Causal and Probabilistic Reasoning

Rina Dechter

ldentification of Causal Effect
Adjusting for parents

Primer chapter 3, Causality 1.3, 3.1, 3.2
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Outline (chapter 3)

* The semantic of Intervention in SCM, the do operators
* How to determine P(Y|do(x)) given an SCM

* The back door criterion and the adjustment formula

* |dentifiability



Target: to Determine the Effect of Interventions

* “Correlation is no causation”, e.g., Increasing ice-cream sales is correlated with
more crime, still selling more ice-cream will not cause more violence. Hot
weather is a cause for both.

 Randomized controlled experiments are used to determine causation: all factors
except a selected one of interest are kept static or random. So the outcome can
only be influenced by the selected factor.

 Randomized experiments are often not feasible (we cannot randomize the
weather), so how can we determine cause for wildfire?

* Observational studies must be used. But how we untangle correlation from
causation?



Causal Inference —

Connecting Different Worlds

P
Data <« Distribution

P)
Distribution

OP’)
I~ (Aspects of P’

What happens when P changes?

(Regime 1) T (Regime 2)
| change I

Inference

e.g., Infer whether less people would get cancer

If we ban smoking.

Q = P(Cancer = true | do(Smoking = no))
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The Challenge of Causal Inference

Real world Hypothetical world

_ = Z . age, sex
X :action
W : mediator
e \ change . o \ _
X W Y X W v Y :outcome
P(z, x, w, y) P(y | do(x))

® Goal: how much Y changes with X if we vary X between
two different constants free of the influence of Z.

® These variations are called causal effects!

Bareinboim slides 2020
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Method for Computing Causal
Effects: Randomized Experiments

Real world Hypothetical world _
e P it Z :age, sex
X :action
W : mediator
[ >0 .
X W N Y :outcome
do(Xo) do(X1)
Z Z
o o Often we cannot do this:
¢ e e How do we force people to smoke (and wait 20 years
Xo W Y X W Y For them to die or not)
Randomization: How can we change cholesterol levels...

P(y | do(Xo)) P(y [ do(Xy)
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Computing Causal Effects (12) from
Observational Data (/1)

Real world Hypothetical world 7 : age, sex
Z . . . . Z ) - .’
X :action
W : mediator
. \ | change | o R Y -
y v v « W y ;. outcome
5
P(z, X, W, Y) ' Py [ do())
Questions:

*What is the relationship between P(z, x, w,y) and P(y | do(x))?
*Is P(y [ do(x)) = P(y | x)?
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Causal Effects (formal)

Causal Effect (Def. 3.2.1 [C]):

Given two disjoint sets of variables, X and Y, the
causal effect of X on Y, denoted as P(y | do(x)), Is a
function from X to the space of probability
distributions of Y.

For each realization x of X, P(y | do(x)) Is the
probability Y =y induced by deleting from the
model all equations corresponding to variables in X
and substituting X = x In the remaining equations.




Computing Causal Effects from

Observationa

Real world

X W Y
( L= 1:Z(Uz)
X = fX(ZI ux)
M= W = fx, u)

Y =1fy(w,z uy)

change

do(X=x)
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Data
Alternative world 7 - age, sex
7 | ' A
X :action
W : mediator
¢ > > .
X W y Y :outcome
rZ = fZ(uz)
X =f(z,u,) X =x
M= W = fulx, uy)

Y =1fy(w,z uy)



Computing Causal Effects from

Observational Data
Re;l erI‘d. Alterne;tive World 7 - age, sex
X :action
W : mediator
‘o % | change | e \ _
X W y X W y Y :outcome
P(v) = Px(v) =
P(z) X
P(z) XP(x | z) XP(w | x) do(x=x)  Pédz) Xequalto 1in M
XP(y | w, 2) P(w | x) X

P(y [ w, 2)
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Outline (chapter 3)

