CS 276: Causal and Probabilistic Reasoning

Rina Dechter, UCI

Lecture 1: Introduction

Class Information

Textbooks

Course Topics

Probabilistic Graphical Models, Structural causal models,The Causal Hierarchy.

1.Representing independencies by graphs. d-seperation.

- 2.Algorithms (Bucket-elimination, Join-trees, The induced-width.).
- 3.Sampling schemes for graphical models (MCMC, IS)
- 4. AND/OR search
- 5.Structural Causal Models; Identification of Causal Effect;
- 6.The Back-Door and Front-Door Criteria and the Do-Calculus.
- 7.Linear Causal Models.
- 8.Counterfactuals.
- 9.Algorithms for identification. The ID algorithm.

10.Learning Bayesian networks and Causal graphs (causal discovery).

[Class page](https://ics.uci.edu/~dechter/courses/ics-276/2023-24_Q2-Winter/): https://ics.uci.edu/~dechter/courses/ics-276/fall_2024/

Grading

- **Four or five homeworks (the highest 4 will count)**
- Project: Class presentation and a report: Students will present a paper and write a report

[P] Judea Pearl, Madelyn Glymour, Nicholas P. Jewell,

[Causal Inference in Statistics: A Primer](http://bayes.cs.ucla.edu/PRIMER/), Cambridge Press, 2016.

- [C] Judea Pearl. [Causality: Models, Reasoning, and Inference,](http://bayes.cs.ucla.edu/BOOK-2K/) Cambridge Press, 2009.
- [W] Judea Pearl, Dana Mackenzie, [The Book of Why,](http://bayes.cs.ucla.edu/WHY/) Basic books, 2018.

•[Darwiche] [Adnan Darwiche, "Modeling and Reasonin](http://www.amazon.com/dp/0521884381/)g [with Bayesian Networks"](http://www.amazon.com/dp/0521884381/)

•[Dechter] [Rina Dechter, "Reasoning with Probabilistic](https://dl.acm.org/doi/10.5555/3348514) [and Deterministic Graphical Models: Exact Algorithms"](https://dl.acm.org/doi/10.5555/3348514)

Inference Tasks

Basic probabilisty

The Primary AI Challenges

- **Machine Learning** focuses on replicating humans learning
- **Automated reasoning** focuses on replicating how people reason.
- Large Language Models (LLMs)

Automated Reasoning

Medical Doctor

Lawyer

Policy Maker

Queries:

- Prediction: what will happen?
- Diagnosis: what had happened?
- Situation assessment: What is going on?
- Planning, decision making: what to do?
- Explanation: need causal models
- Counterfactuals: What if? need Structural causal models

Same with any common-sense agent

Automated Reasoning

Queries:

- **Prediction**
- **Diagnosis**
- Situation assessment
- Planning, decision making
- Explanation, causal effect
-

Knowledge is huge, so How to identify what's relevant? \longrightarrow **Causal Graphical Models**

276 slides1 F-2024 ****The field of Automated Reasoning** developing general purpose formalisms (languages, models) that enable us to represent knowledge in such a way that we can exploit the relevance and causal relationship quickly. Answer query in the 3 levels of the causal hierarchy

Describe structure and interdependence in a model of the world

Examples:

• Markov Random Fields: correlations

Map coloring & constraint satisfaction problems

Semantic segmentation: fine-grain object recognition

Describe structure and interdependence in a model of the world

Examples:

- Markov Random Fields: correlations
- Bayesian Networks: conditional dependence

Pedigree network: genetic inheritance

Describe structure and interdependence in a model of the world

Examples:

- Markov Random Fields: correlations
- Bayesian Networks: conditional dependence
- Causal Networks: effect of intervention what would happen if?

Impact of COVID & assistance on mental health (survey)

Describe structure and interdependence in a model of the world

Examples:

- Markov Random Fields: correlations
- Bayesian Networks: conditional dependence
- Causal Networks: effect of intervention what would happen if?
- Influence Diagrams: actions and rewards what should we do if?

