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C H A P T E R 8

Bounding Inference:
Decomposition Bounds

Up to nowwe focused on exact algorithms for processing graphical models emphasizing the two rea-
soning styles of inference and search. We also showed that hybrids of AND/OR search and inference
are effective and can be used to trade space for time.

Clearly, due to the hardness of the tasks, some networks cannot be processed exactly when
their structure is not sparse thus having high treewidth, especially when their functions do not posses
any internal structure. In such cases approximation algorithms are the only choice. Approximation
algorithms can be designed to approximate either an inference, message-passing scheme, a search
scheme or their hybrid. Bounded inference algorithms approximate inference schemes, while sam-
pling schemes can be viewed as approximating search. The word "bounded" refers to our desire to
bound the size of functions created during inference. Yet, it also often comes with algorithms that
provide upper and lower bounds on the results.

This chapter presents a class of approximation algorithms that bound the dimensionality of
the dependencies created by inference. This yields a collection of parameterized schemes that are
also referred to as decomposition bounds, such as the mini-bucket, mini-clustering and iterative join-
graph propagation, often accompanied with re-parameterizations, or cost-shifting. These methods
offer an adjustable trade-off between accuracy and efficiency within some memory resource.

It was shown that deriving general approximation scheme with a guaranteed relative error
bounds, is NP-hard [32, 114]. One alternative for dealing with these bleak fact is to develop anytime
algorithms. Such algorithms produce better and better solutions accompanied with tighter bounds
and can therefore be responsive to the users allowing to be interrupted at any time while producing
the best solution found thus far.

As we showed (Chapter ??), the bucket-elimination scheme is a unifying algorithmic scheme
for variable-elimination algorithms that is widely applicable. These include directional-resolution
for propositional satisfiability adaptive-consistency for constraint satisfaction, Fourier andGaussian
elimination for linear inequalities, dynamic-programming for combinatorial optimization as well as
algorithms for mixed optimization and summation such as map (or marginal map) and influence
diagrams [48].

Decomposition bounds are not fully anytime because they may require significant memory
on their way to exact solution. Yet they can facilitate anytime schemes if they are used as heuristic
functions within an anytime search algorithm [92, 93].
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Split a bucket into mini-buckets ―> bound complexity

Exponential complexity decrease:

bucket (X) = 

Figure 8.1: The idea of mini-bucket approximation.

8.1 MINI-BUCKET APPROXIMATION FOR MPE

Consider the bucket-elimination algorithmBE-mpe (Chapter ??). Since the complexity of processing
a bucket depends on the number of arguments in the scope of the functions being recorded, we should
consider approximating these functions by a collection of smaller-arity functions. Let h1, ..., ht be
the functions residing in the bucket ofXp, Ψp is the input function and let S1, ..., St be their respec-
tive scopes. Recall that when BE-mpe processes bucket(Xp), the function hp = maxXpψpΠ

t
i=1hi

is computed. A simple approximation idea is to compute an upper bound on hp by exchang-
ing summation and multiplication. Since, in general, for any two non-negative functions Z(x)

and Y (x), maxx Z(x) · Y (x) ≤ maxx Z(x) ·maxx Y (x), this approximation will yield an upper
bound on hp. In particular, the function gp = maxXp ψP ·

∏t
i=1 maxXp hi, is an upper bound on

hp = maxXpψp
∏t
i=1 hi. Procedurally it implies that the elimination operation of maximization is

applied separately to each function, thus requiring less computation.
The idea is illustrated in Figure 1.1, where the bucket of variable X having n functions is

split into two mini-buckets, one having r functions and the other having n− r functions, where
r ≤ n. In general, the functions h1, ..., ht can be partitioned into any set of subsets called mini-
buckets. Let Q = {Q1, ..., Qr} be a partitioning into mini-buckets of the functions h1, ..., ht in
Xp’s bucket (these include both the original functions or messages sent from other buckets). As-
sume that the mini-bucket Ql contains the functions hl1 , ..., hlr . The exact BE-mpe algorithm com-
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putes hp = maxXp

∏t
i=1 hi, which can be rewritten as hp = maxXp

∏r
l=1

∏
h∈Ql

h. By migrating
maximization into each mini-bucket we can compute, instead: gp =

∏r
l=1 maxXp

∏
h∈Ql

h. Each
new mini-bucket function (or message), maxXp

∏
h∈Ql

h, is computed independently and is placed
separately into the bucket of the highest-variable in its scope. The algorithm then proceeds with the
next variable. Functions without arguments (i.e., constants) are placed in the lowest bucket.

Since we replace exact messages with their upper bounds, it is easy to see that once all buckets
are processed, the maximized product computed in the first bucket is an upper bound on the MPE
value. A lower bound can now be computed as the probability of any (suboptimal) assignment. In
particular the suboptimal configuration that can be generated in a forward phase, similar to the way
a solution is generated by the exact algorithm, can yield a good candidate solution whose cost will
serve as a lower-bound, since it is not necessarily optimal.

It is convenient to control the algorithm’s performance using two bounding parameters. Pa-
rameter called i-bound whose value is i, will bound the number of variables in each mini-bucket,
whilem will bound the number of its functions. The mini-bucket elimination (MBE) algorithm for
finding anmpe, MBE-mpe(i,m), is described in Figure 1.2.

Clearly, for efficiency, we would want the mini-buckets to be as small as possible yet we wish
the scheme to be as accurate as possible. In general, asm and i increase, we get tighter bounds. Note
however, that a monotonic increase in accuracy as a function of the i-bound i, can be guaranteed
only under the refinement condition discussed next.

Definition 8.1 refinement. Given two partitioningsQ
′
andQ

′′
over the same set of elements,Q

′′

is a refinement ofQ
′
if and only if for every set A ∈ Q′′ there exists a set B ∈ Q′ such that A ⊆ B.

It is easy to see that:

Proposition 8.2 If Q′′ is a refinement of Q′ in bucketp, then hp ≤ gpQ′ ≤ g
p

Q′′
.

Proof. Clearly for any partitioning Q we have hp ≤ gpQ. By definition, given a refinement Q′′ =

{Q′′1 , ..., Q′′k} of a partitioning Q′ = {Q′1, ..., Q′m}, each mini-bucket i ∈ {1, ..., k} of Q′′ belongs
to some mini-bucket j ∈ {1, ...,m} of Q′. In other words, each mini-bucket j of Q′ is further par-
titioned into the corresponding mini-buckets of Q′′, or Q′j = {Q′′j1 , ..., Q′′jl}. Therefore,

gpQ′′ =

k∏
i=1

(max
Xp

∏
l∈Q′′i

hl) =

m∏
j=1

∏
Q′′i ⊆Q′j

(max
Xp

∏
l∈Q′′i

hl) ≥
m∏
j=1

(max
Xp

∏
l∈Q′j

hl) = gpQ′ .

�

Definition 8.3 (i,m)-partitioning. A partitioning of h1, ..., ht is canonical if any function f
whose scope is subsumed by another’s, is placed into a bucket containing one of those subsuming
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Algorithm MBE-mpe(i,m)
Input: A belief network B =< X,D,G,PG,

∏
>, an ordering of the variables, d =

X1, ..., Xn; evidence e.
Output: An upper bound U and a lower bound L on the most probable configuration given the
evidence. A suboptimal solution x̄a that provides a lower bound L = P (x̄a).
1. Initialize:Generate an ordered partition of the conditional probability function, bucket1, . . .,
bucketn, where bucketi contains all functions whose highest variable isXi. Put each observed
variable in its bucket.
2. Backward: For p← n downto 1, do
for all the functions h1, h2, ..., hj in bucketp, do

• If (observed variable) bucketp contains Xp = xp, assign Xp = xp to each function and
put each in appropriate bucket.

• else, Generate an an (i,m)-partitioning, Q
′

= {Q1, ..., Qr} of h1, h2, ..., ht in bucketp.

• for each Ql ∈ Q
′
containing hl1 , ...hlt , do

hl ← maxXp

t∏
j=1

hlj (8.1)

Add hl to the bucket of the largest-index in scope(hl). Put constants in bucket1.

3. Forward:

• Compute an mpe cost by maximizing over X1, the product in bucket1. Namely U ←
maxX1

∏
hj∈bucket1 hj .

• (Generate an approximate mpe tuple): For i = 1 to n along d do: Given x(1...(i−1)) =

(x1, . . . , xi−1) choose xi = argmaxXi

∏
{hj∈ bucketi} hj(x(1...(i−1))).

L← P (x1, ..., xn)

4. Output: U and L and configuration: x̄ = (x1, ..., xn)

Figure 8.2: Algorithm MBE-mpe(i,m).
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Figure 8.3: Comparison between (a) BE-mpe and (b) MBE-mpe(3,2).



178 8. BOUNDING INFERENCE: DECOMPOSITION BOUNDS

functions. A partitioningQ into mini-buckets is an (i,m)-partitioning if and only if (1) it is canoni-
cal, (2) at mostm non-subsumed functions are included in each mini-bucket, (3) the total number of
variables in a mini-bucket does not exceed i, and (4) the partitioning is refinement-maximal, namely,
there is no other (i,m)-partitioning that it refines.

The i-bound, i (number of variables) and the m-bound, m (number of functions), are not
independent in the sense that some combinations of i andm do not yield a feasible (i,m)-partitioning.
However, it is easy to see that if the i-bound is not smaller than themaximum scope size, then, for any
value ofm > 0, there exists an (i,m)-partitioning of each bucket. The use of the two parameters i
andm, although not independent, allow considering a richer set of partitioning schemes, than using
i orm alone. For flexibility reasons the i-bound would be the one mostly used in practice.

Clearly, since MBE-mpe(i,m) computes an upper bound in each bucket it yields an overall
upper bound on the resulting mpe. Also, a lower bound is obtained as the cost of the suboptimal
solution generated.

Theorem 8.4 MBE-mpe boundness. AlgorithmMBE-mpe(i,m) computes an upper and a lower
bounds on the mpe.

Example 8.5 Figure 1.3 compares algorithms BE-mpe andMBE-mpe(i,m)where i = 3 andm = 2

over the network given in the figure (the directed network and its moral graph) along the order-
ing o = (A, E,D, C,B). Notice that in this figure we use the bucket-tree elimination notation
where messages are indexed by their origin and destination bucket. The exact BE-mpe sequentially
records the new functions (shown to the right) λB→C(a, d, c, e), λC→D(a, d, e), λD→E(a, e), and
λE→A(a). Then, in the bucket ofA, it computesM = maxa P (a)λE→A(a). Subsequently, an mpe
configuration (A = a′, B = b′, C = c′,D = d′,E = e′) where e′ = 0 is the evidence, can be com-
puted along d by selecting a value that maximizes the product of functions in the corresponding buck-
ets conditioned on the previously assigned values. Namely, a′ = arg maxa P (a)λE→A(a), e′ = 0,
d′ = arg maxd λC→D(a, d, e), and so on.

Looking now at MBE-mpe(3,2), since bucket(B) includes five variables, we split it into
two mini-buckets {P (e|b, c)} and {P (d|a, b), P (b|a)}, each containing no more than 3 variables,
as shown in the left handside of Figure 1.3. There can be several (3,2)-partitionings, and any
choice would be legitimate, and can be selected arbitrarily. The new functions λB→C(e, c) and
λB→D(d, a) are generated in different mini-buckets and are placed independently into lower buck-
ets. In each of the remaining lower buckets that still need to be processed, the number of vari-
ables is not larger than 3 and therefore no further partitioning occurs. An upper bound on the mpe
value can be computed by maximizing over variable A the product of functions in A’s bucket:
U = maxaP (a)λE→A(a)λD→A(a).

Once all the buckets are processed, a suboptimalmpe solution can be computed by instantiat-
ing each variable by one of its values that maximizes the product of functions in the corresponding
bucket, in the same way this is done by exact BE-mpe. The probability of any assignment to all the
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variables is a lower bound on the mpe, and one can use alternative methods to compute a full (sub-
optimal) solution (i.e., a configuration) given the functions recorded by the mini-bucket algorithm.
Note that by design MBE-mpe(3,2) does not produce functions on more than 2 variables, while the
exact algorithm BE-mpe records a function on 4 variables.

