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Outline

• Structural Causal Models (continued)

• Product form of Markov SCM

• d-separation (refresher)
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Traditional Stats-ML Inferential Paradigm

Data
Q(P)

(Aspects of P)
Joint  

Distribution

P

Inference

e.g., Infer whether customers who bought  

product A would also buy product B — or,

•Approach: Find a good representation for the data.

compute Q = P(B | A).
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From Statistical to Causal Analysis

11

Data
Joint  

Distribution

Q(P’)

(Aspects of P’)
Joint  

Distribution

P P’change

Inference

e.g., Estimate P’(sales) if we double the price  

Estimate P’(cancer) if we ban smoking

Q: How does P (factual) changes to P’(hypothetical)?

Needed: New formalism to represent both P & P’.

P is tied to the data; P’ is never observed, no data.slides8 276 2024



New Oracle -
The Structural Causal Model Paradigm

Data
Q(M)

(Aspects of M)
Joint  

Distribution

Data  

Generating  

Model

P M

Inference

M – Invariant strategy (mechanism, recipe,  

law, protocol) by which Nature assigns values  

to variables in the analysis.

P - model of data, M - model of reality
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Back to the Big Picture

Real world /  

Nature

{ , , , ,

}

f
AI / ML

Stats

Inference Conclusion

Alternative Reality  

Not realized

Causal  

Inference

New  

Conclusions
Causal Model

M
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e Data

P
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2

Reality (unknown to physicians):

rich = alive anyways
poor1 = die anyways (no gene)  

poor2 = die iff take the drug(gene)

∏ = rich ∪ poor1 ∪poor2

P(rich) = P(poor)  

P(poor1) = P(poor2)

p
o

p
u

la
ti

o
n

s
tr

u
c
tu

re

Being rich and having the genetic factor  

are independent events.

gen. factor

no gen. factor

rich poor

Modeling Reality with SCM
• The population of a certain city is falling ill from a contagious disease. 

There is a drug believed to help patients survive the infection.
• Unknown to the physicians, folks with good living conditions (rich) will 

always survive.

• While some people have a gene that naturally fights the disease and

don’t require treatment, they will develop an allergic reaction if

treated, which is fatal under poor living conditions.
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Modeling Reality in our Example

Variables we observe (V):

R ( R=1 for rich, =0 for poor )

D ( D=1 for taking the drug )

A ( A=1 if person ends up alive)
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Modeling Reality in Our Example

Variables we observe (V):

R ( R=1 for rich, =0 for poor )

D ( D=1 for taking the drug )

A ( A=1 if person ends up alive)

Variables that are unobserved (U):

Ug (Ug =1 has genetic factor, =0 o/w)

Ur (Other factors affecting Wealth)
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Variables we observe (V):

R ( R=1 for rich, =0 for poor )

D ( D=1 for taking the drug )

A ( A=1 if person ends up alive)

How are the observed  

variables determined?

R ← Ur  

D ← R
A ← R  (Ug ¬D)

Variables that are unobserved (U):

Ug (Ug =1 has genetic factor, =0 o/w)

Ur (Other factors affecting Wealth)
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Modeling Reality in our

Example

Variables we observe (V):

R ( R=1 for rich, =0 for poor )

D ( D=1 for taking the drug )

A ( A=1 if person ends up alive)

Variables that are unobserved (U):

Ug (Ug =1 has genetic factor, =0 o/w)

Ur (Other factors affecting Wealth)

How are the observed  

variables determined?

R ← Ur  

D ← R
A ← R  (Ug ¬D)

• Rich is always alive.

• Poor will survive only if

they have the gene and

don’t take the drug.
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Modeling Reality in our Example

Variables we observe (V):

R ( R=1 for rich, =0 for poor )

D ( D=1 for taking the drug )

A ( A=1 if person ends up alive)

Variables that are unobserved (U):

Ug (Ug =1 has genetic factor, =0 o/w)

Ur (Other factors affecting Wealth)

• How are the observed  

variables determined?