"Oil Wildcatter" Decision Network (Partially Observable) Markov Decision Process (Planning, Reinforcement Learning)

Why Causality?

Complexity of Automated Reasoning

- Prediction
- **Diagnosis**
- Planning and scheduling
- Probabilistic Inference
- Explanation
- Decision-making
- Causal reasoning

U

n

Approximation, anytime

Linear Polynomial Exponential

Reasoning models is hard. Reasoning with functions is easy. So?

Books on Graphical Models & Causality

M. вски Кетатога технология Reasoning with Probabilistic and Deterministic Graphical Models Exact Algorithms **2nd Edition** Rina Decliner ismana Lecrean os America.
Viti colora ano Majara Learnin All Robert Forest Red at The Text Links

[Class page](https://www.ics.uci.edu/~dechter/courses/ics-276/fall_2024/)

CAUSALITY SECOND EDITION MODELS, REASONING, **AND INFERENCE JUDEA PEARL** 276 slides1 F-2024

 i_n tervention α counterfactuals

Why graphical models?

Combine domain knowledge with learning and data

- Domain knowledge
	- Problem structure: potential causation or interactions
	- Model parameters: known dependency mechanisms, probabilities
- Learning and data
	- Identify (in)dependence from data
	- Estimate model parameters to explain observations
- Scalable and Composable
	- Models over large systems may be composed of smaller parts
	- Efficient representation allows learning from relatively few data

Example: diagnosing liver disease (Onisko et al., 1999)

Ex: Model composability

Large models may be defined by many repeated, interrelated structures

Example domains for graphical models

- Natural Language processing
	- Information extraction, semantic parsing, translation, topic models, …
- Computer vision
	- Object recognition, scene analysis, segmentation, tracking, …
- Computational biology
	- Pedigree analysis, protein folding and binding, sequence matching, …
- Networks
	- Webpage link analysis, social networks, communications, citations, ….
- Robotics
	- Planning & decision making
- Social sciences, man-machine interaction requires causality

In more details...

Bayesian networks

Use **independence** and **conditional independence** to simplify a **joint probability**

- Joint probability, $p(X=x,Y=y,Z=z)$
	- $-$ The probability that event (x,y,z) happens.
- Conditional probability
	- The chain rule of probability tells us

 $p(X=x,Y=y,Z=z) = p(X=x)$ $p(Y=y | X=x)$ $p(Z=z | X=x,Y=y)$

 $-$ Can use any order, e.g. (Z,X,Y) : $p(X=x,Y=y,Z=z) = p(Z=z)$ $p(X=x | Z=z)$ $p(Y=y | X=x,Z=z)$

Independence

- X, Y independent:
	- $-$ p(X|Y) = p(X) or p(Y|X) = p(Y) (if p(Y), p(X) > 0)
	- Intuition: knowing X has no information about Y (or vice versa)
	- $-$ Leads to: $p(X=x,Y=y) = p(X=x) p(Y=y)$ for all x,y
	- $-$ Shorthand: $p(X,Y) = P(X) P(Y)$

Independent probability distributions:

Independence

- X, Y independent:
	- $-$ p(X|Y) = p(X) or p(Y|X) = p(Y) (if p(Y), p(X) > 0)
	- Intuition: knowing X has no information about Y (or vice versa)
	- $-$ p(X=x,Y=y) = p(X=x) p(Y=y) for all x,y
	- $-$ Shorthand: $p(X,Y) = P(X) P(Y)$

Independent probability distributions:

This reduces representation size!

Note: it is hard to "read" independence from the joint distribution. We can "test" for it, however.