In summary, MBE-mpe(i,m) computes an interval [L,U ] containing the mpe value where
U is the upper bound computed by the backward phase and L is the probability or cost of the
returned assignment. Note however that MBE-mpe computes the bounds on the joint probability
mpe = maxx P (x, e), rather than on the conditional probabilityM = maxx P (x|e) = mpe/P (e).
Thus

L

P (e)
≤M ≤ U

P (e)

While the probability of evidence clearly influences the quality of the bound interval onM ,
the ratio between the upper and the lower bound is not affected. As we will see in the next subsection,
approximating posterior probabilities using bounds on joint probabilities may be more problematic.

8.1.1 THE MINI-BUCKET SEMANTICS
The Mini-Bucket computation can be given a useful interpretation. It can be viewed as an exact
computation over a simplified graphical model where for every mini-bucket we use a new copy
the bucket’s variable. Namely, for each bucket and its partitioning into mini-buckets, a variable in
the original problem is replaced by a set of new duplicate variables, each associated with a single
mini-bucket. For example, the Mini-Bucket trace in Figure 1.3b, corresponds to solving exactly by
full bucket-elimination the network of the problem in Figure 1.4. Variable B is replaced by two
copies called variables B1 and B2, and the functions P (e|b, c), P (d|a, b), and P (b|a) are replaced
by P (e|b1, c), P (d|a, b2) and P (b2|a). Thus the two mini-buckets correspond to two full buckets in
the new simplified or relaxed problem. The relaxed problem has a smaller width and can be solved
efficiently, yielding a bound (upper or lower) as expected.

Certificate of optimality. Clearly when the lower bound happens to be equals to the upper bound
we have an optimal solution. Alternatively, if we use the node duplication mechanism explicitly,
whenever the optimal solution of the simplified problem allow assigning the same value to the du-
plicated variables, we know that the assignment is locally optimal, namely conditioned on the current
partial assignment.

8.2 MINI-BUCKET APPROXIMATION FOR BELIEF UPDATING
As shown in Chapter ??, the bucket elimination algorithm BE-bel for belief assessment is similar to
BE-mpe except that maximization is replaced by summation and no value assignment is generated.
Algorithm BE-bel computes P (x1, e), when X1 is the first variable and then computes P (x1|e) =

αP (x1, e) where α is the normalization constant (see Chapter 4).
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Figure 8.4: relaxed network corresponding to mini-bucket execution in Figure 1.3b

Algorithm mbe-bel-max(i,m)
Input: A belief network B =< X,D,G,PG,

∏
>, an ordering of the variables, d = X1, ..., Xn; evidence e.

Output: an upper bound on P (x1, ē) and an upper bound on P (e).
1. Initialize: Generate an ordered partition of the conditional probability function, bucket1, . . ., bucketn, where bucketi
contains all functions whose highest variable isXi. Put each observed variable in its bucket.
2. Backward: For p← n downto 1, do
for all the functions h1, h2, ..., hj in bucketp, do
• IfXp is observed (Xk = xk), assignXk ← xp in each hj and put the result
in the highest-variable bucket of its scope (put constants in bucket1).
• Else
Generate an (i,m)-partitioning, Q

′
= {Q1, ..., Qr} of h1, ..., ht in bucketp.

For each Ql ∈ Q
′
, containing hl1 , ...hlt , do

If l = 1 compute hl ←
∑

Xk

∏t
j=1 h1j

Else compute hl ← maxXk

∏t
j=1 hlj

Add hl to the bucket of the highest-index variable in scope(hl)
(put constant functions in bucket1).

3.Return P ′(x̄1, e)← the product of functions in the bucket
ofX1, which is an upper bound on P (x1, ē).
P ′(ē)←

∑
x1
P ′(x1, ē), which is an upper bound on probability of evidence.

Figure 8.5: Algorithm mbe-bel-max(i,m).



8.2. MINI-BUCKET APPROXIMATION FOR BELIEF UPDATING 181

Themini-bucket idea can be applied now to belief updating. LetQ′ = {Q1, ..., Qr} be a parti-
tioning of the functions h1, ...ht inXp’s bucket. Algorithm BE-bel computes hp ←

∑
Xp

∏t
i=1 hi,

over scope(hp) = ∪iscope(hi)− {Xp}. (Again, we omit here the distinction between input func-
tions and messages.) The function hp can be rewritten as hp =

∑
Xp

∏r
l=1

∏
hli
∈Ql

hli .
If we follow the mpe approximation precisely and apply summation in each mini-bucket,

we will get the approximate bound of hp by fp =
∏r
l=1

∑
Xp

∏
li
hli . This, however, yields an

unnecessarily weak upper bound of hp where each
∏
li
hli , which is a function of Xp, is bounded

by
∑

Xp

∏
li
hli , a constant function relative to Xp. Instead, let’s distinguish one (arbitrary) mini-

bucket (the first one here) and rewrite

hp =
∑
Xp

(
∏
1i

h1i) · (
r∏
l=2

∏
li

hli)

and subsequently, instead of bounding a function of Xp by its sum over Xp, we can bound (i > 1),
by its maximum operator over Xp, yielding

gp = (
∑
Xp

∏
1i

h1i) · (
r∏
l=2

max
Xp

∏
li

hli).

Therefore, an upper bound gp of hp is obtained by summing over one of Xp’s mini-buckets and
maximizing over the rest. This will lead to a tighter bound.

A lower bound on the belief, or its mean value, can be obtained in a similar way. Algorithm
MBE-bel-max(i,m) that uses the max elimination operator is described in Figure 1.5. Algorithms
MBE-bel-min and MBE-bel-mean can be obtained by replacing the operator max by min and by
mean, respectively. The mean operator is like the summation operator, divided by the number of
elements in the sum. Notice however that the duplication semantics of MBE which implies summa-
tion for each of the mini-buckets does not extend here. This assymetry in mini-bucket processing
for summation queries will be generalized and improved shortly using the notion of weighted mini-
buckets. We can show that

Theorem 8.6 Given a Bayesian network with evidence e, algorithm MBE-bel-max(i,m) computes
an upper bound on P (X1, e) and on P (e), respectively.

We will have the same relationships between partitioning and their refinements as for the
mpe case, but we have to be careful, since we have a new degree of freedom in selecting which
mini-bucket should be operated by summation and which by maximization.

Proposition 8.7 The following holds:

1. For every partitioning Q of a set of functions whose scopes include variable Xp, hp ≤ gpQ ≤
fpQ, where f is obtained by processing each mini-bucket by summation while in g, one mini-
bucket is processed by summation and the rest by maximization.
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2. Also, ifQ′′ is a refinement partitioning ofQ′ , whose sumed mini-bucket is a refinement of the
sumed mini-bucket in Q′ , then hp ≤ gpQ′ ≤ g

p

Q′′
.

8.2.1 NORMALIZATION
Note that MBE-bel-max generates an upper bound on P (X1, e) but not on P (X1|e). If an exact
value of P (e) is not available, deriving a bound on P (X1|e) from a bound on P (X1, e) is not easy,
because the normalization of upper-bounds is not an upper bound. Namely, g(X1)∑

X1
g(X1) , where g(X)

is the upper bound on P (X1, e), is not necessarily an upper bound on P (X1|e). As noted we can
derive a lower bound, f , on P (e) using mbe-bel-min and then compute g(X1)

f as an upper bound on
P (X1|e). This however is likely to generate weak bounds due to compounded error.

Alternatively, let Ui and Li be the upper bound and lower bounding functions on P (X1, e)

obtained by mbe-bel-max and mbe-bel-min, respectively. Then,

Li
P (e)

≤ P (Xi|e) ≤ Ui
P (e)

Therefore, although P (e) is not known, the ratio of upper to lower bounds remains constant. Yet,
the difference between the upper and the lower bounds can grow substantially, especially in cases of
rare evidence. Note that if P (e) ≤ Ui, we get Li

P (ē) ≤ P (X1|ē) ≤ 1, yielding a trivial upper bound.

8.3 WEIGHTED MINI-BUCKET ELIMINATION
The asymmetry in processing mini-buckets for summation queries is annoying, especially when we
lack any criterion for choosing the summation mini-bucket. We will next see a generalization of the
mini-bucket scheme into weighted mini-bucket (wmb) which leads to tighter bounds by associating
mini-buckets with weights used in Holder inequality [19]. We first define the notion of a power-sum.

w∑
x

f(x) = (
∑
x

f(x)
1
w )w (8.2)

where w is a non-negative weight. The power sum reduces to a standard summation when w = 1

and approaches max when w → 0+ illustrated by Figure 1.6. For the case of 2 functions, when
w = w1 + w2, Holder inequality looks as follows.

w∑
x

f1(x) · f2(x) ≤ (
∑
x

f1(x)
1

w1 )
w1 · (

∑
x

f2(x)
1

w2 )
w2
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Figure 8.6: The impact of w on the power sum.
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The general Holder inequality is:

Proposition 8.8 Holder inequality Let fi(x), i = 1..r be a set of functions and w1, ..., wr be a
set of non-zero weights, s.t., w =

∑r
i=1wi then,

w∑
x

r∏
i=1

fi(x) ≤
r∏
i=1

wi∑
x

fi(x)

This means that if we generalize the summation operator to the power-sum for a given weight
w, the bucket elimination immediately applies to yield an exact algorithm, when using ⊗ =

∑w
x .

Most significantly, due to Holder inequality we get a weighted-mini-bucket algorithm which is cor-
rect for any set of weights satisfying EQ. (1.2). The case of w=1 specialize to summation and w=0
to maximization. When w = 0, the only consistent weight vector is wi = 0, which means that each
mini-bucket should be processed by maximization. But, when w = 1, namely for the summation
query, any choice of mini-bucket weights will tighten the obtained bound. It is easy to see that uni-
form weights will yield superior bounds to simple summation (that correspond to node duplication)
(prove as an exercise). We can try to select a good, or even optimal set of weights for each bucket to
yield the tightest bounds, at least in principle. The max-sum case that we proposed inMBE-max-bel,
corresponds to assigning one mini-bucket with w = 1 and the rest with w = 0.

Algorithm weighted mini-bucket (WMB) is given in Figure 1.7. It is parameterized by a set
of n weights, one for each variable, so it can accomodate a variety of tasks. When we solve a pure
summation task such as the probability of evidence or the posterior probability the weight for each
variable is w = 1. For pure optimization the weights are all w = 0. But, as we will see next, for
mixed max-sum product queries such as marginal maps (mmap), we can specialize the weights
based on variables, so that buckets of sum variables will be assigned w = 1 and others w = 0 for
maximization. This makes WMB algorithm not only poetntially better, by optimizing the weight
parameters, but also provide a uniform way for expressing the mini-bucket scheme.

Weighted mini-buckets for lower bounds. WMB can also be used to compute a lower bound
when the factors are strictly positive; this is obtained by requesting that exactly one weight, say, wlk
is positive, and the rest are negative: wlk > 0, wlj < 0 [19].

8.4 MINI-BUCKET ELIMINATION FOR MARGINAL MAP
Algorithm BE-map is a combination of BE-mpe and BE-bel as we have shown in Chapter ??; some
of the variables are eliminated by summation, while the others by maximization. Given a belief
network, a subset of hypothesis variables A = {A1, ..., Ak}, which are the MAP variables, and
evidence e, the problem is to find an assignment to the hypothesized variables that maximizes their
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Algorithm Weighted WMBE(i,m), (w1, ...wn)

Input: A belief network B = 〈X,D,PG,
∏〉, an ordering d = ( X1, . . . , Xn) ; evidence e

Output: an upper bound on P (x1, e)

1. Initialize: Partition P = {P1, ..., Pn} into buckets bucket1, . . ., bucketn, where bucketk con-
tains all CPTs h1, h2, ..., ht whose highest-index variable is Xk.
2. Backward: for k = n to 1 do

• If Xp is observed (Xk = a), assign Xk ← a in each hj and put the result in the highest-
variable bucket of its scope (put constants in bucket1).

• Else for h1, h2, ..., ht in bucketk, generate an (i,m)-partitioning,
Q
′

= {Q1, ..., Qr} . Select a set of weights w1, ...wr s.t
∑

l wl = w., where w is the weight
of the bucket
For each Ql ∈ Q

′
, containing hl1 , ...hlt , do

hl ←
wl∑
Xk

t∏
j=1

hlj = (
∑
Xk

t∏
j=1

(hlj )
1
wl )wl

Add hl to the bucket of the highest-index variable in its scope.

