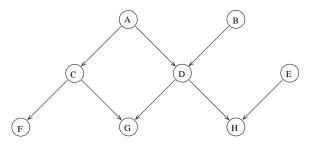
Causal and Probabilistic Graphical Models ICS 276 (Fall 2024) HOMEWORK 3

Due: Tuesday, November 12, 2024

Problem 1. AND/OR search [20 points]

This question investigates the AND/OR search space of the network



assuming each variable has 2 values in its domain. The CPTs are

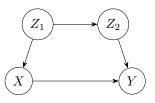
a	p(a)	b	p(b)	e	p(e)	y	x	p(x y)	z	y	x	p(x y,z)
0	0.3	0	0.6	0	0.7	0	0	0.10	0	0	0	0.25
1	0.7	1	0.4	1	0.3	0	1	0.90	0	0	1	0.75
						1	0	0.30	0	1	0	0.60
						1	1	0.70	0	1	1	0.40
								,	1	0	0	0.10
									1	0	1	0.90
									1	1	0	0.20
									1	1	1	0.80

The CPTs for G, H and D are identical to the 3-dimensional CPT and the CPTs for C and F are identical to the 2-dimensional CPT.

- (a) [5 points] Find and present a pseudo tree of this network whose depth is minimal (do the best you can). Call this tree T_1 .
- (b) [5 points] Generate an AND/OR search tree driven by T_1 assuming each variable has at most two values.
- (c) [5 points] Annotate the arcs with the appropriate weights.
- (d) [5 points] What would be the computational cost of computing the probability of evidence G = 0 and H = 1 in such a network if you use depth-first search over the AND/OR search tree? Demonstrate the computation (compute the value of each node).

Problem 2. Query Estimation [10 points]

Consider the following graphical model:

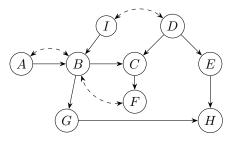


The target query is $Q = \sum_{Z_1} P(y \mid x, z_1) P(z_1)$.

- (a) [5 points] Is $Q = P(y \mid x)$? Justify your answer.
- (b) [5 points] Suppose that only $P(X, Y, Z_2)$ is given as input. Is Q estimable? If so, show how to do it. Otherwise, explain why is that the case.

Problem 3. d-Separation [16 points]

(a) Consider the following causal diagram:



For each case find a set that, when conditioned, on d-separates the given pair of (sets) variables

- (i) [4 points] A and F
- (ii) [4 points] A and C
- (iii) [4 points] D and $\{F, H\}$
- (iv) [4 points] I and H

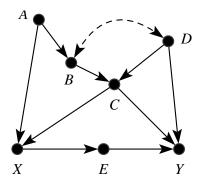
Problem 4. Modeling [5 points]

Consider the recent study of the connection between sleep quality and dementia presented here and discussed in class. https://www.nytimes.com/2021/04/20/health/sleep-dementia-risk.html?referringSource=articleShare.

- (a) [2 points] Provide a structural causal diagram based on your understanding of the study and assumptions made.
- (b) [1 point] Briefly discuss the suitability of the different conclusions proposed by the study. You can focus on one or two statements.
- (c) [2 points] The article talks about associations rather than causation. In your opinion, can they claim causation and under what assumptions. Discuss briefly.

Problem 5. Understanding the Model's Granularity [10 points]

Consider the causal diagram G below.



(a) [1 point] Determine whether the causal effect $P(y \mid do(x))$ is identifiable from G and $P(\mathbf{V})$, where V is the set of endogenous variables. If so, show how; otherwise, provide a counter-example.

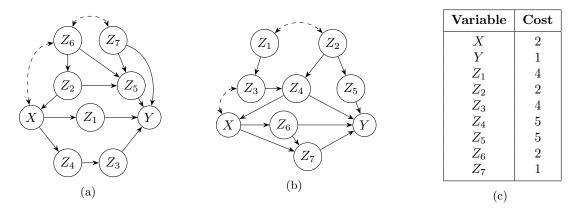
(b) [2 points] Write an SCM that induces G and a probability distribution $P(\mathbf{V})$, with $P(\mathbf{v}) > 0$ for every \mathbf{v} . You don't need to show $P(\mathbf{V})$ in your answer.

Suppose that the same system (represented by the SCM) is investigated in another study. However, in this case, only the variables $\mathbf{V}' = \{X, Y, B, C\}$ are measured.

- (c) [3 points] Write a new SCM $M' = \langle \mathbf{V}', \mathbf{U}', \mathcal{F}', P(\mathbf{u}') \rangle$ corresponding to this different cut of reality, consistent with your answer to the previous question (i.e., departing from SCM written in (b)).
- (d) [1 point] Draw the causal diagram G' induced by the SCM M'.
- (e) [3 points] Is the effect $P(y \mid do(x))$ identifiable from $P(\mathbf{V}')$ and G'? Is there a back-door or front-door adjustment? Can it be solved with do-calculus?

Problem 6. Optimal Experiment Design [10 points]

An advertisement company is trying to identify the effect of a new campaign X on the click through rate Y. They have two hypotheses about how the strategy relates to a possibly measured set of covariates \mathbf{Z} . The hypotheses are represented in the causal diagrams (a) and (b) shown below:



- (a) [4 points] If it exists, find a minimal admissible backdoor set for adjustment in each of the graphs.
- (b) [6 points] The company wants to minimize the measurement cost for identifying $P(y \mid do(x))$. Find the minimum cost ID expression based on the table (c) and justify your answer.

Problem 7. Extra credit: Back-door Adjustment as a Substitute for the Direct Parents [1 point]

The causal effect of the intervention do(X = x) on a variable Y can be identified if all parents of X are observed and is given by

$$P(y \mid do(x)) = \sum_{pa_X} P(y \mid x, pa_X) P(pa_X).$$

$$\tag{1}$$

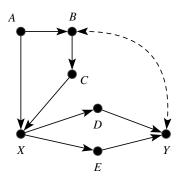
Based on this result, prove that if a set \mathbf{Z} satisfies the back-door criterion relative to X and Y in the graph , it follows that

$$P(y \mid do(x)) = \sum_{\mathbf{z}} P(y \mid x, \mathbf{z}) P(\mathbf{z}).$$
⁽²⁾

This question is asking you to leverage eq3.1 to prove the backdoor identification formula in eq3.2.

Problem 8. Many Paths Lead to ID [10 points]

Consider the following causal diagram.



Give three different functions of the observational distribution $P(\mathbf{V})$ that are equal to the effect $P(y \mid do(x))$. At least one answer should correspond to a front-door case and one to a back-door case. Justify each one of the expression showing its do-calculus derivation.