Joint:

Conditional Independence

- X, Y independent given Z
	- $-$ p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z) for all x,y,z
	- Equivalent: $p(X|Y,Z) = p(X|Z)$ or $p(Y|X,Z) = p(Y|Z)$ (if all > 0)

- Intuition: X has no additional info about Y beyond Z's
- **Example**
	- $X =$ height p(height|reading, age) = p(height|age) $Y =$ reading ability p(reading | height, age) = p(reading | age) $Z = age$

Height and reading ability are dependent (not independent), but are conditionally independent given age

Conditional Independence

- X, Y independent given Z
	- $-$ p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z) for all x,y,z
	- Equivalent: $p(X|Y,Z) = p(X|Z)$ or $p(Y|X,Z) = p(Y|Z)$
	- Intuition: X has no additional info about Y beyond Z's
- Example: Dentist

 $(T \perp\!\!\!\perp D | C)?$ Is T conditionally independent of C given D?

Again, hard to "read" from the joint probabilities; only from the conditional probabilities.

Like independence, reduces representation size!

People knows dependence information But not the actual numbers.

Joint prob: Conditional prob:

Bayesian networks

- Directed graphical model
- Nodes associated with variables

c

- "Draw" independence in conditional probability expansion
	- Parents in graph are the RHS of conditional
- Ex: $p(x, y, z) = p(x) p(y | x) p(z | y)$

 $x \rightarrow (y \rightarrow z)$

Ex: $p(a, b, c, d) = p(a) p(b|a) p(c|a, b) p(d|b)$ $a \rightarrow b$ d

Example

- Consider the following 5 binary variables:
	- $-$ B = a burglary occurs at your house
	- $E =$ an earthquake occurs at your house
	- $-$ A = the alarm goes off
	- $-$ W = Watson calls to report the alarm
	- $H = Mrs$. Hudson calls to report the alarm
	- $-$ What is P(B | H=1, W=1) ? (for example)
	- We can use the full joint distribution to answer this question
		- Requires 2^5 = 32 probabilities
		- Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?

Constructing a Bayesian network

- **Given** $p(W, H, A, E, B) = p(E) p(B) p(A|E, B) p(W|A) p(H|A)$
- Define probabilities: $1 + 1 + 4 + 2 + 2$
- Where do these come from?
	- Expert knowledge; estimate from data; some combination

Constructing a Bayesian network

• Joint distribution

Full joint distribution: $2⁵ = 32$ probabilities

Structured distribution: specify 10 parameters

Alarm network [Beinlich et al., 1989]

The "alarm" network (Patient monitoring): 37 variables, 509 parameters (rather than $2^{37} = 10^{11}$!)

Example: A *graphical model* consists of: $A \in \{0, 1\}$ $X = \{X_1, \ldots, X_n\}$ bles $B \in \{0, 1\}$ $D = \{D_1, ..., D_n\}$ ains (we'll assume discrete) $C \in \{0,1\}$ $F=\{f_{\alpha_1},\ldots,f_{\alpha_m}\}$ ions or "factors" $f_{AB}(A, B), f_{BC}(B, C)$ and a *combination operator*

The *combination operator* defines an overall function from the individual factors, e.g., "*" : $F(A, B, C) = f_{AB}(A, B) \cdot f_{BC}(B, C)$

Notation:

```
Discrete X_i: values called "states"
```
 "Tuple" or "configuration": states taken by a set of variables "Scope" of f: set of variables that are arguments to a factor f often index factors by their scope, e.g., $f_{\alpha}(X_{\alpha}), \quad X_{\alpha} \subseteq X$

Some terminology

- Parents & Children
	- $-$ Parents pa(A) = {E,B}
	- $=$ Children ch(A) = {W,H}
- Ancestors & Descendants
	- $-$ Ancestors an(W) = {A,E,B}
	- $-$ Descendants de(E) = {A,W,H}
- Roots & Leaves
- Paths
	- Directed paths, undirected paths

E) (B

 $pa(A) = {E,B}$

A

E

 \blacksquare

 $an(W) = {A, E, B}$

H

E) (B

A

 $ch(A) = \{W,H\}$

 $de(E) = {A,W,H}$

W) (H

B

H

Inference Tasks

Variable Elimination

Inference

Enable us to answer **queries** about our model

- Some probabilities are directly accessible
- Some are only **implicit**, and require computation

Causal Bayesian networks

- Typical BNs capture conditional independence
- May not correspond to causation; but if so:

Influence diagrams

Random variables, plus **actions** (policy) and **utilities** (outcome values)

Maximum Expected Utility Query:

What actions should I take in a given situation? What is the expected value of my policy over the actions?