3. Return (as a result of processing bucket1):
1. The product of dunction is bucket1 which is an upper-bound on P (X1, e).
2. U1 ← the sum overX1 of the product of functions in the bucket ofX1, which is an upper bound
on probability of evidence.

Figure 8.7: Algorithm WMBE(i,m).
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Algorithm WMBE-map(i,m)
Input: A Bayesian network B = 〈X,D,PG,

∏〉, P = {P1, ..., Pn}; a subset of hypothesis vari-
ables A = {A1, ..., Ak}; an ordering of the variables, d, in which the A’s are first in the ordering;
observations e.
Output: An upper bound on the map and a and a suboptimal solution A = a.
1. Initialize: Partition P = {P1, ..., Pn} into bucket1, . . ., bucketn, where bucketi contains all
functions whose highest variable is Xi.
2. Backwards For p← n downto 1, do
for all the functions h1, h2, ..., hj in bucketp do

• If (observed variable) bucketp contains the observationXp = xp, assignXp = xp to each hi
and and put each in appropriate bucket.

• Else for h1, h2, ..., hj in bucketp generate an (i,m)-partitioning, Q
′

= {Q1, ..., Qr}.

• IfXP 6∈ A assignwp = 1, otherwisewp = 0. Select weights for the mini-buckets in bucketp:
wp1 , ..., wpr . s.t

∑
iwpi = wp.

foreach Ql ∈ Q
′
, containing hl1 , ...hlt , do

hl ←
wpl∑
Xk

t∏
j=1

hlj = (
∑
Xk

(

t∏
j=1

hlj )
1

wpl )wpl

Add hl to the bucket of the highest-index variable in its scope.

3. Forward: for p = 1 to k, given A1 = aa1, ..., Ap−1 = aap−1, assign a value aap to Ap that maxi-
mizes the product of all functions in bucketp. conditioned on earlier assignments.
4. Return An upper bound U = maxa1

∏
hi∈bucket1 hi on the map value, computed in the first

bucket, and the assignment a = (aa1, ..., a
a
k).

Figure 8.8: Algorithm WMBE-map(i,m).

probability conditioned on e. Formally, we wish to find

āmapk = arg max
āk

P (āk|e) = arg max
āk

∑
x(k+1)..n

∏n
i=1 P (xi,e|xpai

)

P (e)
(8.3)

where x = (a1, ..., ak, xk+1, ..., xn) denotes an assignment to all variables, while āk = (a1, ..., ak)

and x(k+1)..n = (xk+1, ..., xn) denote assignments to the MAP and SUM variables, respectively.
Since P (e) is a normalization constant, the same maximum is obtained for P (āk, e).
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As we know, the bucket-elimination algorithm for finding the exact mmap, BE-map 1.5, as-
sumes constrained orderings in which the MAP variables appear first and thus are processed last
by bucket-elimination 1.5. This restriction makes this MMAP task more difficult because it implies
higher induced widths. The algorithm has the usual backward phase while its forward phase is rel-
ative to the MAP variables only.

The mini-bucket scheme for MAP is a straightforward extension of the mini-bucket algo-
rithms for summation and maximization and easy to express as a weighted mini-bucket scheme.
As usual, we partition each bucket into mini-buckets. If the bucket’s variable can be eliminated by
summation, we apply the power-sum with w = 1, where the selected mini-bucket weights is left as
a hyper-parameter. The rest of the buckets are processed by the mini-bucket rule with w = 0, yield-
ing maximization. In other words, when the algorithm reaches the MAP buckets, their processing is
identical to that of MBE-mpe. Algorithm WMBE-map(i,m) is described in Figure 1.8.

Decoding the map assignment and the issue with lower-bounds. Once the backwards phase of
MBE-map ends, we have an upper bound and, in principle, we can compute a map assignment in
the forward phase. While the probability of any assignment is a lower bound on the MMAP value,
computing the actual probability is no longer a simple forward step over the generated buckets but
requires an exact inference. We cannot use the functions generated by WMBE in the buckets of
summation variables since those served as upper bounds. One possibility is, given an assignment
to the MAP variables, is to rerun the mini-bucket algorithm over the SUM variables using the min
operator withw = −1, conditional on the map assignment and subsequently compute a lower bound
on the assigned tuple in another forward step over the first k buckets. We leave the details of this
idea as an exercise.

Example 8.9 Consider a belief network which describes the decoding of a linear block code,
shown in Figure 1.9. In this network, Ui are information bits and Xj are code bits, which are
functionally dependent on Ui. The vector (U,X), called the channel input, is transmitted through a
noisy channel which adds Gaussian noise and results in the channel output vector Y = (Y u, Y x)

. The decoding task is to assess the most likely values for the U ’s given the observed values
Y = (ȳu, ȳx), which is the map task where U is the set of hypothesis variables, and Y = (ȳu, ȳx)

is the evidence. After processing the observed buckets we get the following bucket configuration
(lower case y’s are observed values):
bucket(X0) = P (yx0 |X0), P (X0|U0, U1, U2),
bucket(X1) = P (yx1 |X1), P (X1|U1, U2, U3),
bucket(X2) = P (yx2 |X2), P (X2|U2, U3, U4),
bucket(X3) = P (yx3 |X3), P (X3|U3, U4, U0),
bucket(X4) = P (yx4 |X4), P (X4|U4, U0, U1),
bucket(U0) = P (U0), P (yu0 |U0),
bucket(U1) = P (U1), P (yu1 |U1),
bucket(U2) = P (U2), P (yu2 |U2),
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bucket(U3) = P (U3), P (yu3 |U3),
bucket(U4) = P (U4), P (yu4 |U4).

Processing by MBE-map(4,1) the first top five buckets by summation and the rest by
maximization, results in the following mini-bucket partitionings and function generation:
bucket(X0) = {P (yx0 |X0), P (X0|U0, U1, U2)},
bucket(X1) = {P (yx1 |X1), P (X1|U1, U2, U3)},
bucket(X2) = {P (yx2 |X2), P (X2|U2, U3, U4)},
bucket(X3) = {P (yx3 |X3), P (X3|U3, U4, U0)},
bucket(X4) = {P (yx4 |X4), P (X4|U4, U0, U1)},
bucket(U0) = {P (U0), P (yu0 |U0), hX0(U0, U1, U2)}, {hX3(U3, U4, U0)}, {hx4(U4, U0, U1)},
bucket(U1) = {P (U1), P (yu1 |U1), hX1

(U1, U2, U3), hU0(U1, U2)}, {hU0(U4, U1)},
bucket(U2) = {P (U2), P (yu2 |U2), hX2(U2, U3, U4), hU1(U2, U3)},
bucket(U3) = {P (U3), P (yu3 |U3), hU0

(U3, U4), hU1
(U3, U4), hU2(U3, U4)},

bucket(U4) = {P (U4), P (yu4 |U4), hU1(U4), hU3(U4)}.

The first five buckets are not partitioned at all and are processed as full buckets, since in this
case a full bucket is a (4,1)-partitioning. This processing generates five messages. Three are placed
in bucket U0 (hX0 , hX3 , hX4), one in bucket U1 (hU0) and one in bucket U2 (hX2). Then bucket U0

is partitioned into three mini-buckets processed by maximization, creating two functions placed in
bucket U1 and one function placed in bucket U3. Bucket U1 is partitioned into two mini-buckets,
generating functions placed in bucket U2 and bucket U3. Subsequent buckets are processed as full
buckets. Note that the scope of recorded functions is bounded by 3.

In the bucket of U4 we get an upper bound Upper on the map value, namely Upper ≥
P (U, ȳu, ȳx) where ȳu and , ȳx are the observed outputs for the U ’s and the X’s bits transmit-
ted. In order to bound P (U |ē), where ē = (ȳu, ȳx), we need P (e) which is not available. Yet,
again, in many cases we are interested in the ratio P (U = ū1|e)/P (U = ū2|e) for competing hy-
potheses U = ū1 and U = ū2 rather than in the absolute values. Since P (U |e) = P (U, e)/P (e)

and the probability of the evidence is just a constant factor independent of U , the ratio is equal to
P (U1, e)/P (U2, e).

Exercise:What is the relaxed network that corresponds to the above computation?Howwould
you generate a candidate map assignment? how would you compute its probability? What is the
relationship between themap and thempe assignments?

8.5 MINI-BUCKETS FOR GENERAL DISCRETE
OPTIMIZATION; THE MIN-SUM QUERY

Themini-bucket principle can also be applied to deterministic discrete optimization problems which
can be defined over cost networks, yielding approximation to dynamic programming for discrete
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Figure 8.9: Belief network for a linear block code.
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Algorithm MBE-opt(i,m)
Input: A cost network (X,D,F,

∑
), F = {C1, ..., Cl}; ordering d.

Output: A lower and an upper bound on the optimal cost.
1.Initialize: Partition C into bucket1, . . ., bucketn, where bucketp contains all components
h1, h2, ..., ht whose highest-index variable is Xp.
2. Backward: for p = n to 2 do

• If Xp is observed (Xp = xp), replace Xp by xp in each hi and put the result in its highest-
variable bucket (put constants in bucket1).

• Else for h1, h2, ..., ht in bucketp generate an (i,m)-partitioning, Q
′

= {Q1, ..., Qr}.

• For each Ql ∈ Q
′
containing hl1 , ...hlt ,

hl ← minXp

t∑
i=1

hli

and add it to the bucket of the highest-index variable in its scope. (put constants in bucket1).

3. Forward: for p = 1 to n, given X1 = x1, ..., Xp−1 = xp−1,
assign a value xp to Xp that minimizes the sum of all functions in bucketp.
4. Output the assignment x = (x1, ..., xn), an upper bound U = F (x), and a lower bound on the
optimal cost L = minX1

∑
hi∈bucket1 hi.

Figure 8.10: Algorithm MBE-opt(i,m).

optimization [16]. In fact, as we showed (Chapter 2) the mpe task is a special case of combinatorial
optimization and its approximation viamini-buckets can be straightforwardly extended to the general
case. For completeness we present the algorithm explicitly for cost networks, namely, for the min-
sum problem.

As defined earlier a cost network is a triplet (X,D,C), whereX is a set of discrete variables,
X = {X1, ..., Xn}, over domains D = {D1, ..., Dn}, and C is a set of real-valued cost functions
C1, ..., Cl. The cost function is defined byC =

∑l
i=1Ci. The optimization (minimization) problem

is to find an assignment xopt = (x1
opt, ..., xn

opt) such that C(xopt) = minx=(x1,...,xn)C(x).

Algorithm mbe-opt is described in Figure 1.10. Step 2 (backward step) computes a lower
bound on the cost function while Step 3 (forward step) generates a suboptimal solution which pro-
vides an upper bound on the cost function.
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Unified presentation of MBE. Clearly the mini-bucket scheme is applicable to any bucket-
elimination scheme and can be described within the general framework using the combination and
marginalization operators. The power-sum provides another one way to generalize this scheme, lead-
ing to Weighted mini-bucket elimination [87].

8.6 COMPLEXITY AND TRACTABILITY

8.6.1 THE CASE OF LOW INDUCEDWIDTH
We denote by weighted mini-bucket-elimination(i,m), or simply WMB(i,m), a generic mini-bucket
scheme with parameters i andm, without specifying the particular task it solves. It is easy to derive
MBE(i,m) complexity Since variable duplication can generate at most r additional variables, where
r is the number of functions, but will leave the number of functions fixed at r, and since the resulting
problem has induced-width bounded by i, MBE’s complexity obeys the following:

Theorem 8.10 AlgorithmWMB(i,m) takesO(r · ki) time and space, where, k bounds the domain
size and r is the number of input functions1. Form = 1 the algorithm is time and space linear and
is bounded by O(r · exp(|S|)), where |S| is the maximum scope of any input function, |S| ≤ i ≤ n.