* How to determine P(Y|do(x)) given an SCM



Computing Causal Effects from
Observational Data

Consider a distribution over the season P(se)
variables: season, sprinkler, rain, wet,
and slippery; and the causal graph: / \

sprinkler rain

P(sp | se) \ /P(ra | se)
This distribution decomposes as
wet

P(v) = P(we | sp, ra)
P(se)P(sp | se)P(ra | se)P(we | sp, ra)P(sl | we) 1

slippery
P(sl | we)
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Computing Causal Effects from
Observational Data

Queries: season

Q1= P(wet | Sprinkler =on) / \

sprinkler rain

Q2= P(wet | do(Sprinkler =on)) \ /
wet
l

slippery
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Computing Causal E

fects from

Observationa

Queries:

Q1= P(wet | Sprinkler =on)
=P(01) + P()

Q2= P(wet | do(Sprinkler = on))
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Data

season

7\

sprinkler rain
wet

slippery



Computing Causal Effects from
Observational Data

Queries: season
Q1= P(wet | Sprinkler =on) / \
le_ﬂ P(we|Sp = on,ra)P(Sp = on|se)P(ra| se)P(se) sprinkler rain

Y., P(Sp = on|se)P(se) \ /
Q2 = P(wet | do(Sprinkler =on))
wet

|

slippery

You can do algorithm bucket elimination to infer Q1.
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Computing Causal Effects from
Observational Data

Queries: season
Q1= P(wet | Sprinkler =on) Fi(( \
Z}_Nw P(we|Sp = on,ra)P(Sp = on|se)P(ra|se)P(se) sprinkler rain

ZM P(Sp = on|se)P(se) \ /
Q2= P(wet | do(Sprinkler = on))
wet

|

slippery

You can do algorithm bucket elimination to infer Q2.
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Computing Causal Effects from
Observational Data

Queries: season
Q1= P(wet | Sprinkler =on) \
Z}_Nw P(we|Sp = on,ra)P(Sp = on|se)P(ra| se)P(se) sprinkler rain
ZM P(Sp = on|se)P(se) \ /
Q2 = P(wet | do(Sprinkler =on))
— P( ) wet

|

slippery

You can do algorithm bucket elimination to infer Q1.

slides9 276 2024



Computing Causal Effects from
Observational Data

Queries: season
Q1= P(wet | Sprinkler =on) \
Z}_Nw P(we|Sp = on,ra)P(Sp = on|se)P(ra|se)P(se) sprinkler rain
Y P(Sp = on|se)P(se) \ /
Q2 = P(wet | do(Sprinkler =on))
wet
2., .. Pwe|Sp = on,rajP(Sp = on)P(ra|se)P(se) 1
B P(Sp - on) _
slippery

= z P(we|Sp = on,ra)P(ra| se)P(se)

You can do algorithm bucket elimination to infer Q2.



Bucket elimination
Algorithm BE-bel (Dechter 1996)

P(A|[E=0)=« ZP(A)-P(B|A)-P(C|A)-P(D|A,B)-P(E|B,C)

ZH<— Elimination operator
b A

bucket B:  P(bla) P(db,a) P(elb,c)
NG

bucket C: P(cla) 4°(a,d,c,e)

\/ v
bucket D: A (a,d,e)
bucket E: e=0 }LD (a e)

W*=4

bucket A: P(a)\ (a)
P(a,e= O/@‘éL
P(a|e=0)= _P(a,e=0)

slide 927620 P(e 0)




Truncated Factorization Product
(Operationalizing Interventions)

Corollary (Truncated Factorization, Manipulation Thm., G-comp.):

The distribution generated by an intervention do(X=x) (in a Markovian

model M) is given by the truncated factorization:

P(v|do(x)) = - P(vi|pa;)
(VeV\X}

slides9 276 2024
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Truncated Factorization Formula

The truncated product,

Pv|dox) =[] Po;lpa

(VEV\X) .
can be rewritten as: -
P(v
P(v| do(x)) = ——2
P (x| pay)
X=x

Also equivalent to:

P(v|do(x)) = P (V|X, pay) P (pay)