The "oil wildcatter" problem:

Chance variables: $X = x_1, \ldots, x_n$ Decision variables: $D = d_1, \ldots, d_m$ CPDs for chance variables: Reward components: Utility function: $u(X) = \sum_i r_i(X)$

Structural Causal Models

Deterministic mechanisms involving (random) underlying causes

Ex: Sprinkler

- p(S): season a function of (unobserved) month
- $p(K|S)$: sprinkler on due to watering schedule: randomness in K due to (unobserved) day of week
- $p(R|S)$ caused by humidity and temperature
- $p(W|R,K)$ also caused by humidity and temperature (effects of evaporation, etc.)

Structural Causal Models

Deterministic mechanisms involving (random) underlying causes

Counterfactual Query:

Probability of an event in contradiction with the observations *What would have happened if the sprinkler had been turned off?*

> Requires that we transfer information about random outcomes that happened, to a different setting

> > Observe the sprinkler is on $\&$ grass is wet: $(K=1, W=1)$

Ex: Sprinkler

What is the probability it would still be wet if we had turned the sprinkler off?

Observing K=1 tells us it is more likely to be summer; Observing $K=1$, $W=1$ tells us it is not too hot $\&$ dry.

Then, apply this knowledge to compute the
 $p(W_{K=0} | K = 1, W = 1)$ counterfactual:

Bayesian Networks (Pearl 1988)

P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

Combination: Product Marginalization: sum/max

• Posterior marginals, probability of evidence, MPE

Is this a causal model?

$$
P(D=0) = \sum_{S,L,B,X} P(S) \cdot P(C|S) \cdot P(B|S) \cdot P(X|C,S) \cdot P(D|C,B)
$$

 $\text{MAP}(P) = \max_{S, L, B, X} P(S) \cdot P(C | S) \cdot P(B | S) \cdot P(X | C, S) \cdot P(D | C, B)$

Constraint Networks

Propositional Reasoning

• **Question:**

Is it possible that Chris goes to the party but Becky does not?

Is the *propositional* theory $\phi = \{ A \rightarrow B, C \rightarrow A, \neg B, C \}$ satisfiable?

 $A \rightarrow B$

 $C \rightarrow A$

Probabilistic reasoning (directed)

Party example: the weather effect

- Alex is-likely-to-go in bad weather
- Chris rarely-goes in bad weather
- Becky is indifferent but unpredictable

Questions:

- *Given bad weather, which group of individuals is most likely to show up at the party?* **P(W)**
- *What is the probability that Chris goes to the party but Becky does not?*

```
P(W, A, C, B) = P(B|W) \cdot P(C|W) \cdot P(A|W) \cdot P(W)P(A, C, B | W = bad) = 0.9 \cdot 0.1 \cdot 0.5P(B|W) P(C|W)
```


W

B C

P(A|W)

A

Mixed Probabilistic and Deterministic networks

Query:

Is it likely that Chris goes to the party if Becky does not but the weather is bad?

$$
P(C, \neg B \mid w = bad, A \rightarrow B, C \rightarrow A)
$$

Causal Probabilistic and Deterministic networks

$$
P(C, \neg B \mid w = bad, A \rightarrow B, C \rightarrow A)
$$

Causal effect query vs obs query:

- *Is it likely that Becky goes to the party if Chris does not?*
- *Is it likely that Becky goes to the party if we force Chris to go.*

$$
P(B \mid do(C = go), w = bad)
$$

$$
P(B \mid C = go. \ w = bad)
$$

Complexity of Reasoning Tasks

- Constraint satisfaction
- Counting solutions
- Combinatorial optimization
- Belief updating
- Most probable explanation
- Decision-theoretic planning
- Causal reasoning

Polynomial **Reasoning is** Exponential **computationally hard**

Complexity is Time and space(memory)