Proof. We can associate a bucket-elimination or a mini-bucket elimination algorithm with a com-
putation tree where leaf nodes correspond to the original input functions (CPTs or cost functions),
and each internal node v corresponds to the result of applying an elimination operator (e.g., product
followed by summation) to the set of node’s children, denoted ch(v) where children correspond to
all the functions in the corresponding mini-bucket). We can compress the computation tree so that
each node having a single child will be merged into one node with its parent, so that the branching
degree in the resulting tree is not less than 2. Computing an internal node that is a compressed se-
quence of single-child nodes takes O(exp(|S|) time and space since it only requires a sequence of
elimination operations over a single function which can be accomplished in one pass through the
tuples (accumulating appropriate running summations over the relevant variables). The cost of com-
puting any other internal node v is O(|ch(v)| · exp(i)) where |ch(v)| ≤ m, and where i bounds the
resulting scope size of the generated functions. Since the number of leaf nodes is bounded by r, the
number of internal nodes in the computation tree is bounded by r as well (since the branching factor
of each internal node is at least 2). Thus the total amount of computation over all internal nodes in
the computation tree is time and space O(r · exp(i)) in general, which becomes to O(n · exp(i))
for Bayesian networks. �

1Note that r = n for Bayesian networks, but can be higher or lower for general constraint optimization tasks
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Figure 8.11: (a) A polytree and (b) a legal ordering, assuming that nodes Z1, Z2, Z3 and Y1 are observed.

Clearly, when the induced-width along the processing order is smaller than i, MBE(i, n) co-
incides with bucket-elimination and is therefore exact. This is because each full bucket satisfies the
condition of being an (i, n)-partitioning.

Interestingly, algorithm MBE(i,m=1),if applied along a proper orderings, is exact for acyclic
networks and in particular for polytrees. Such orderings are determined by consulting a rooted join-
tree of the acyclic network (we know that such a join-tree exists from the definition of an acyclic
network as discussed in Chapter ??). We then order the variables from last to first by selecting and
removing a leaf function from the rooted join-tree and placing as next all its variables that were
not ordered yet. This way, each bucket would contain at most one non-subsumed function. This is
illustrated in Example 1.11 as elaborated next.

Example 8.11 Consider an ordering d = (X1, U3, U2, U1, Y1, Z1, Z2, Z3) of the polytree in Figure
1.11a, where the last four variables Y1, Z1, Z2, Z3 in the ordering are observed. Once those four
buckets are processed as observation buckets, we get (where observed values shown in low-case):
bucket(U1) = P (U1), P (X1|U1, U2, U3), P (z1|U1),
bucket(U2) = P (U2), P (z2|U2),
bucket(U3) = P (U3), P (z3|U3)

bucket(X1) = P (y1|X1).
We can see that when m = 1 the algorithm will have no partitioning in any bucket, because each
bucket has at most one non-subsumed function.

Theorem 8.12 Given an acyclic network, there exists an ordering such that algorithmMBE(n,1) is
exact and is time and spaceO(n · exp(|S|)), where |S| is the largest scope size of any input function.
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8.6.2 HEURISTIC FOR MINI-BUCKET PARTITIONINGS
Clearly, given the parameters i and m, there are many (i,m) partitioning. These partitionings can
be guided by the graph, or by the content of the actual functions, aiming to minimize the error
incurred by the partitioning. In practice the mini-bucket scheme is used primarily with the i-bound
and ignores them-bound. Namely, the mini-bucket is bounded by the number of variables it contains
regardless of the number of function it has because controlling the mini-bucket size by the number of
variables allows more flexibility. One popular partitioning heuristic, is scope-based, relying solely
on the scopes of the functions. We refer to the procedure that takes a bucket B and partition it into
mini-buckets having at most i variables as partitioning(B,i).

Scope-based Partitioning Heuristic. The scope-based partition heuristic (SCP) aims at min-
imizing the number of mini-buckets in the partition by including in each mini-bucket as many
functions as possible as long as the i bound is satisfied. First, single function mini-buckets are
decreasingly ordered according to their arity. Then, each mini-bucket, from first to last, is ab-
sorbed into the earliest mini-bucket with whom it can be merged. See 1.12. The time and space
complexity of Partition(B, i) , where B is the partitioned bucket, using the SCP heuristic is
O(|B| log (|B|) + |B|2) where |B| is the number of variables in the bucket. (Exercise: prove this
complexity).

Content-based Partitioning Heuristic. The scope-based heuristic can be computed quickly, but
its shortcoming is that it does not consider the actual information contained in each function. Bucket
partitioning strategies that take into account the functions themselves were also explored. Given a
bucket B, the goal of the partition process is to find an i-partition Q of B such that the function
computed by the collection ofmini-buckets gQ is the closest to the exact bucket function g, according
to some distance measure dist. Thus, the partition task is to find an i-partition Q∗ of B such that
Q∗ = arg minQ dist(gQ, g). Distance measures that can be considered include log relative error,
maximum log relative error, KL divergence and absolute error. For example:

- Log relative error, (RE):

RE(f, h) =
∑

t(log (f(t))− log (h(t)))

- Max log relative error (MRE) :

MRE(f, h) = maxt{log (f(t))− log (h(t))}

We can organize the space of partitions in a lattice using the refinement relation since it yields
a partial order. Each partitionQ of bucket B is a vertex in the lattice. There is an upward edge from
Q to Q′ if Q′ results from merging two mini-buckets of Q in which case Q′ is a child of Q. The
set of all children of Q is denoted by ch(Q). The bottom partition in the lattice is Q⊥ while the
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Figure 8.12: Algorithm SCP

top partition is Q>. For any two partitions Q and Q′, if Q′ is a descendent of Q then gQ′ is clearly
tighter than gQ, as dictated by Proposition 1.2 .

Example 8.13 Consider a bucket Bx = {f1, f2, f3, f4}. Its Hasse diagram is depicted in Figure
1.13. As observed, the finest partition isQ⊥ = {{f1}, {f2}, {f3}, {f4}} (depicted in the bottom of
the diagram). The coarsest partition isQ> = {{f1, f2, f3, f4}} (depicted in the top of the diagram).

Since an optimal partition-seeking algorithm may need to traverse the partitioning lattice
bottom-up along all paths, yielding a computationally hard task, only depth-first greedy traversals
schemes were considered. A guiding heuristic function along the lattice can be constructed based on
the error that occurs when combining two functions into a single mini-bucket versus keeping them
separate,

The traversal can be guided by a heuristic function h defined for a partition Q and its child
partition Q′, denoted Q→ Q′. The local distance heuristics derived from the above distance mea-
sures yield content-based local partitioning heuristics( see [21]). At each step, the algorithm ranks
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Figure 8.13: Partitioning lattice of bucket {f1, f2, f3, f4}. We specify each function by its subindex.

function GreedyPartition(B,i, h)
1. Initialize Q as the bottom partition of B;
2.While ∃Q′ ∈ ch(Q) which is a i-partition
Q← arg minQ′{h(Q→ Q′)} among child i-partitions of Q;
3.Return Q;

Figure 8.14: Greedy partitioning

each childQ′ of the current partitionQ according to such an h. Clearly, each iteration is guaranteed
to tighten the resulting bound. Algorithm GreedyPartition is given in Figure 1.14.

Proposition 8.14 The time complexity of GreedyPartition is O(|B| × T ) where O(T ) is the
time complexity of selecting themin child partition according to h.

8.6.3 DISCUSSION
The schedule by which mini-buckets are identified and processed can be relaxed. It does not have
to be regimented to be processed in blocks for each variable. In other words, we can process just a
single mini-bucket ofB first, yielding a new, relaxed problem to which we can apply the mini-bucket
recursively. In particular we can identify, and process a mini-bucket of variable C and then go back
and process another mini-bucket of variableB and so on. This alternative schedule is apparent once
we reason about partitioning heuristics as variable duplications. Finally, a relaxed network due to
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Algorithm ANYTIME-mpe(ε)
Input: A belief network B =< X,D,G,P >, where P = {P1, ..., Pn};
an ordering of the variables, d = X1, ..., Xn; evidence e.
Initial values, i0 andm0; increments istep andmstep, approximation error ε.
Output: An upper bound U and a lower bound L on theMPE = maxx̄ P (x̄, ē), and a suboptimal
solution x̄a that provides a lower bound L = P (x̄a).
1. Initialization: i = i0,m = m0.
2. while resources are available, do

• run MBE-mpe(i,m)

• U ← upper bound of MBE-mpe(i,m)

• L← lower bound of MBE-mpe(i,m)

• Retain best bounds U,L, and best solution found so far

• if 1 ≤ U/L ≤ 1 + ε, return solution

• else īncrease i andm: i← i+ istep andm← m+mstep

3. Return the largest L and the smallest U found so far.
Return the corresponding mpe assignment.

Figure 8.15: Algorithm ANYTIME-mpe(ε).

variable-duplication can be processed by any means, not necessarily by bucket-elimination. This
observation opens up a richer collection of bounding schemes that can be considered.

8.7 USING THE MINI-BUCKET AS AN ANYTIME SCHEME

The mini-bucket scheme can be used as a stand alone approximation. Yet it can be extended into
an anytime scheme or can be augmented within a search scheme. An important property is that
the scheme provides an adjustable trade-off between accuracy of a solution and the complexity of
deriving it. Both the accuracy and the complexity increase monotonically with the parameters i and
m. While in general it may not be easy to predict the algorithm’s performance for a particular pa-
rameter setting, it is possible to use this scheme within an anytime framework up to a point. Anytime
algorithms can be interrupted at any time producing the best solution found thus far. As more time is
available, better solutions will be generated, evalntually generating the optimal solutionis memory
allows.
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We can have an anytime algorithm by running a sequence of mini-bucket algorithms with
increasing values of i and m until either a desired level of accuracy is obtained, or until the com-
putational resources (i.e., memory) are exhausted. To illustrate, such an anytime scheme for finding
the mpe, ANYTIME-mpe(ε) is presented in Figure 1.15, where ε is a desired accuracy level. The al-
gorithm uses initial parameter settings, i0 andm0, and increments istep andmstep. MBE-mpe(i,m)
computes a suboptimal mpe solution and the corresponding lower and upper bounds L, and U for
increasing values of i andm. The algorithm terminates when either 1 ≤ U/L ≤ 1 + ε, or when the
computational resources (i.e., memory) are exhausted, returning the largest lower bound and the
smallest upper bound found so far, as well as the current highest suboptimal solution. This scheme
is not fully anytime due to the memory restriction ofMBE. In other words, it is not any space.

For summation queries such as belief computations, deriving the upper and lower bound can
be done using two runs of WMBE to generate both an upper bound and a lower bound using all-
positive, or a single negative weight, respectively.

Mini-bucket as heuristic generation for search. Since, the mini-bucket scheme computes
bounds (upper or lower) on the exact quantities, these bounds can be used as heuristic functions to
guide search algorithms and for pruning the search space. In other words, rather than stopping with
the first solution found (which is a lower bound for maximization), as it is done in the forward step
of MBE-mpe, we can continue searching for better solutions (e.g., by branch and bound schemes),
while using the mini-bucket functions to guide and prune the search. This approach was explored
extensively in recent years yielding state-of the art algorithms both for finding an mpe assignment
as well as for constraint optimization problems [7, 93].

In the context of sum-product queries such as belief updating and probability of evidence, the
mini-bucket’s output can be viewed as approximating the probability distribution of the Bayesian
network. This can be used as a basis for sampling (e.g., importance sampling) and for guiding search
to bound quantities of interest. More on this in future chapters. For details on this direction see [69?
? ? ].

8.8 FROMMINI-BUCKET TOMINI-CLUSTERING

The mini-bucket idea can be extended to any tree-decomposition scheme. In this section we will
describe one such extension called Mini-Clustering (MC). The benefit of this algorithm is that
all single-variable beliefs are computed (approximately) at once, using a two-phase message-
passing process along the cluster tree like in the mini-bucket bounded inference. Tus, we would
not need to run the algorithm for every variable independently. We focus on likelihood computa-
tions (belief-updating and probability of evidence) for which such extensions (from mini-bucket to
mini-clustering) are most relevant. Consider a general belief network BN =< X,D,G, P > and
its tree-decomposition defined as usual by< T, χ, ψ >, where T = (V,E) is a tree, and χ and ψ are
the labeling functions which associate with each vertex v ∈ V two sets, χ(v) ⊆ X and ψ(v) ⊆ P .
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Rather than computing the mini-bucket approximation n times, one for each variable as
would be required by the mini-bucket approach, mini-clustering performs an equivalent compu-
tation with just two message passings along each arc of the tree-decomposition. Remember that a
tree-decomposition assigns to each node u in the tree T a set of variables χ(u) and a set of functions
ψ(u) (see Chapter ??). During CTE’s processing of a cluster u, the cluster contains the original
functions as well as messages from neighboring clusters which we denote as cluster(u) (see Al-
gorithm ??). We can partition cluster(u) into p mini-clusters mc(1), . . . ,mc(p), each having at
most i variables, where i is the i-bound controlling the accuracy. Instead of computing the message
hu→v =

∑
elim(u,v)

∏
f∈cluster(u) f byCTE-bel from node u to node v; we can divide the functions

of cluster(u) into p mini-clusters and rewrite hu→v =
∑

elim(u,v)

∏p
k=1

∏
f∈mc(k) f . By migrat-

ing the summation operator into each mini-cluster, yielding
∏p
k=1

∑
elim(u,v)

∏
f∈mc(k) f , we get

an upper bound on hu→v. The resulting algorithm will be described using the weight notation and
is calledWeighted Mini-Clustering (WMB(i) is presented in Figure 1.16 ( notice that we dropped the
m parameter for simplicity).