•R ← Ur  

D ← R

• A ← R  (Ug ¬D)

• What is the randomness  

over the unobserved vars:

• P(Ug=1)=1/2, P(Ur=1)=1/2
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Modeling Reality in our Example

Variables we observe (V):

R ( R=1

D ( D=1

A ( A=1

How are the observed

Variables

Ug  (Ug=1

Ur (Other

variables determined?
for rich, R=0 for poor )

for taking the drug )
R = Ur

if person ends up alive ) D = R

A = R ( (G  ¬D)

that are unobserved (U):
What is the randomness

has genetic factor, =0 o/w) over the hidden variables:
factors affecting Wealth)

P(G=1)=1/2, P(Ur=1)=1/
2

This is a fully specified Model of Reality!

It implies both P and P’ (more soon).

This will be our new, almighty Oracle,  

which is known as Structural Causal Model.

( Now, let’s generalize this object… )
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Outline

• Structural Causal Models

• Product form of Markov SCM

• d-separation reresher
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The New Oracle:  
Structural Causal Models

Definition: A structural causal model (SCM) M is a 4-

tuple <V, U, ℱ ,  P(u)>, where

• V = {V1,...,Vn} are endogenous variables;

• U = {U1,...,Um} are exogenous variables;

• ℱ= {f1,..., fn} are functions determining V,

e.g. y = α + βX + UY

Not regression!!
vi  ← fi(pai, ui), Pai  Vi,Ui  U;

• P(u) is a distribution over U

Axiomatic Characterization:

(Galles-Pearl, 1998; Halpern, 1998).
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1. SCM induces distribution P(v)

• ℱ  can be seen as a mappingfrom U ⟶ V

• When the input U is a set of random vars,  

then the output V also becomes a set of r.v’s.

• P(v) is the layer 1 of the PCH, known as the  

observational (or passive) prob. distribution.

• Each event, person, observation, etc…  

corresponds to an instantiation of U=u.

ℱ(u1,u2,…,uk) (v1,v2,…,vn)
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1. SCM induces distribution P(v)

• Each citizen follows in one of

four groups according to the

unobservables in the model:

ℱ =

Example: (Drug, Rich, Alive)
fR : Ur

fD : R

fA : R ∨ (Ug ∧¬D)

ℱ
(Ur=1, Ug=1) ⟶ (R=1, D=1, A=1)

(Ur=1, Ug=0) ⟶ (R=1, D=1, A=1)

(Ur=0, Ug=1) ⟶ (R=0, D=0, A=1)

(Ur=0, Ug=0) ⟶ (R=0, D=0, A=0)
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1. SCM induces distribution P(v)

• Events in the U-space translate  

into events in the space of V.

(Ur=1, Ug=1) ⟶ (R=1, D=1, A=1)

(Ur=1, Ug=0) ⟶ (R=1, D=1, A=1)

(Ur=0, Ug=1) ⟶ (R=0, D=0, A=1)

(Ur=0, Ug=0) ⟶ (R=0, D=0, A=0)

P(u)
1/4

1/4

1/4

1/4

P(v)

} 1/2

1/4

1/4

ℱ =

In our example:
fR : Ur

fD : R

fA : R ∨ (Ug ∧¬D)
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1. SCM induces distribution P(v)

ℱ(u1,u2,…,uk) (v1,v2,…,vn)
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2. SCM → Causal Diagram

• Every SCM M induces a causal  

diagram

• Represented as a DAG where:

• Each Vi  V is a node,

• There is W ⟶ Vi if for W  Pai ,

C

VjVi

A B

Vi ← fi (A,B,U)  
Vj ← fj(C,U)
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2. SCM → Causal Diagram

• Every SCM M induces a causal  

diagram

• Represented as a DAG where:

• Each Vi  V is a node,

• There is W ⟶ Vi if for W  Pai ,

• There is Vi ⇠⇢ Vj whenever

Ui ⋂ Uj ≠ .