Complexity of Causal Tasks

- Constraint satisfaction
- Counting solutions
- Combinatorial optimization
- Belief updating
- Most probable explanation
- Decision-theoretic planning
- **Causal reasoning**

Reasoning is ϵ **Exponential Reasoning** is **computationally hard**

Complexity is Time and space(memory)

Tree-solving is easy

MPE (max-prod)

#CSP (sum-prod)

Trees are processed in linear time and memory

Transforming into a Tree

• **By Inference (thinking)**

– Transform into a single, equivalent tree of subproblems

- **By Conditioning (guessing)**
	- Transform into many tree-like sub-problems.

Basics of Probabilistic Calculus (Chapter 3)

The Burglary Example

Degrees of Belief

- Assign a degree of belief or probability in $[0, 1]$ to each world ω and denote it by $Pr(\omega)$.
- The belief in, or probability of, a sentence α :

$$
\Pr(\alpha) \stackrel{\text{def}}{=} \sum_{\omega \models \alpha} \Pr(\omega).
$$

• A bound on the belief in any sentence:

 $0 \leq Pr(\alpha) \leq 1$ for any sentence α .

• A baseline for inconsistent sentences:

 $Pr(\alpha) = 0$ when α is inconsistent.

• A baseline for valid sentences:

 $Pr(\alpha) = 1$ when α is valid.

Properties of Beliefs

• The belief in a sentence given the belief in its negation:

$$
Pr(\alpha) + Pr(\neg \alpha) = 1.
$$

Example

$$
Pr(Burglary) = Pr(\omega_1) + Pr(\omega_2) + Pr(\omega_5) + Pr(\omega_6) = .2
$$

Pr(\neg Burglary) = Pr(\omega_3) + Pr(\omega_4) + Pr(\omega_7) + Pr(\omega_8) = .8

 Q Q

Properties of Beliefs

• The belief in a disjunction:

$$
\Pr(\alpha \vee \beta) = \Pr(\alpha) + \Pr(\beta) - \Pr(\alpha \wedge \beta).
$$

 \bullet Example:

 $Pr($ Earthquake) = $Pr(\omega_1) + Pr(\omega_2) + Pr(\omega_3) + Pr(\omega_4) = .1$ $Pr(Burglary) = Pr(\omega_1) + Pr(\omega_2) + Pr(\omega_5) + Pr(\omega_6) = .2$ $Pr(Earthquake \wedge Burglary) = Pr(\omega_1) + Pr(\omega_2) = .02$ $Pr(Earthquake \vee Burglary) = .1 + .2 - .02 = .28$

Properties of Beliefs

• The belief in a disjunction:

 $\Pr(\alpha \vee \beta) = \Pr(\alpha) + \Pr(\beta)$ when α and β are mutually exclusive.

Quantify uncertainty about a variable X using the notion of entropy:

$$
ENT(X) \stackrel{\text{def}}{=} -\sum_{x} \Pr(x) \log_2 \Pr(x),
$$

where $0 \log 0 = 0$ by convention.

Entropy

- The entropy for a binary variable X and varying $p = \Pr(X)$.
- Entropy is non-negative.
- When $p = 0$ or $p = 1$, the entropy of X is zero and at a minimum, indicating no uncertainty about the value of X .
- When $p = \frac{1}{2}$, we have $Pr(X) = Pr(\neg X)$ and the entropy is at a maximum (indicating complete uncertainty).

Alpha and beta are events

Closed form for Bayes conditioning:

$$
\Pr(\alpha | \beta) = \frac{\Pr(\alpha \wedge \beta)}{\Pr(\beta)}.
$$

Defined only when $Pr(\beta) \neq 0$.

Degrees of Belief

 $Pr(Earthquake) = Pr(\omega_1) + Pr(\omega_2) + Pr(\omega_3) + Pr(\omega_4) = .1$ $Pr(Burglary)$ = .2 $Pr(\neg Burglary) = .8$ $Pr(Alarm) = .2442$

Burglary is independent of Earthquake

The belief in Burglary is not changed, but the belief in Alarm increases.