The messages which is a set of functions is referred to as a combined functions. The com-
bined function from u to v is computed as follows. Suppose u ∈ V has received messages from
all its neighbors other than v (the message from v is ignored even if received). The functions in
clusterv(u) that are to be combined are partitioned into mini-clusters {mc(1), . . . ,mc(p)}, each
one containing at most i variables and each associated with a weight wj s.t.

∑
j wj = 1. Each mini-

cluster is processed by the power-sum over the eliminator and the resulting set of functions as well
as all the individual functions (that are not dependant on the separator) are sent to v.

As in the mini-bucket case we can also derive a lower-bound on beliefs by associating one
mini-cluster with a negative weight (e.g., replacing themax operator withmin operator).

Algorithm WMC-bel for upper bounds can be obtained from CTE (see Chapter ??) by re-
placing step 2 of its main loop and the final part of computing the upper bounds on the joint belief by
the procedure given in Figure ?? yielding the Algorithm in Figure 1.16. The partitioning of clusters
to mini-clusters can be done in an identical manner to partitioning buckets into mini-buckets.

Example 8.15 Figure 1.18 shows the trace of running WMC-bel(3) with all weights w=0 ex-
cept for one mini-cluster, on the problem in Figure 1.17. First, evidence G = ge is assigned in
all CPTs. There are no individual functions to be sent from cluster 1 to cluster 2. Cluster 1 con-
tains only 3 variables, χ(1) = {A,B,C}, therefore it is not partitioned. The combined function
h1

1→2(b, c) =
∑

a p(a) · p(b|a) · p(c|a, b) is computed and the message H1→2 = {h1
1→2(b, c)} is

sent to node 2. Now, node 2 can send its message to node 3. Cluster 2 contains 4 variables, χ(2) =

{B,C,D, F}, and a partitioning is necessary:MC-bel(3) can choosemc(1) = {p(d|b), h1→2(b, c)}
and mc(2) = {p(f |c, d)}. The combined functions using power sum is h1

2→3(b) = (
∑

c,d(p(d|b) ·
h1→2(b, c))

1
w1 )w1 and h2

2→3(f) = (
∑

c,d(p(f |c, d))
1

w2 )w2 where w1 + w2 = 1 are computed and
the message H4→3 = {h1

2→3(b), h2
2→3(f)} is sent to node 3. The algorithm continues until every

node has received messages from all its neighbors. An upper bound on P (A,G = ge) can now be
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Weighted Mini-Clustering Elimination for Belief Updating (WMC-bel(i))
Input: A tree decomposition 〈T, χ, ψ〉T = (V,E) for
B = 〈X,D,G, P 〉. Evidence e. An i-bound parameter i.
Output:An augmented tree whose nodes are clusters containing the original CPTs as well
as messages received from neighbors. An upper bound for P (Xi, e). Denote byHu→v the
message sent by vertex u to vertex v, nev(u) the neighbors of u in T excluding v.
cluster(u) = ψ(u) ∪ {Hv→u|(v, u) ∈ E}.
1. Compute the combined mini-functions: For every node u in the cluster tree, T , once
u has received messages from all nev(u), compute message to node v:

• Process evidence:
For each u ∈ T assign relevant evidence to all pi ∈ ψ(u).

• Compute the combined mini-functions:Make an (i)-partitioning of clusterv(u),
{mc(1), . . . ,mc(p)}; select weights w1, ..., wp,

∑p
i=1wi = 1.

• hju→v = (
∑

elim(u,v)

∏
f∈mc(j) f

1
wj )wj

• add {hju→v|j = 1, . . . , p} to Hu→v. Send the set of messages Hu→v to v.

2. Compute upper bounds U(Xi, e) on P (Xi, e):
For every Xi ∈ X let u ∈ V be a cluster such that Xi ∈ χ(u). Apply (i)-
partition mini-clusters for cluster(u), {mc(1), . . . ,mc(p)}; Compute P (Xi, e) =∏p
k=1(

∑
χ(u)−Xi

(
∏
f∈mc(k) f)

1
wk )wk .

Figure 8.16: Procedure Mini-Clustering for Belief Updating (WMC-bel)
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Figure 8.17: (a) A belief network; (b) A join-tree decomposition; (c) Execution of CTE-bel.

),|()|()(:),(1
)2,1( bacpabpapcbh

a

⋅⋅=∑

),|(max:)(

),()|(:)(

,

2
)1,2(

1
)2,3(

,

1
)1,2(

dcfpch

fbhbdpbh

fd

fd

=

⋅=∑

),|(max:)(

),()|(:)(

,

2
)3,2(

1
)2,1(

,

1
)3,2(

dcfpfh

cbhbdpbh

dc

dc

=

⋅=∑

),(),|(:),( 1
)3,4(

1
)2,3( fehfbepfbh

e

⋅=∑

)()(),|(:),( 2
)3,2(

1
)3,2(

1
)4,3( fhbhfbepfeh

b

⋅⋅=∑

),|(:),(1
)3,4( fegGpfeh e==

)2,1(H

)1,2(H

)3,2(H

)2,3(H

)4,3(H

)3,4(H

BCDF

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

Figure 8.18: Execution of MC-bel for i = 3

computed by choosing cluster 1, which contains variableA. It doesn’t need partitioning, so the algo-
rithm just computes

∑
b,c p(a) · p(b|a) · p(c|a, b) · h1

2→1(b) · h2
2→1(c). Notice that unlike CTE-bel

which processes 4 variables in cluster 2, WMC-bel(3) never processes more than 3 variables at a
time. It is easy to see that,

Theorem 8.16 Given a Bayesian network B = 〈X,D,G, P 〉, WMC-bel(i) computes an upper
bound on the joint probability P (X, e) of each variable and each of its values.

You can also convince yourself about the complexity: (or consult the proof in [? ])

Theorem 8.17 Complexity of MC-bel(i). Given a Bayesian network B = 〈X,D,G, P 〉 and a
tree-decomposition 〈T, χ, ψ〉 of B, the time and space complexity of MC-bel(i) is O(n · hw∗ · ki),
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where n is the number of variables, k is the maximum domain size of a variable and hw∗ =

maxu∈T |{f ∈ P |scope(f) ∩ χ(u) 6= Φ}|, which bounds the number of mini-clusters.

The mini-clustering scheme for posterior marginals suffers from the same normalization is-
sues as the mini-bucket scheme. As noted, MC-bel(i) is an improvement over the Mini-Bucket algo-
rithm MBE-bel(i), in that it allows the computation of P (Xi, e) for all variables with a single run,
whereas MBE(i) computes P (Xi, e) for just one variable, with a single run [? ]. When computing
P (Xi, e) for each variable, MBE-bel(i) has to be run n times, once for each variable (an algorithm
we call nMBE(i)). In [? ] it was demonstrated thatMC-bel(i) has up to linear speed-up over nMBE(i).
For a given i, the accuracy of MC-bel(i) can be shown to be not worse than that of nMBE(i).
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C H A P T E R 9

Bounding Inference by Iterative
message-passing schemes

As noted, the BTE algorithm, when applied to singly-connected problems becomes a very efficient
propagation algorithm that solves the queries (marginal or mpe) exactly. This is why it is called
belief propagation. The algorithm is well defined even if the graph is not tree-structured. When the
graphical model is not tree-structured, then BP is no longer exact. If we initialize all of the messages
in our system to some fixed value, e.g. the value "1", λi→j = 1, then the message updates are still
valid. Iteratively applying these message updates on the dual graph yields the approximate inference
method known as Loopy Belief Propagation (BP, or Iterative Belied propagation (IBP)). IBP is an
iterative method that is not guaranteed to converge. And, when the algorithm does converge, the
resulting beliefs may poorly approximate the true marginals, in the case of the marginal inference
task, or give a poor approximation to the mpe assignment, in the case of the mpe inference task.
However, despite this lack of guarantees the algorithms performs quite well in many cases (e.g.,
coding networks) and in other cases.

This section discusses Iterative bounded inference algorithms such as iterative belief propaga-
tion and iterative Join-Graph Propagation. Onemotivation for designing this algorithm is to combine
the anytime feature of Mini-Clustering (MC) and the iterative virtues of Iterative Belief Propagation
(IBP).

9.1 ITERATIVE JOIN-GRAPH PROPAGATION

Mini-clustering is not fully an anytime algorithm because it is not anyspace. Namely it is limited by
the available memory. It works on tree-decompositions and it converges in two passes, so iterating
doesn’t change the messages. IBP is an iterative algorithm that converges in many cases, and when
it converges it does so very fast. Allowing it more time doesn’t improve its accuracy. The immediate
question is if we can exploit the anytime property ofMC obtained using its i-bound, with the iterative
qualities of IBP. Algorithm Iterative Join-graph Propagation (IJGP) was designed to benefit from
both these directions. It works on a general join-graph which may contain cycles. The cluster size
of the graph is user adjustable by the i-bound parameter.
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The algorithm applies message computation over a join-graph decomposition, which has all
the ingredients of a join-tree, except that the underlying graph may have cycles.

Definition 9.1 join-graph decompositions. A join-graph decomposition for BN =<

X,D,G, P > is a triple D =< JG,χ, ψ >, where JG = (V,E) is a graph, and χ and ψ

are labeling functions which associate with each vertex v ∈ V two sets, χ(v) ⊆ X and ψ(v) ⊆ P
such that:

1. For each pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and scope(pi) ⊆ χ(v).
2. (connectedness) For each variable Xi ∈ X , the set {v ∈ V |Xi ∈ χ(v)} induces a connected

subgraph of G, a property also called the running intersection property.

We will refer to a node and its CPT functions as a cluster (note that a node may be asso-
ciated with an empty set of CPTs) and use the term join-graph-decomposition and cluster graph
interchangeably. A join-tree-decomposition or a cluster tree is the special case when the join-graph
JG is a tree.

It is clear that one of the problems of message propagation over cyclic join-graphs is over-
counting. Various schemes were proposed to overcome this problem.Wewill describe here a scheme
that avoids cycles relative to a single variable. Recall that in a dual graph some arcs may be redundant
and can be removed, sometime yielding a join-tree. We next define the notion arc-minimality that
captures this concept.

Definition 9.2 arc-minimality. A join-graph decomposition D is arc-minimal if none of its arcs
can be removed while still satisfying the connectedness property of Definition 2.1.

If a join-graph decomposition is not arc-minimal it is easy to remove some of its arcs until it
becomes arc-minimal. However, the property of arc-minimality is not sufficient to ensure variable-
based acyclicity though.What is required is that, for every variableX , the arc-subgraph that contains
X be a tree.

Example 9.3 The example in Figure 2.1a shows an arc minimal join-graph which contains a cycle
relative to variable 4, with arcs labeled with separators. Notice however that if we remove variable 4

from the label of one arc we will have no cycles (relative to single variables) while the connectedness
property will still be maintained.

We next refine the definition of join-graph decompositions, when arcs can be labeled with a
subset of their separator.