Vi ← fi (A,B,U)  
Vj ← fj(C,U)

C

Vj

Vi Vj

Vi

A B
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2. SCM → Causal Diagram

• Every SCM M induces a causal  

diagram

• Represented as a DAG where:

• Each Vi  V is a node,

• There is W ⟶ Vi if for W  Pai ,

• There is Vi ⇠⇢ Vj whenever

Ui ⋂ Uj ≠ .

Vi ← fi (A,B,U)  
Vj ← fj(C,U)

Vi

A B

Vj

C

G
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Causal Diagram — Definition (formal)

• Causal Diagram [Def. 13, PCH chapter] — Consider  

an SCM M = <V, U, ℱ ,  P(u)>. Then G is said to be a

causal diagram (of M) if constructed as follows:

1. add vertex for every endogenous variable Vi ∈ V.

2. add edge (Vj → Vi) for every Vi, Vj ⊂ V if

Vj appears as argument of fi ∈ ℱ .

3. add a bidirected edge (Vj ⤎⤏ Vi) for every Vi, Vj ⊂ V  

if Ui, Uj ⊂ U are correlated or the corresponding  

functions fi, fj share some U ∈ U as argument.
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2. SCM → Causal Diagram

Recall our medical example:

• Endogenous (observed) variables V:

R (R=1 for rich, =0 for poor)

D (D=1 for taking the drug, D=0 o/w)

•
•
• A (A=1 if person ends up alive, =0 o/w)

• Exogenous (unobserved) Variables U:

•
•

Ur (Wealthiness factors)

Ug (=1 has the genetic factor, =0 o/w)

• Distribution over U: P(Ur)=1/2, P(Ug)=1/2

R

D A

Ur

Ug

ℱ =

R ← Ur

D← R

A← R ∨ (Ug ∧¬D)
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2. SCM → Causal Diagram

Another example:

• ℱ :

Smoking ← fSmoking(Us, Ug)  

Cancer ← fCancer(Smoking, Uc, Ug)

Smoking Cancer

Ug

Us Uc

Remark 1. The mapping is just 1-way (i.e., from a SCM to a causal graph) since  

the graph itself is compatible with infinitely many SCMs with the same scope  

(the same functions signatures and compatible exogenous distributions).

Remark 2. This observation will be central to causal inference since, in most  

practical settings, researchers may know the scope of the functions, for  

example, but not the details about the underlying mechanisms.

• V = { Smoking, Cancer }

• U = { Us,Uc,Ug } unobserved factors
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Causal Diagrams

• Convention. The unobserved variables are left  
implicit in the graph.

Smoking CancerSmoking Cancer

Ug

Us Uc
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What about this example

Does the causal diagram give us

any clues about the (in)dependence  

relations in the obs. distribution P(V)?

Y

Z X

W

T

Uz

Uw
Uy

Ut

M =

Z ← fZ(uz)

X ← fx(ux)

W wW ← f (z, x, u )

Y ← fY(x, uy)

T ← fT(w, ut)

• Is T independent of W?

• Is W independent of T?

• Is Z independent of T ?

• Is Z independent of X?

• Is Y independent of W?

• Is Y independent of W if we know  

the value of X?

Prop. 2

Ux

Prop. 1
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Outline

• Structural Causal Models

• Product form of Markov SCM

• d-separation  (refresher)
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The New Oracle:  
Structural Causal Models

Definition: A structural causal model (SCM) M is a 4-

tuple <V, U, ℱ ,  P(u)>, where

• V = {V1,...,Vn} are endogenous variables;

• U = {U1,...,Um} are exogenous variables;

• ℱ= {P1,…,Pn} are CPTs for V

vi  ← fi(pai, ui), Pai  Vi,Ui  U;

• P(u) is a distribution over U

slides8 276 2024
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The Emergence of the First Layer

R

Ur

Ug

D A

In our example,
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The Emergence of the First Layer

Genotype (Ug)

Us Uc

Smoking (S) Cancer (C)

The joint probability distribution over the observed variables (V),

Smoking and Cancer, is given by

Recall, this distribution is called observational distribution.  

Sometimes, it’s also called passive or non-experimental

distribution.

In the second example,
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What the Diagram Encodes

• Since G is a directed acyclic graph, there exists a  

topological order over V such that every variable goes  

after its parents, i.e., Pai < Vi.