=X

The transformation between the observation and interventional
distributions can be seen as a re-weighing process.
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Intervention vs. Conditioning, The Ice-Cream Story

Conditioning P(Y=y|X=x) Uz
Intervening P(Y=y| do(X=x)) ltemperature
z
Uy Uy

e AN
VN
Ice cream sales R : Crime rates

Figure 3.1: A graphical model representing the relationship between temperature (Z£), ice
cream sales ((X'), and crime rates (")

When we intervene to fix a value of a variable,

Uz We curtail the natural tendencies of the variable to vary
In response to other variables in nature.
v,
. Y * This corresponds to a surgery of the model

\\\l e i.e.varying Z will not affect X
Intervention depends on the structure of the graph.

X Y

Figure 3.2: A graphical model representing an intervention on the model in Figure 3.1 that
lowers ice cream sales
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Intervention vs Conditioning,

The Surgery Operation Conditioning P(Y=y(X=
The Simpson story The blood pressure story The ice-cream story
i /\ /\ o /\
l Intervening P(Y=y| do(X=x))
= X=
) 9\ - e\b
(X = \ X
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Intervention vs. Conditioning...

In notation, we distinguish between cases where a variable X takes a value = naturally
and cases where we fix X = = by denoting the latter do(X = ). So P(Y =y|X ==z)
is the probability that ¥ = y conditional on finding X = =, while P(Y = y|do(X = z))
is the probability that ¥ =y when we intervene to make X = x. In the distributional
terminology, P(Y = y|X = x) reflects the population distribution of ¥ among individuals
whose X value is . On the other hand, P(Y = y|do(X = =)) represents the population
distribution of Y if evervone in the population had their X value fixed at x. We similarly
write P(Y = y|do(X = x),Z = 2z) to denote the conditional probability of ¥ = y, given
Z = z, in the distribution created by the intervention do(X = x).

Do operation and graph surgery can help determine causal effect

We make an assumption that intervention has no side-effect. Namely, assigning a variable by
intervention does not affect other variables in a direct way. Trncation is local

slides9 276 2024



The Adjustment Formula

To find out how effective the drug is in the population, we imagine a hypothetical intervention by which
we administer the drug uniformly to the entire population and compare the recovery rate to what
would obtain under the complementary intervention, where we prevent everyone from using the drug.

We want to estimate the “causal effect difference,” or “average causal effect” (ACE).

P(Y =1|do(X = 1)) - P(Y = 1|do(X = 0)) (3.1)



Definition of Intervention and Graph Surgery:
The Adjustment Formula

U-
Vi
* We simulate the intervention in the form of a graph surgery.
7 * The causal effect P(Y = y|do(X = x)) equals to the conditional
Uy N Uy probability P.(Y = y| X = x) that prevails in the manipulated model
L/ / . i of the figure below
X Y
I
P m Uz
LZ Important: the random functions for Z and Y remain invariant
| Uy i i ,
I . ! P,WY=ylZ=2X=2)=PY=yl£d=2,X=2) and P,(Z =2
\ i
X=x Y



he Adjustment Formula

P(Y =yldo(X = z)

=P, (Y =y|X =2x) (by definition) (3.2)
:ZPm(Y:y|X:m,Z:z)Pm(Z:z|X=ﬂ?) (3.3)
:ZP’”(Y =yl X =2,2=2)Pn(Z =2z2) (3.4)

Equation (3.3) 1s obtained from Bayes™ rule by conditioning on and summing over all
values of 7 = z (as in Eq. (1.19)), while (Eq. 3.4) makes use of the independence of Z and
X 1n the modified model.

Finally, using the invariance relations, we obtain a formula for the causal effect, in terms
of preintervention probabilities:

P(Y =yldo(X =z)) = Z PY=ylX=2,7Z=2)P(Z ==z) (3.5)

Equation (3.5) 1s called the adjustment formula and as you can see, it computes the
association between X and Y for each value z of Z. then averages over those values. This
procedure 1s referred to as “adjusting for 27 or “controlling for Z.”

slides9 276 2024
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The Adjustment Formula v
(in the Simpson story) LN

PlY =yldo X =x))= > PY=ylX=ux=2)PZ ==z (3.5)
) )

The right hand-side can be estimated from the data since it has only conditional probabilities.