Definition 9.4 ((minimal) arc-labeled join-graph decompositions.) An arc-labeled decompo-
sition for BN =< X,D,PG,

∏
> is a graph, G = (V,E), where χ and ψ associate with each

vertex v ∈ V the sets χ(v) ⊆ X and ψ(v) ⊆ P and θ associates each edge (v, u) ⊂ E with a set
θ((v, u)) ⊆ X such that:
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Figure 9.1: An arc-labeled decomposition

1. For each function pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and
scope(pi) ⊆ χ(v).

2. (arc-connectedness) For each arc (u, v), θ(u, v) ⊆ sep(u, v), such that ∀Xi ∈ X , any two
clusters containing Xi can be connected by a path whose every arc’s label includes Xi.

Finally, an arc-labeled join-graph is minimal if no variable can be deleted from any label while still
satisfying the arc-connectedness property.

Recall the following definitions of separators and eliminators.

Definition 9.5 separator, eliminator. Given two adjacent vertices u and v of JG, the separator
of u and v is defined as sep(u, v) = χ(u) ∩ χ(v))), and the eliminator of u with respect to v is
elim(u, v) = χ(u)− ((u, v)). We denote also θ(u, v) = sep(u, v), where θ are the label on the
arcs.

Arc-labeled join-graphs can be made label-minimal by removing variables from their labels
while maintaining connectedness (if an arc label becomes empty, the arc can be deleted altogether).
It is easy to see that,

Proposition 9.6 Aminimal arc-labeled join-graph does not contain any cycle relative to any single
variable. That is, any two clusters containing the same variable are connected by exactly one path
labeled with that variable.

Notice that every minimal arc-labeled join-graph is arc-minimal (no arc can be deleted), but
not vice-versa. The mini-clustering approximation presented in Chapter 3, works by relaxing the
join-tree requirement of exact inference into a collection of join-trees having smaller cluster sizes.
As we explained, it introduces some independencies in the original problem via node duplication
and applies exact inference on the relaxed model requiring only 2 phases of message passings along
the mini-cluster tree. For the iterative class of algorithms which we call IJGP, we relax the tree-
structure requirement and allow join-graphs. facilitating iterative message-passing on the resulting
cyclic structure. The intuition is that having larger clusters can improve the accuracy of iterative
propagation schemes. The join-graphs must not introduce new independencies as we explain next.
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We allow only join-graph of a belief network that does not introduce any new independencies
to the problem, namely those that are I-map (independency map [109]) relative to node-separation,
of the underlying probability distribution. Since we plan to use minimally arc-labeled join-graphs to
address over-counting problems, the question is what kind of independencies are captured by such
graphs.

Definition 9.7 (edge-separation in (arc-labeled) join-graphs) Let D = 〈JG, χ, ψ, θ〉, JG =

(V,E) be an edge-labeled decomposition of a Bayesian network B = 〈X,D,PG,
∏〉. Let

NW , NY ⊆ V be two sets of nodes, and EZ ⊆ E be a set of edges in JG. LetW,Y,Z be their cor-
responding sets of variables (W = ∪v∈NW

χ(v), Z = ∪e∈EZ
θ(e)). We say that EZ edge-separates

NW andNY inD if there is no path betweenNW andNY in the JG graph whose edges in EZ are
removed. In this case we also say thatW is separated from Y given Z inD, and write 〈W |Z|Y 〉D.
Edge-separation in a regular join-graph is defined relative to its separators.

We can show that (see [99].)

Theorem 9.8 Any arc-labeled join-graph decomposition D = 〈JG, χ, ψ, θ〉 of a belief network
B = 〈X,D,G, P 〉 is an I-map of P relative to edge-separation. Namely, any edge separation in D
corresponds to conditional independence in P .

9.1.1 ALGORITHM IJGP
Applying CTE iteratively to minimal arc-labeled join-graphs yields algorithm Iterative Join-Graph
Propagation (IJGP) described in Figure 2.2. One iteration of the algorithm applies message-passing
in a topological order over the join-graph, forward and back. When node u sends a message (or
messages) to a neighbor node v it operates on all the CPTs in its cluster and on all the messages sent
from its neighbors excluding the ones received from v. First, all individual functions that share no
variables with the eliminator are collected and sent to v. All the rest of the functions are combined
in a product and summed over the eliminator between u and v.

It is straightforward to show that:

Theorem 9.9

1. If IJGP is applied to a join-tree decomposition it reduces to join-tree clustering and it there-
fore is guaranteed to compute the exact beliefs in one iteration.

2. The time complexity of one iteration of IJGP is O(deg · (n+N) · kw+1) and its space com-
plexity is O(N · kθ), where deg is the maximum degree of a node in the join-graph, n is the
number of variables, N is the number of nodes in the graph decomposition, k is the maximum
domain size, w is the maximum cluster size and θ is the maximum label size [99].
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Algorithm Iterative Join Graph Propagation (IJGP)

Input: An arc-labeled join-graph decomposition 〈JG, χ, ψ, θ〉, JG = (V,E) for B =

〈X,D,PG,
∏〉. Evidence variables var(e), evidence e.

Output: An augmented graph whose nodes are clusters containing the original CPTs and the messages
received from neighbors. Approximations of P (Xi, e), ∀Xi ∈ X .

Denote by h(u→v) the message from vertex u to v, nev(u) the neighbors of u in JG excluding v.
cluster(u) = ψ(u) ∪ {h(v→u)|(v, u) ∈ E}.
clusterv(u) = cluster(u) excluding message from v to u.

• One iteration of IJGP:
For every node u in JG in some topological order d and back, do

1. Process evidence variables:
Assign relevant evidence to all pi ∈ ψ(u) χ(u) := χ(u)− var(e), ∀u ∈ V

2. Compute individual functions:
Include in H(u→v) each function in clusterv(u) whose scope does not contain variables in
elim(u, v). Denote by A the remaining functions.

3. Compute combined function: h(u→v) = α
∑

elim(u,v)

∏
f∈A f , add to H(u→v).

Send H(u→v) to node v.

Endfor
• Compute P (Xi, e):

For every Xi ∈ X let u be a vertex in JG such that Xi ∈ χ(u).
Compute P (Xi, e) = α

∑
χ(u)−{Xi}(

∏
f∈cluster(u) f)

Figure 9.2: Algorithm Iterative Join-Graph Propagation (IJGP)

Proof. The number of cliques in the chordal graph G
′
corresponding to G is at most n, so the

number of nodes in the join-tree is at most n. The complexity of processing a node u in the join-tree
is degu · (|ψ(u)|+ degu − 1) · k|χ(u)|, where degu is the degree of u. By bounding degu by deg,
|ψ(u)| by n and χ(u) by w∗ + 1 and knowing that deg < N , by summing over all nodes, we can
bound the entire time complexity by O(deg · (n+N) · kw∗+1).

For each edge IJGP records functions. Since the number of edges in bounded by n and the
size of each message is bounded by dsep we get space complexity of O(n · dθ). �
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One question which we did not address at all in this section is why propagating the messages
iteratively should help. Why is IJGP upon convergence, superior to IJGP with one iteration and
is superior to MC? One clue can be provided when considering deterministic constraint networks
which can be viewed as “extreme probabilistic networks”. It is known that constraint propagation
algorithms, which are analogous to the messages sent by belief propagation, are guaranteed to con-
verge and are guaranteed to improve with convergence. The propagation scheme presented here
works like constraint propagation relative to the flat network abstraction of P (where all non-zero
entries are normalized to a positive constant), and propagation is guaranteed to be more accurate for
that abstraction at least. Another explanation is provided [75] by showing a connection between the
probability distribution generated by IJGP (upon convergence) and the distribution that minimize a
distance function to the exact distribution.

9.1.2 ITERATIVE BELIEF PROPAGATION
Iterative belief propagation (IBP) is an iterative application of Pearl’s algorithm for poly-trees [109]
to any Bayesian network. We will describe IBP as an instance of join-graph propagation over a dual
graph. We recap the definition of a dual graph.

Definition 9.10 dual graphs. Given a set of functions F = {f1, ..., fl} over scopes S1, ..., Sl, the
dual graph of F is a graphDG = (V,E, L) that associates a node with each function, namely V =

F and an edge connects any two nodes whose function’s scope share a variable, E = {(fi, fj)|Si ∩
Sj 6= φ} .L is a set of labels for the arcs, each being labeled by the shared variables of its nodes,L =

{lij = Si ∩ Sj |(i, j) ∈ E}. A dual join-graph is an arc-labeled edge subgraph of DG. A minimal
dual join-graph is a dual join-graph for which none of the edge labels can be further reduced while
maintaining the connectedness property.

Interestingly, there may be many minimal dual join-graphs of the same dual graph. We will
define Iterative Belief Propagation on a dual join-graph. Each node sends a message over an edge
whose scope is identical to the label on that edge. Since Pearl’s algorithm sends messages whose
scopes are singleton variables only, we highlight minimal singleton-label dual join-graphs.

Proposition 9.11 Any Bayesian network has a minimal dual join-graph where each arc is labeled
by a single variable.

Proof. Consider a topological ordering of the nodes in the acyclic directed graph of the Bayesian
network d = X1, ..., Xn. We define the following dual join-graph. Every node in the dual graph D,
associated with CPT pi is connected to node of CPT pj , j < i if Xj ∈ pa(Xi). We label the arc
between pj and pi by variableXj , namely lij = {Xj}. It is easy to see that the resulting arc-labeled
subgraph of the dual graph satisfies connectedness. The resulting labeled graph is a dual graph with
singleton labels. �
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Figure 9.3: a) A belief network; b) A dual join-graph with singleton labels; c) A dual join-graph
which is a join-tree

Example 9.12 Consider the belief network on 3 variables A,B,C with CPTs 1. P (C|A,B), 2.
P (B|A) and 3. P (A), given in Figure 2.3a. Figure 2.3b shows a dual graph with singleton labels
on the edges. Figure 2.3c shows a dual graph which is a join-tree, on which belief propagation can
solve the problem exactly in one iteration (two passes up and down the tree).

For completeness, we present algorithm IBP in Figure 2.4 which is a special case of IJGP.
When IBP is time and space linear in the size of the belief network. It is also easy to show that when
IBP is applied to a minimal singleton-labeled dual graph it coincides with Pearl’s belief propagation
applied directly to the acyclic graph representation. Also, when the dual join-graph is a tree, IBP
converges after one iteration (two passes, up and down the tree) yielding the exact beliefs.

9.1.3 BOUNDED JOIN-GRAPH DECOMPOSITIONS
Since we want to control the complexity of join-graph algorithms, we will define it on decomposi-
tions having bounded cluster size. If the number of variables in a cluster is bounded by i, the time
and space complexity of processing one cluster is exponential in i. We will call the maximal cluster
size in a join-graph, joinwidth.

Given a join-graph decomposition D = 〈JG, χ, ψ, θ〉, the joinwidth of D defined as
maxv∈V |χ(v)|. Intuitively, the accuracy of a typical algorithm in this class the accuracy depends
on how far the join-graph is from a join-tree, which may be captured by the treewidth of JG which
we would call external width. We can now state our target decomposition as follows. Given a graph
G, and a bounding parameter i we wish to find a join-graph decompositionD ofGwhose joinwidth
is bounded by i and whose external width is minimized.

We can consider two classes of algorithms. One class is partition-based. Algorithms in this
class start from a given tree-decomposition and then partitions the clusters until the decomposition
has clusters bounded by i. An alternative approach is grouping-based algorithms. It starts from a
minimal dual-graph-based join-graph decomposition (where each cluster contains a single CPT) and
groups clusters into larger clusters as long as the resulting clusters do not exceed the given bound. In
bothmethods one should attempt to reduce the external width of the generated graph-decomposition.

We will next present a partition-based approach which is based on the decomposition sug-
gested by the mini-bucket scheme. Given a bound i, algorithm Join-Graph Structuring(i) applies the
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Algorithm Iterative Belief Propagation (IBP)
Input: An edge-labeled dual join-graph DG = (V,E,L) for a Bayesian network B =

〈X,D,PG,
∏〉. Evidence e.

Output: An augmented graph whose nodes include the original CPTs and the messages received
from neighbors. Approximations of P (Xi, e), ∀Xi ∈ X . Approximations of P (Fi, e), ∀Fi ∈ B.
Denote by: hu→v the message from u to v; ne(u) the neighbors of u in V ; nev(u) = ne(u)− {v};
luv the label of (u, v) ∈ E; elim(u, v) = scope(u)− scope(v).
• One iteration of IBP
For every node u in DJ in a topological order and back, do:

1. Process observed variables
Assign evidence variables to the each pi and remove them from the labeled edges.

2. Compute and send to v the function:

hu→v = α
∑

elim(u,v)

(pu ·
∏

{hi→u,i∈nev(u)}
hi→v)

Endfor
• Compute approximations of P (Fi, e), P (Xi, e):
For every Xi ∈ X let u be the vertex of family Fi in DJ ,
P (Fi, e) = α(

∏
hi→u,u∈ne(i) hi→u) · pu;

P (Xi, e) = α
∑

scope(u)−{Xi} P (Fi, e).