R

D A

Ur

Ur

Smoking (S) Cancer (C)

Genotype (Ug)

Us Uc

R < D < A

S < C
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What the Diagram Encodes
• M induces P(V):

• An observed variable is fully determined by its observed and  

unobserved parents; also {pai,ui}  {v1,…,vi-1,u} , then

P (vi|v1, … , vi−1, u) = P (fVi
(pai, ui) = vi|v1, … , vi−1, u )

P (vi|v1, … , vi−1, u) = P (vi|pai, ui)
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What the Diagram Encodes

R

D A

U
r

• The distribution P(V) decomposes as:

Ur

Ug

Smoking (S) Cancer (C)

Ug

Us Uc

ur,ug

P(r, d, a) = ∑ P(ur, ug)P(r|ur)P(d|r)P(a |r, d, ug)

us,ug,uc

P(s, c) = ∑ P(us, ug, uc)P(s|ug, us)P(c|s, ug, uc)
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Markovian Factorization

In Markovian models
SCM yields a Bayesian  network 
Over the visible variables
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Causal Bayesian Networks

• SCM when the unctions are general CPTs.
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Outline

• Structural Causal Models

• Product form of Markov SCM

• d-separation (refresher)
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Z | A) holds?

T

W ZX

S

Y

R

9
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Z | A) holds?

Path 1: W ⟵ T ⟶ Z

T

W ZX

S

Y

R

9
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Z | A) holds?

Path 1: W ⟵ T ⟶ Z

Path 2: W ⟶ X ⟶ Z

T

W ZX

S

Y

R

9
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Z | A) holds?

Path 1: W ⟵ T ⟶ Z

Path 2: W ⟶ X ⟶ Z

Path 3: W⟶X⟷Y⟵Z

T

W ZX

S

Y

R

9
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Z | A) holds?

Path 1: W ⟵ T ⟶ Z

Path 2: W ⟶ X ⟶ Z

Path 3: W⟶X⟷Y⟵Z

T

W ZX

S

Y

R

9
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Z | A) holds?

Path 1: W ⟵ T ⟶ Z

Path 2: W ⟶ X ⟶ Z

Path 3: W⟶X⟷Y⟵Z

T

W ZX

S

Y

R

= W⟶X⟵U⟶Y⟵Z

9
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Z | A) holds?

Path 1: W ⟵ T ⟶ Z

Path 2: W ⟶ X ⟶ Z

Path 3: W⟶X⟷Y⟵Z

T

W ZX

S

Y

R

= W⟶X⟵U⟶Y⟵Z

9
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Z | A) holds?

Path 1: W ⟵ T ⟶ Z

Path 2: W ⟶ X ⟶ Z

Path 3: W⟶X⟷Y⟵Z

T

W ZX

S

Y

R

Path 1 and 2 need to be

blocked, Path 3 is naturally  

blocked:

A={T, X} suffices.

= W⟶X⟵U⟶Y⟵Z

9
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(R, Z ⫫ S | A) holds?

T

W ZX

S

Y

R

10
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(R, Z ⫫ S | A) holds?

Path 1: R ⟶ Y ⟶ S

T

W ZX

S

Y

R

10
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(R, Z ⫫ S | A) holds?

Path 1: R ⟶ Y ⟶ S

Path 2: Z ⟶ Y ⟶ S

T

W ZX

S

Y

R

10
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(R, Z ⫫ S | A) holds?

Path 1: R ⟶ Y ⟶ S

Path 2: Z ⟶ Y ⟶ S

Path 3: Z⟵X⟷Y⟶S

T

W ZX

S

Y

R

10
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(R, Z ⫫ S | A) holds?

Path 1: R ⟶ Y ⟶ S

Path 2: Z ⟶ Y ⟶ S

Path 3: Z⟵X⟷Y⟶S

T

W ZX

S

Y

R

Path 4: Z⟵T ⟶W⟶X ⟷Y⟶S
10
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(R, Z ⫫ S | A) holds?