If we had a randomized controlled experiments on X (taking the drug) we would not need adjustment
Because the data is already generated from the manipulated distribution. Namely it will yield P(Y=y|do(x))
From the data of the randomized experiment.

In practice adjustment is sometime used in randomized experiments to reduce sampling variations (Cox 1958).
(This means: If the input is sampled from the intervened upon joint distribution over X,Y and Z we can estimate the
P(y|x) directly. Or, we can first estimate P(y|x,z) and also P(z) and perform the summation.)



Table 1.1 Results of a study into a new drug, with gender taken into account

In the Simpson example: Drug No drug

Men 81 out of 87 recovered (93%) 234 out of X70 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of B0 recovered (69%)
Combined data 273 out of 3530 recovered (T8%) 289 out of 330 recovered (83%)

PlY=1do(X=1))=PY=1X=1,Z=1)PZ=1)+P(Y =11 X=1,Z=0)P(Z =0)
Substituting the figures given in Table 1.1 we obtain

0.93(87 +270)  0.73(263 + 80
PR =1ldo(X =1)) = (T{]D = T{]EE-l

while, similarly,

=0.832

0.87(87 +270) 0.69(263 + 80) ~0.7818

P(Y = 1|do(X = 0)) = o + 700 G l
X=x

We get that the Average Causal Effect (ACE):
ACE = P(Y = 1|do(X = 1)) — P(Y = 1|do(X = 0)) = 0.832 — 0.7818 = 0.0502

A more informal interpretation of ACE is that it is the difference in the fraction of the population that
would recover if everyone took the drug compared to when no one takes the drug.
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The Blood Pressure Example

Z

X Y

Figure 3.5: A graphical model representing the effects of a new drug, with X representing
drug usage, Y representing recovery, and Z representing blood pressure (measured at the
end of the study). Exogenous variables are not shown in the graph, implying that they are
mutually independent

P(Y=y | do(X=x) = ? Here the “surgery on X changes nothing. So,

1This means that no surgery 1s required; the conditions under which data were obtained were
such that treatment was assigned “as if randomized.” If there was a factor that would make
subjects prefer or reject treatment, such a factor should show up in the model; the absence of
such a factor gives us the license to treat X as a randomized treatment.

P(Y = yldo(X = 1)) = P(Y = y|X = ),
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To Adjust or not to Adjust?

Rule 1 (The Causal Effect Rule) Given a graph G in which a set of variables PA are
designated as the parents of X, the causal effect of X on 'Y is given by

P(Y = yldo(X =z) =Y P(Y =y|X =z, PA=2)P(PA=2) (3.6)

Where z ranges over all the combinations of values that the variables that PA take

So, the causal graph helps determine the parents PA!

But, in many cases some of the parents are unobserved so we cannot perform the calculation.

Luckily we can often adjust for other variables substituting for the unmeasured variables in PA(X), and this
Can be decided via the graph.

slides9 276 2024



Multiple Interventions, the Truncated Product Rule

Often we have multiple interventions that may not correspond to disconnected variables.
We will use the product decomposition. We write the product truncated formula

P(x1,73,...,xp|do(z)) = | | P(zilpa;)  forall i with X; notin X.

Example:
P(z1,22,w,y|do(T = t,Z3 = z3)) = P(21) P(22) P(w|t) P(y|w, z3, 22)

where we have deleted the factors P(t|zy, z3) and P(z3|z1, z2) from the product.