Figure 9.4: Algorithm Iterative Belief Propagation

procedure Schematic Mini-Bucket(i), described in Figure 2.6. The procedure only traces the scopes
of the functions that would be generated by the full mini-bucket procedure, avoiding actual function
computation. The procedure ends with a collection of mini-bucket trees, each rooted in the mini-
bucket of the first variable. Each of these trees is minimally edge-labeled. Then, in-edges labeled
with only one variable are introduced, and they are added only to obtain the running intersection
property between branches of these trees.

Proposition 9.13 Algorithm Join-Graph Structuring(i) generates a minimal edge-labeled join-
graph decomposition having bound i.

Proof. The construction of the join-graph specifies the vertices and edges of the join-graph, as well
as the variable and function labels of each vertex. We need to demonstrate that 1) the connectedness
property holds, and 2) that edge-labels are minimal.
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Algorithm Join-Graph Structuring(i)

1. Apply procedure schematic mini-bucket(i).

2. Associate each resulting mini-bucket with a node in the join-graph, the variables of the nodes are those ap-
pearing in the mini-bucket, the original functions are those in the mini-bucket.

3. Keep the edges created by the procedure (called out-edges) and label them by the regular separator.

4. Connect the mini-bucket clusters belonging to the same bucket in a chain by in-edges labeled by the single
variable of the bucket.

Figure 9.5: Algorithm Join-Graph Structuring(i).
Procedure Schematic Mini-Bucket(i)

1. Order the variables fromX1 toXn minimizing (heuristically) induced-width, and associate a bucket for each variable.

2. Place each CPT in the bucket of the highest index variable in its scope.

3. For j = n to 1 do:
Partition the functions in bucket(Xj) into mini-buckets having at most i variables.
For each mini-bucketmb create a new scope-function (message) f where scope(f) = {X|X ∈ mb} − {Xi} and place
scope(f) in the bucket of its highest variable. Maintain an edge betweenmb and the mini-bucket (created later) of f .

Figure 9.6: Procedure Schematic Mini-Bucket(i).

Connectedness property specifies that for any 2 vertices u and v, if vertices u and v contain
variable X , then there must be a path u,w1, ..., wm, v between u and v such that every vertex on
this path contains variableX . There are two cases here. 1) u and v correspond to 2 mini-buckets in
the same bucket, or 2) u and v correspond to mini-buckets in different buckets. In case 1 we have 2
further cases, 1a) variable X is being eliminated in this bucket, or 1b) variable X is not eliminated
in this bucket. In case 1a, each mini-bucket must contain X and all mini-buckets of the bucket are
connected as a chain, so the connectedness property holds. In case 1b, vertexes u and v connect to
their (respectively) parents, who in turn connect to their parents, etc. until a bucket in the scheme
is reached where variable X is eliminated. All nodes along this chain include variable X , so the
connectedness property holds. Case 2 resolves like case 1b.

To show that edge labels are minimal, we need to prove that there are no cycles with respect
to edge labels. If there is a cycle with respect to variableX , then it must involve at least one in-edge
(edge connecting two mini-buckets in the same bucket). This means variableX must be the variable
being eliminated in the bucket of this in-edge. Therefore, variable X is not contained in any of the
parents of the mini-buckets of this bucket. Therefore, in order for the cycle to exist, another in-edge
down the bucket-tree from this bucket must contain X . However, this is impossible as this would
imply that variable X is eliminated twice. �
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Figure 9.7: Join-graph decompositions.
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Figure 9.8: Join-graphs.

Example 9.14 Figure 2.7a shows the trace of procedure schematic mini-bucket(3) applied to the
problem described in Figure 1.17a. The decomposition in Figure 2.7b is created by the algorithm
graph structuring. The only cluster partitioned is that of F into two scopes (FCD) and (BF), con-
nected by an in-edge labeled with F.
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Example 9.15 Figure 2.8 shows a range of edge-labeled join-graphs. On the left extreme we have
a graph with smaller clusters, but more cycles. This is the type of graph IBP works on. On the right
extreme we have a tree decomposition, which has no cycles but has bigger clusters. In between,
there could be a number of join-graphs where maximum cluster size can be traded for number of
cycles. Intuitively, the graphs on the left present less complexity for join-graph algorithms because
the cluster size is small, but they are also likely to be less accurate. The graphs on the right side are
computationally more complex, because of larger cluster size, but are likely to be more accurate.

9.2 COST-SHIFTING FOR BETTER APPROXIMATION
All the decomposition bounds that we have shown can be improved, or tightened bywhat is sometime
called cost-shifting or re-parameterization and fall under the class of variational schemes. The idea
is to shift some costs from one local function to another in a way that does not change the global
function, but can improve the decomposition bound. We will see several variants of these ideas,
one is mini-bucket elimination with max-marginal matching (MBE-MM), which is a non-iterative
algorithm that applies a single pass of cost-shifting during the mini-bucket construction bucket by
bucket. The second approach, Join Graph Linear Programming (JGLP), iteratively applies cost-
shifting updates to the full mini-bucket join-graph.

9.2.1 LINEAR PROGRAMMINGMETHODS
To introduce the idea assume for simplicity that the network consists only of pairwise func-
tions F = {fij(Xi, Xj)} and that the problem is max-sum, i.e., the task is to compute C∗ =

maxX

∑
fij∈F fij(Xi, Xj). A simple bound on the max-sum objective is then given by maxima of

the individual functions, exchanging the sum and max operators, as is common in the mini-bucket
scheme:

C∗ = max
X

∑
fij∈F

fij(Xi, Xj) ≤
∑
fij∈F

max
Xi,Xj

fij(Xi, Xj) (9.1)

As noted for the mini-bucket case we can interpret this operation as making an individual
copy of each variable for each function, and optimizing over them separately. See, for example, the
problem in Figure 2.9(a) with 3 variables and 3 functions. Figure 2.9(e) shows the modified problem
with each variable duplicated, so that each function can be maximized over independently. We can
also derive a bound on the optimal cost by introducing a collection of functions {λij(Xi), λji(Xj)}
for each edge (ij) and requiring

λ ∈ Λ ⇔ ∀i,
∑
j

λij(Xi) = 0 (9.2)
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Then, we have
C∗ = max

X

∑
fij∈F

fij(Xi, Xj)

= max
X

∑
fij∈F

fij(Xi, Xj) +
∑
i

∑
j

λij(Xi)

≤ min
λ∈Λ

∑
fij∈F

max
Xi,Xj

(
fij(Xi, Xj) + λij(Xi) + λji(Xj)

) (9.3)

The last expression is obtained by distributing each λij to its associated factor and applying the
inequality (2.1).

The new functions f̃ij = fij(Xi, Xj) + λij(Xi) + λji(Xj) define a re-parametrization of
the original distribution, i.e., they change the individual functions without modifying the global
function F (X) =

∑
X fij =

∑
X f̃ij . The λij can be interpreted as “cost-shifting” operations that

transfer cost from one function to another while preserving the overall cost [3] or as Lagrange multi-
pliers enforcing consistency among the copies ofXi [2, 75]. In the former interpretation, the updates
are called “soft arc-consistency” due to their similarity to arc-consistency for constraint satisfaction.
Under the latter view, the bound corresponds to a dual decomposition solver for a linear program-
ming (LP) relaxation of the original problem.

The main distinguishing feature among such dual decomposition approaches is the way in
which the bound is tightened by updating the functions λ. This is done either by sub-gradient ap-
proaches or by coordinate descent updates that can be interpreted as “message passing” [? ? ].
Without going into the details of these approaches, we refer to these iterative bound improvement
updates as “LP-tightening” updates.

LP-tightening algorithm. Let’s see a derivation of a particular simple, yet effective scheme that
minimizes over λs the expression∑

fij∈F
max
Xi,Xj

(
fij(Xi, Xj) + λij(Xi) + λji(Xj)

)
(9.4)

thus tightening the upper bound on C∗ (Eq. 2.3).
The LP-tightening scheme is initialized with all λij(Xi) = 0. In the spirit of well-known co-

ordinate descent approaches we iteratively minimize expression 2.4 with respect to each λij(Xi)

separately, while fixing the values of all other λs. For simplicity of derivation, without loss of gen-
erality, lets assume that each variableXi appears in the scope of at most two functions, fij(Xi, Xj)

and fik(Xi, Xk). Identifying only the terms relevant to variable Xi, we get:

min
λij(Xi),λik(Xi)

[[
max
Xi,Xj

fij(Xi, Xj) + λij(Xi)
]

+
[

max
Xi,Xk

fik(Xi, Xk) + λik(Xi)
]]

= min
λij(Xi),λik(Xi)

[
max
Xi

[
max
Xj

fij(Xi, Xj) + λij(Xi)
]

+ max
Xi

[
max
Xk

fik(Xi, Xk) + λik(Xi)
]]
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Figure 9.9: The mini-bucket procedure for a simple graph. (a) Primal graph; (b) the buckets and
messages computed in MBE; (c) join-graph, dotted line corresponds to an edge absent from a mini-
bucket tree; (d) interpreting MBE as variable duplication, X1 is duplicated in each of two mini-
buckets q1

1 = {f1(X1, X2)} and q2
1 = {f3(X1, X3)}; (e) The graph on which FGLP runs with all

variables duplicated and each factor processed separately.

Let us define the so-called “max-marginals” γij(Xi) = maxXj fij(Xi, Xj) and re-arrange
the terms in the above expression, yielding the following bound:

min
λij(Xi),λik(Xi)

[
max
Xi

[
max
Xj

fij(Xi, Xj) + λij(Xi)
]

+ max
Xi

[
max
Xk

fik(Xi, Xk) + λik(Xi)
]]

= min
λij(Xi),λik(Xi)

[
max
Xi

[
γij(Xi) + λij(Xi)

]
+ max

Xi

[
γik(Xi) + λik(Xi)

]]
≥ min
λij(Xi),λik(Xi)

[
max
Xi

[
γij(Xi) + γik(Xi) + λij(Xi) + λik(Xi)

]]
(9.5)

We force that λij(Xi) + λik(Xi) = 0 to ensure that the total cost does not changed (Equa-
tion 2.2).
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Algorithm 6: LP-tightening (based on [? ])
Input: A graphical modelM = 〈X,D,F,

∑
〉, where fSi is a potential defined on variables Si

Output: Upper bound on the optimum value of maxX

∑
F

while NOT converged do
for any pair of function scopes Si, Sj such that Sij = Si ∩ Sj 6= ∅ do

Compute max-marginals:
γSi(Sij) = maxSi\Sij fSi ;
γSj (Sij) = maxSj\Sij fSj ;
Update parametrization:
fSi ← fSi + 1

2

(
γSj (Sij)− γSi(Sij)

)
;

fSj ← fSj + 1
2

(
γSi(Sij)− γSj (Sij)

)
;

Many choices of λij are known to achieve the minimum of the right-hand side of expres-
sion 2.5. Lets select the following one:

λij(Xi) =
1

2

(
γik(Xi)− γij(Xi)

)
=

1

2

(
max
Xk

fik(Xi, Xk)−max
Xj

fij(Xi, Xj)
)

(9.6)

Iterating over all functions, while updating each function ∀i, j, fij(Xi, Xj)← fij(Xi, Xj) +

λij(Xi) and recalculating λij at each step until convergence, yields a minimization procedure that
can be interpreted as a max-marginal or moment-matching procedure on the functions fij(Xi, Xj).
Intuitively, we would like the updates to diminish in magnitude and converge to zero as fast as
possible. To achieve that, taking into account Equation 2.6, wewould like tomake themax-marginals
γij(Xi) and γik(Xi) of each variable Xi equal to each other. Algorithm 1 generalizes this update
to higher-order functions fSi over scopes of variables Si ⊆ X.