Earthquake is independent of burglary

The belief in Alarm increases in this case, but the belief in Earthquake stays the same.

The belief in Burglary increases when accepting the evidence Alarm. How would such a belief change further upon obtaining more evidence?

• Confirming that an Earthquake took place:

 $Pr(Burglary|Alarm)$ \approx .741 $\Pr(\text{Burglary}|\text{Alarm} \wedge \text{Earthquake}) \approx .253 \downarrow$

We now have an explanation of Alarm.

• Confirming that there was no Earthquake:

 $Pr(Burglary|Alarm)$ \approx .741 $\Pr(\text{Burglary}|\text{Alarm} \wedge \neg \text{Earthquake}) \approx .957 \uparrow$

New evidence will further establish burglary as an explanation.

Conditional Independence

Pr finds α conditionally independent of β given γ iff

$$
\Pr(\alpha|\beta \wedge \gamma) = \Pr(\alpha|\gamma) \quad \text{or } \Pr(\beta \wedge \gamma) = 0.
$$

Another definition

$$
\Pr(\alpha \wedge \beta | \gamma) = \Pr(\alpha | \gamma) \Pr(\beta | \gamma) \quad \text{ or } \Pr(\gamma) = 0.
$$

Pr finds **X** independent of **Y** given **Z**, denoted $I_{\text{Pr}}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$, means that Pr finds x independent of y given z for all instantiations x, y and z .

Example

 $X = \{A, B\}$, $Y = \{C\}$ and $Z = \{D, E\}$, where A, B, C, D and E are all propositional variables. The statement $I_{\Pr}(\mathsf{X}, \mathsf{Z}, \mathsf{Y})$ is then a compact notation for a number of statements about independence:

 $A \wedge B$ is independent of C given $D \wedge E$;

 $A \wedge \neg B$ is independent of C given $D \wedge E$;

 $\neg A \land \neg B$ is independent of $\neg C$ given $\neg D \land \neg E$;

That is, $I_{\Pr}(\mathsf{X}, \mathsf{Z}, \mathsf{Y})$ is a compact notation for $4 \times 2 \times 4 = 32$ independence statements of the above form.

Further Properties of Beliefs

Chain rule

$$
\Pr(\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n) \n= \Pr(\alpha_1 | \alpha_2 \wedge \ldots \wedge \alpha_n) \Pr(\alpha_2 | \alpha_3 \wedge \ldots \wedge \alpha_n) \ldots \Pr(\alpha_n).
$$

Case analysis (law of total probability)

$$
\Pr(\alpha) = \sum_{i=1}^n \Pr(\alpha \wedge \beta_i),
$$

where the events β_1, \ldots, β_n are mutually exclusive and exhaustive.

Another version of case analysis

$$
\Pr(\alpha) = \sum_{i=1}^{n} \Pr(\alpha | \beta_i) \Pr(\beta_i),
$$

where the events β_1, \ldots, β_n are mutually exclusive and exhaustive.

Two simple and useful forms of case analysis are these:

$$
Pr(\alpha) = Pr(\alpha \wedge \beta) + Pr(\alpha \wedge \neg \beta)
$$

$$
Pr(\alpha) = Pr(\alpha|\beta)Pr(\beta) + Pr(\alpha|\neg \beta)Pr(\neg \beta).
$$

The main value of case analysis is that, in many situations, computing our beliefs in the cases is easier than computing our beliefs in α . We shall see many examples of this phenomena in later chapters.

Further Properties of Beliefs

Bayes rule

$$
\Pr(\alpha|\beta) = \frac{\Pr(\beta|\alpha)\Pr(\alpha)}{\Pr(\beta)}.
$$

- Classical usage: α is perceived to be a cause of β .
- Example: α is a disease and β is a symptom–
- Assess our belief in the cause given the effect.
- Belief in an effect given its cause, $\Pr(\beta|\alpha)$, is usually more readily available than the belief in a cause given one of its effects, $Pr(\alpha|\beta)$.