake Burglary Alarm
true 1 2 2442
false 9 8 .7558

ENT(.) 469 722 802
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@ The entropy for a binary variable X and varying p = Pr(X).
@ Entropy is non-negative.

@ When p =0 or p =1, the entropy of X is zero and at a
minimum, indicating no uncertainty about the value of X.

@ When p = % we have Pr(X) = Pr(—X) and the entropy is at
a maximum (indicating complete uncertainty).
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Bayes Conditioning

Alpha and beta are events

Closed form for Bayes conditioning:

~ Pr(anp)

Pr(a

8) =

Defined only when Pr(/3) # 0.
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Degrees of Belief

world | Earthquake Burglary Alarm  Pr(.)
W1 true true true  .0190
W9 true true false  .0010
w3 true false true  .0560
Wy true false false  .0240
Ws false true true  .1620
Wwe false true false  .0180
w7 false false true  .0072
wg false false false .7128

Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .1
Pr(Burglary) = .2

Pr(—Burglary) = .8

Pr(Alarm) = .2442
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Belief Change

Burglary is independent of Earthquake

Conditioning on evidence Earthquake:

Pr(Burglary) = .2
Pr(Burglary|Earthquake) = .2
Pr(Alarm) = .2442
Pr(Alarm|Earthquake) ~ 7157

The belief in Burglary is not changed, but the belief in Alarm
Increases.
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Belief Change

Earthquake is independent of burglary

Conditioning on evidence Burglary:

Pr(Alarm) = 2442
Pr(Alarm|Burglary) ~ .9051
Pr(Earthquake) = .1
Pr(Earthquake|Burglary) = .1

The belief in Alarm increases in this case, but the belief in
Earthquake stays the same.
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Belief Change

The belief in Burglary increases when accepting the evidence
Alarm. How would such a belief change further upon obtaining
more evidence?

@ Confirming that an Earthquake took place:

Pr(Burglary|Alarm) ~ 741
Pr(Burglary|Alarm A Earthquake) ~ .253 |
We now have an explanation of Alarm.
@ Confirming that there was no Earthquake:
Pr(Burglary|Alarm) ~ .741
Pr(Burglary|Alarm A —=Earthquake) =~ .957

New evidence will further establish burglary as an explanation.
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Conditional Independence

Pr finds a conditionally independent of (3 given -y iff
Pr(a|8 A ~v) = Pr(aly) or Pr(3A~vy)=0.

Another definition

Pr(a A 3

v) = Pr(aly)Pr(3]y)  or Pr(y) =0.
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Variable Independence

Pr finds X independent of Y given Z, denoted Ip,(X,Z,Y), means

that Pr finds x independent of y given z for all instantiations X, y
and z.

X={A,B},Y={C}and Z={D,E}, where A,B,C,D and E
are all propositional variables. The statement Ip,(X,Z.,Y) is then a
compact notation for a number of statements about independence:

A A B is independent of C given D N E;
A N =B is independent of C given D A E;

—A A —B is independent of =C given =D A —E;

That is, Ipy(X,Z,Y) is a compact notation for 4 x 2 x 4 = 32
independence statements of the above form.
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Chain rule

Further Properties of Beliefs
(Chainpule ...

Pr(ai Aas A ... A ap)
= Pr(ai|aa A ... Aap)Pr(agjaz A... A ap)...Pr(ag).

Case analysis (law of total probability)

Pr(a) = ZPr(a: A Bi),
=1

where the events 3. ..., 3, are mutually exclusive and exhaustive.

o
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Further Properties of Beliefs

Another version of case analysis

Pr(a) =Y Pr(alB)Pr(5),
i=1

where the events 31, ..., 3, are mutually exclusive and exhaustive.

=

Two simple and useful forms of case analysis are these:

Pr(a) = Pr(aAnp)+ Pr(aA—p)
Pr(a) = Pr(a|3)Pr(3)+ Pr(a|—-3)Pr(—03).

The main value of case analysis is that, in many situations,
computing our beliefs in the cases is easier than computing our
beliefs in av. We shall see many examples of this phenomena in
later chapters.
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Further Properties of Beliefs

Bayes rule

Pr(3|a)Pr(a)

Pr(a Pr(5)

3) =

@ Classical usage: « is perceived to be a cause of (3.
@ Example: a is a disease and (3 is a symptom—
@ Assess our belief in the cause given the effect.

@ Belief in an effect given its cause, Pr(/3|«), is usually more

readily available than the belief in a cause given one of its
effects, Pr(alj3).
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