A well-known algorithm quite similar to the above LP-tightening in Algorithm 1 is a message-
passing scheme called Max-Product Linear Programming (MPLP) [? ]. Algorithm 2 presents a ver-
sion of MPLP that we call Factor Graph Linear Programming (FGLP). At each step FGLP simul-
taneously updates all functions fij(Xi, Xj) involving a single variable Xi. The messages sent by
the algorithms on a factor graph are schematically illustrated in Figure 2.10. In this example vari-
able Xi is in the scope of three functions: fSt(Xi, Xk, Xm), fSp(Xi, Xj) and fSq(Xi, Xn), where
St = {Xi, Xk, Xm}, Sp = {Xi, Xj} and Sq = {Xi, Xn}. Note that in the figure we only show
the messages involving Xi. The max-marginals are: γSq(Xi) = maxXn fSq(Xi, Xn), γSp(Xi) =

maxXj
fSp(Xi, Xj) and γSt(Xi) = maxXk,Xm fSt(Xi, Xk, Xm). The update messages from vari-
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Algorithm 7: Factor Graph Linear Programming (FGLP, based on [? ])
Input: A graphical modelM = 〈X, ,F,

∑
〉, variable ordering o

Output: Upper bound on the optimum value of MPE cost
while NOT converged do

for each variableXi do
Get factors Fi = fSk : Xi ∈ Sk withXi in their scope;
//for each function compute max-marginals γ marginalizing out all variables except forXi:
∀fSk γSk (Xi) = maxSk\Xi

fSk ;
// compute messages βSk (Xi) fromXi back to a function fSk correcting for the function’s own
max-marginal γSk :
∀fSk βSk = 1

|Fi|
∑
{Sj|fSj∈Fi} γSj (Xi)− γSk (Xi)

// update (re-parametrize) each function:
∀fSk , fSk ← fSk + βSk ;

Xi

fSp
(Xi, Xj)

fSt
(Xi, Xk, Xm)

fSq
(Xi, Xn)

Xj

Xk

Xn

γSp
(Xi)

γSt
(Xi)

γSq
(Xi)βSq

(Xi)

βSt
(Xi)

βSp
(Xi)

Figure 9.10: FGLP example: local messages involving variable Xi.

able Xi back to the functions are:

βSq(Xi) =
1

3
(γSq(Xi) + γSp(Xi) + γSt(Xi))− γSq(Xi)

βSp(Xi) =
1

3
(γSq(Xi) + γSp(Xi) + γSt(Xi))− γSp(Xi)

βSt(Xi) =
1

3
(γSq(Xi) + γSp(Xi) + γSt(Xi))− γSt(Xi)
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Algorithm 8: Algorithm JGLP
Input: A graphical modelM = 〈X, ,F,

∑
〉, variable order d = {X1, . . . , Xn}, parameter i.

Output: Upper bound on the optimum value of MPE cost
//Initialize: Partition the functions in F into B1, . . . ,Bn, where Bp contains all functions fSj whose
highest variable isXp;
Build mini-bucket join graph; // (Algorithm ??)
Find the function of each mini-bucket qpk:
F p
k =

∑
fSj∈q

p
k
fSj

while NOT converged OR NOT time limit reached do
for all pairs of mini-buckets qpk , q

l
k connected by an edge do

Find the separators S = Scope(qpk) ∩ Scope(qlk) ;
Find the max-marginals of each mini-bucket
qpk: γ

p
k = maxScope(q

p
k
)−S(F p

k );
qjk: γ

l
k = maxScope(ql

k
)−S(F l

k);
Update functions in both mini-buckets
qpk: F

p
k ← F p

k −
1
2
(γp

k − γ
l
k)

qlk: F l
k ← F l

k + 1
2
(γp

k − γ
l
k);

Theorem 9.16 Complexity of FGLP. The total time complexity of a single iteration of FGLP is
O(n ·Q · kSc), where n is the number of variables in the problem, k is the largest domain size, |F|
is the number of functions, Sc bounds the largest scope of the original functions, Q is the largest
number of functions having the same variable Xj in their scopes. The space complexity is O(|F| ·
kSc).

9.2.2 JOIN GRAPH LINEAR PROGRAMMING
Join-Graph MBE Structuring. The mini-bucket procedure defines a mini-bucket tree. Each mini-
bucket defines a cluster. Two mini-buckets are connected if there exists a message between them.
Once the mini-buckets of the same variables are connected, the mini-bucket tree yields a join-graph,
where each cluster has at most i+ 1 variables, where i is the i-bound.

Join-Graph MBE Structuring (Algorithm 2.5) constructs a join-graph using the mini-bucket
elimination. The structure is the same as the mini-bucket-tree assuming variable duplication with
additional arcs connecting mini-buckets of the same bucket in a line.

Figure 2.9 presents an example of a problem with 3 variables, whose primal graph is shown in
Figure 2.9(a). In Figure 2.9(b) we see the trace of MBE on the problem, namely the buckets and the
messages computed. Figure 2.9(c) shows the join-graph created by Join-Graph MBE Structuring.
The dotted line corresponds to an edge absent from a mini-bucket tree and added during step at line
8.
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Join-Graph Linear Programming. From the perspective of linear programming relaxation (Sec-
tion 2.2.1) mini-bucket elimination can be interpreted as running a single pass of LP-tightening,
sending messages top down only along edges of the spanning tree of the mini-bucket join graph.
A straightforward extension of MBE can be an iterative procedure that repeatedly performs LP-
tightening along all of the join graph edges. Algorithm 3 shows the resulting Join-Graph Linear
Programming (JGLP) scheme. It constructs the join graph (line 1), calculated mini-bucket functions
F pk (line 2) and performs re-parametrization updates to F pk (as in Algorithm 1) until convergence
(lines 2-7). Note that once JGLP converges, performing mini-bucket elimination on the resulting
graph will not change the bound value.

Theorem 9.17 Complexity of JGLP. Given a problem with n variables with largest domains of
size k, where at mostQ functions have the same variable in their scope, and i-bound i, the time com-
plexity of a single iteration of JGLP isO(n ·Q · ki). The time complexity of join-graph construction
step is O(n · ki+1). The overall space complexity is O(n · ki+1 + n · ki).

Proof. The complexity of constructing a join-tree is the same as the complexity of running full
mini-bucket elimination algorithm, namely O(n · ki+1). The time complexity of a single iteration
of JGLP consists of performing for each edge the following steps: 1. compute max-marginals of a
pair of clique functions, requires time equal to O(2 · ki+1−|S|), where |S| is the size of a separator
between the mini-buckets of the same variable. 2. compute the mean, which takes O(2 · k|S|) time.
3. update the clique functions, requiring O(2 · ki+1) time.

The space complexity of the algorithm is dominated by the necessity of storing in memory
the join-graph, whose size is bounded by O(n · ki+1) and the messages between the clusters of size
O(n · ki), yielding the overall space complexity of O(n · ki+1). �

9.2.3 MBE-MM
While the iterative nature of JGLP yields more accurate bounds than MBE, in practice it can have a
significant additional time and space overhead compared to MBE.

We next present a non-iterative scheme that performs re-parametrization between the mini-
buckets of the same variable only. The algorithmmini-bucket elimination with max-marginal match-
ing (MBE-MM,Algorithm 4) proceeds by following the standardmini-bucket downward pass.When
each mini-bucket qpk ∈ Qk is processed, before eliminating variable Xk, we first perform an LP-
tightening update to the mini-bucket functions fqpk . For storage and computational efficiency rea-
sons, we perform a single update on all mini-buckets of the same variable simultaneously, matching
their max-marginals on their joint intersection. Alternatively, the updates can be done between all
possible pairs of mini-buckets of the same bucket. While not guranteed, it is reasonable to expect
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Algorithm 9: Algorithm MBE-MM
Input: A graphical modelM = 〈X, ,F,

∑
〉, variable order d = {X1, . . . , Xn}, i-bound parameter i

Output: Upper bound on the optimum value of MPE cost
//Initialize:
Partition the functions in F into B1, . . . ,Bn, where Bk contains all functions fj whose highest variable isXk;
//processing bucket Bk

for k ← n down to 1 do
Partition functions g (both original and messages generated in previous buckets) in Bk into the mini-buckets
definedQXk

= {q1k, . . . , q
t
k}, where each q

p
k has no more than i+ 1 variables;

Find the set of variables common to all the mini-buckets of variableXk: Sk = Scope(q1k) ∩ · · · ∩ Scope(q
t
k);

qpk : F
p
k ←

∏
g∈qp

k
g;

Compute the max-marginals of each mini-bucket
qpk : γ

p
Xk

= maxScope(q
p
k
)\Sk (F

p
k );

Update functions of each mini-bucket
F p
k ← F p

k − γ
p
Xk

+ 1
t

∑t
j=1 γ

j
Xk

;
Generate messages hpXk→Xm

= maxXk
F p
k and place each in the bucket of highest in the ordering o variable

Xm in Scope(qpk);
return All the buckets and the cost bound from B1;

that the update will help, and in practice we find that the bounds are almost always significantly
improved.

Theorem 9.18 Complexity of MBE-MM. Given a problem with n variables having domain of
size k and an i-bound i, MBE-MM is O(n ·Q · ki+1) time and its space complexity is O(n · ki),
where Q bounds the number of functions sharing the same variable Xi in their scopes.
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Conclusion
We covered the principles of exact algorithms in graphical models, organized along the two styles
of reasoning: inference and search. We focused on methods that are applicable to general graphi-
cal models, whose functions can come from a variety of frameworks and applications (constraints,
Boolean, probabilities, costs etc.). These include, constraint networks and SAT models, Bayesian
networks, Markov random fields, Cost networks, and Influence diagrams. Therefore, the primary
features that capture structure in a unified way across all these models are graph features. The main
graph property is the induced-width also known as treewidth, but we also showed the relevance
of related features such as height of pseudo trees, cycle-cutsets, q-cutsets and separator width. We
showed that both inference and search scheme are bounded exponentially by any of these parameters,
and some combination of those hint at how we can trade memory for time.

With the exception of constraints, we did not discuss internal function structure as a potential
feature. These function-structure features are sometimes addressed as language (e.g., Horn clauses,
linear functions, convex functions) and can lead to various tractable classes. Other terms used are
context-sensitive or context specific independence. In the constraint literature, tractability based on
the language of constraints was investigated thoroughly (see Dechter [50, Chapter 10].) Likewise,
focus on language is a central research activity in probabilistic reasoning. An example of a structure
exploited in probabilistic graphical models are the sub-modular functions [52].

The next thing on our agenda is to extend the book with a second part focusing on approxima-
tion schemes. This obviously is necessary since exact algorithms cannot scale-up to many realistic
applications that are complex and quite large and appropriately, current research centered on de-
veloping approximation schemes. But, we believe that in order to have effective approximation
algorithms we have to be equipped with the best exact algorithms, first.

Approximation algorithms can be organized along the dimensions of inference and search
as well. Given a general algorithmic architecture (such as Adaptive AND/OR search with caching
(AOC(q)), or, alternatively, AO-VEC(q), we can approximate either the inference part or the search
part or both, systematically yielding an ensemble of candidates approximation algorithms that can
be studied.We can viewmessage-passing and variational algorithms such as generalized belief prop-
agation, the mini-bucket and weighted mini-bucket schemes [43, 87] as approximations that bound
inference. We can view Monte Carlo sampling methods, as approximations to search. The hybrid
schemes can be used to focus on approximating only those portions of the problem instance that
appear non-tractable for exact processing. Namely, for a given problem instances, it can suggest a
balance between approximate and exact and the type of approximation that should be utilized.



222 10. CONCLUSION

One should note that approximate reasoning in graphical modeling with any guarantees was
shown to be hard as well [32, 114]. Yet, algorithms that generate bounds or anytime schemes that
can improve their bounds if allowed more time, and even get to an exact solution when time permits,
are highly desirable. Pointers to some literature on approximations can be found in recent Ph.D.
theses [80], [22], [69], [100], [94], and in a variety of articles in the field such as (on message-
passing variational approaches) [99], [75, 89, 131, 132], [73, 88], and [125]. On Sampling and
hybrid of sampling and bounded inference see Bidyuk and Dechter [18], Bidyuk et al. [20] and
Gogate and Dechter [65, 66, 67]. On anytime schemes for optimization see Marinescu and Dechter
[93], Otten and Dechter [108].
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