Path 1: R ⟶ Y ⟶ S

Path 2: Z ⟶ Y ⟶ S

Path 3: Z⟵X⟷Y⟶S

T

W ZX

S

Y

R

Path 4: Z⟵T ⟶W⟶X ⟷Y⟶S
10
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(R, Z ⫫ S | A) holds?

Path 1: R ⟶ Y ⟶ S

Path 3: Z⟵X⟷Y⟶S

T

W ZX

S

Y

R

A={Y} suffices.

Path 2: Z ⟶ Y ⟶ S

Path 4: Z⟵T ⟶W⟶X ⟷Y⟶S
10
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?

T

W ZX

S

Y

R

11
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?

Path 1: W⟶X⟶Z⟶ Y

T

W ZX

S

Y

R

11
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?

Path 1: W⟶X⟶Z⟶ Y

T

W ZX

S

Y

R

{X} or {Z} or {X, Z}

11
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?

Path 1: W⟶X⟶Z⟶ Y

Path 2: W⟵T⟶Z⟶Y

T

W ZX

S

Y

R

{X} or {Z} or {X, Z}

11
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?

Path 1: W⟶X⟶Z⟶ Y

Path 2: W⟵T⟶Z⟶Y

T

W ZX

S

Y

R

{X} or {Z} or {X, Z}

{T} or {Z} or {T, Z}

11
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?

Path 1: W⟶X⟶Z⟶ Y

Path 2: W⟵T⟶Z⟶Y

Path 3: W ⟶ X ⟷ Y

T

W ZX

S

Y

R

{X} or {Z} or {X, Z}

{T} or {Z} or {T, Z}

11
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?

Path 1: W⟶X⟶Z⟶ Y

Path 2: W⟵T⟶Z⟶Y

Path 3: W ⟶ X ⟷ Y

T

W ZX

S

Y

R

{X} or {Z} or {X, Z}

{T} or {Z} or {T, Z}

not X

11
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?

Path 1: W⟶X⟶Z⟶ Y

Path 2: W⟵T⟶Z⟶Y

Path 3: W ⟶ X ⟷ Y

T

W ZX

S

Y

R

{T} or {Z} or {T, Z}

not X

{ X}or {Z} or {X ,

Z}

11
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?

Path 1: W⟶X⟶Z⟶ Y

Path 2: W⟵T⟶Z⟶Y

Path 3: W ⟶ X ⟷ Y

Path 4: W⟵T⟶Z⟵X⟷Y

T

W ZX

S

Y

R

{T} or {Z} or {T, Z}

not X

{ X}or {Z} or {X ,

Z}

11
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?

Path 1: W⟶X⟶Z⟶ Y

Path 2: W⟵T⟶Z⟶Y

Path 3: W ⟶ X ⟷ Y

T

W ZX

S

Y

R

{T} or {Z} or {T, Z}

not X

{ X}or {Z} or {X ,

Z}

Path 4: W⟵T⟶Z⟵X⟷Y {T} or {X} or {T, X} or {T, Z} or {T,X,Z}

11
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?

Path 1: W⟶X⟶Z⟶ Y

Path 2: W⟵T⟶Z⟶Y

Path 3: W ⟶ X ⟷ Y

T

W ZX

S

Y

R

{T} or {Z} or {T, Z}

not X

{ X}or {Z} or {X ,

Z}

{T} or {X}or {T ,X} or {T, Z} or

{T ,X,Z}

Path 4: W⟵T⟶Z⟵X⟷Y
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?
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Graph Separation (d-Separation)

Is there a set A such that the  

separation statement

(W ⫫ Y | A) holds?

Path 1: W⟶X⟶Z⟶ Y
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Path 3: W ⟶ X ⟷ Y

Path 4: W⟵T⟶Z⟵X⟷Y

T

W ZX

S

Y

R

Z

not X not Z

{ X}or {Z}or {X ,

Z}

{T} or {Z}or {T ,

Z}

{T} or {X}or {T ,X} or { T,Z} or

{T ,X,Z}

No such A!

Don’t forget the
descendants of
the colliders!
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