%)



Multiple Interventions and the Truncated Product Rule

— .- e m e e — — = ———e— S e mmmemm - - - 7

_

preintervention distribution in the model of Figure 3.3 is given by

P ("E b y ? ~ ) T P(z ) P('I: | 'z) P(y | L ¥ < ) Figure 3.3: A graphical model representing the effects of a new drug, with Z representing
gender, X standing for drug usage, and Y standing for recovery

whereas the postintervention distribution, governed by the model of Figure 3.4 is given by
the product

P(z,y|do(x)) = Py (2)Pn(y|lz,z) = P(z)Ply|z, z) (3.9)

with the factor P(x|z) purged from the product, since X becomes parentless as it is fixed
at X = x. This coincides with the adjustment formula, because to evaluate P(y|do(x)) we
need to marginalize (or sum) over z, which gives

P(y|do(x)) = > P(z)P(y|r,2) z

— slides9 276 2024




Outline (chapter 3)

* The identification problem



HOW Caﬂ We DO |t? partial model + data

Input:
e Causal graph (no parameters)
e Data (observational)

Output:
e Causal effect

Key observations:

" This may not always be possible

=" When it is possible, we say that the causal effect is identifiable

= |dentifiability depends on type of causal graph and available data

= Several criteria for deciding identifiability: some are complete, some are not



The Identification Problem

Causal Effect Identifiability (Def. 3.2.2)

The of Xon Yis said to be from a
causal diagram G if the quantity P(y | do(x)) can be
computed uniquely from a probability of the
observed variables.

That is, if for every pair of models M1 and Mzinducing G,
Pm:(y | do(X)) = Pwm:(y | do(x)), whenever Pwm.(v) = Pwm:(v) > 0.

w



The Identification Problem (Il)

Truth Truth Causal Inference
(Unobserved) (Observed) For any two SCMs M, M2,
Causal G =G(M1) = G(M2)
Graph
G .
M
Obs. Dist.
P(v)
P(v) P(v | do(x))
Exp. Dist.
Pui(V) = P (Pma(y|do(x))
P(v [ do(x)) (Pra(v) (V) = Pmz(y|do(x)) Unobserved

Ozﬁgh\g?d (output)

li 276 2024
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The Identification Problem (Il)

Truth
(Unobserved)

Exp. Dist.
P(v | do(x))

Truth
(Observed)

Causal
Graph
G

Obs. Dist.
P(v)

slides9 276 2024

Causal Inference
For any two SCMs Mz, M,

G
P(v) P(v | do(x))
Identifiable

Observed Unobserved
(input) (output)



The Identification Problem (Il)

Truth Truth Causal Inference
(Unobserved) (Observed) For any two SCMs My, M2,

|dentifiability really means that,

no matter the shape of M1, M, S

for all models agreeing in terms of i M2 !

(G, P(v)), they will also agree in P
P(v | do(x))!

P(v) P(v | do(x))

Exp. Dist.
P(v | do(x))

Identifiable

Ob_served Unobserved
slides9 276 2024 (input) (output)



Types Of Ca Usal G ra phS hidden variables are roots

Markovian Model Semi-Markovian Model
each hidden variable has at most one child some hidden variable has more than one child
U no hidden
2 confounders U —*Z

\Z
A o

X Y

P?"(ym) identifiable P’I"(LEZ) not identifiable

causal effect always identifiable causal effect not always identifiable
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Example. |dentifiable Effect

® Consider any two pair of models compatible with the following
graph and the same observational distribution P(v):

Z

PN

X

I Y

P(v)=P(2)P(x|2)P(y[x,2)

M(l) =

(7 ¢ f(u,)
X & fW(z,u,)

(1)
k Yéfyl (X, Z,U})/ dO(X)
—>

(7 ¢ fO(u,)

1 X éff(z)(z, u))(

Y & f@(x, z,u)
L y y

P(vldo(x))=P(2)P(y|x,2) = Ply|dol(x)) = 5P(2)Ply|x,2)

X I Y
(Z < fW(u)
M) = x & x

M(Z) = <

Y < fx, 2,u,)

(Z & f(u)
X & x

2
L Y < f2(x,z,u,)
slides9 276 2024

No matter what the specific
functions or P(u) are,
as long as M1, M2
agree in (G, P(v)),
they will also agree In
P(z) and P(y|x,2),
hence in P(v | do(x))!




PR(yx ) =P (y| do(x))

Why Causal Effect May Not Be Identifiable?

Consider the model U

If X and Y are off, cannot tell if X /\

turned off Y or if U turned off both X_>Y

= Pr(ylz,u) = Pr(g|z,u) = 1 and Pr(z|u) = ¢
— Pr(z|u) = Pr(y|X,u) =1
— Pr(u) =p

Ca usa | effe Ct (using truncated formula of interventional distribution)

Pr(yldo(z)) = Pra(y)
= Pr,(u,y) + Pr.(u,y)
= Pr(u)Pr(y|z,u) + Pr(a)Pr(y|x,u)
= p()+ (1 =p)(0)=p

Data generated by the model

U X Y |frequency
U pq
p(1—q)
l1—p

S
8 8
<

I
Nead N ey

U
If U is hidden, we see this data

XY ’ frequency
ro Y \pq
T y|l—pg

Cannot recover the causal effect...

Example: if pg=.14 then p=.7, g=.2 and p=.2, g=.7
are solutions, but with different causal effects

both p=.7, g=.2 and p=.2, g=.7 are maximum-likelihood parameters



Example. Non-identifiable Effect

® Consider the pair of models compatible with the following graph G
and observational distribution P(v):

C
>
<
cC
3
=
<

X YO Y@ P(vu)

P(v) = Z P(y [ x, up )P(x | 1 )P (i) 8 cl) 2 8 8 ig
tyy 1 0 0 11 118

X < U,
MO = ’
Y~ XU, VU,

X YO YO POW) P(W)
XU 0 0 o | 14 1/4
M = ” 0 1 1| w4 14 |
Y < U, 1 0 o | w4 1/4
1 1 1 k 1/4 s |
PIU. = 1) = 1/2, D
(= {x,y,xy},j = {12} They match in P(v), that is, P@(v)=P@)(v)!

ol



Example. Non-identifiable Effect

® Consider the pair of models compatible with the following graph G
and observational distribution P(v):

Us, Usxy YO Y2 P(vu|do(x))
--------- 0 0 «x Oax O 1/8
0 1 ¢ 1ex 0 1/8
d R
X.‘ >e Y X. > Y 1 O X 1 1 '1/8
U 1 1 ¢ 1 1 1/8
0 0 x Oex O 1/8
P(v) = ) P(y|x.10,)P(x | 1, )P(,,) P(V]do(x)) = ZP(ylx, U )P(ity,) 01 x der 0 1/8
m i 1 ? v 1 1/8
X 1 1 1/8
) — X « ny Y — X «x
Y~ (XU, VU, Y« XU,V
do(x)
X<U — X «x
“«—
M(z): Xy M(z): {Y(— U
Y « Uy y

POU = 1) = 172, Evi?es;[hough both models induce G and have the

i= (xyxy) = (12) samé& P(v), the effect P()(y|do(x)) + PO(y|do(x))!

—~



Let’s study how to decide
whether a causal effect is
identifiable...



ldentification in Markovian Models

Theorem. Given the causal diagram G of any
Markovian model that all variables are measured,
the causal effect Q = P(y | do(x)) is identifiable for
every subsets of variables X and Y and is
obtained from the truncated factorization, I.e.,

P(V | dO(X)) = H (Vi |pai) Sum over all variables

notin XuY
% eV\X}

Piyldox)= > [l P(lpa)

V\&xUy) [V, € V\X}
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Adjustment by Direct Parents

Thm. Given a causal diagram G of any Markovian
system, the causal quantity Q = P(y | do(x)) Is
identifiable whenever {X, Y, Pax} c V, that is,
whenever X, Y, and all the parents of variables X
are measured. The expression of Q Is then
obtained by adjustment for PAy, or

P(y|do(x)) = ) P (y|x,pa,) P (pay)

pay

Quiz: 1) derive from previous slide
2) derive for non-Markewiansmodels 13
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