Inference for probabilistic networks
(continued)

= Bucket elimination
» Belief-updating, P(e), partition function
= Marginals, probability of evidence
= The impact of evidence
« for MPE (=MAP)
=« for MAP (- Marginal Map)

= Induced-Width (Dechter 3.4,3.5)

The Impact of Evidence? %

| Algorithm BE-be/

P(A|[E=0)=« ZP(A)-P(B|A)-P(C|A)-P(D|A,B)-P(E|B,C)

E=0,D,C,B

ZH<— Elimination operator

_ b A —
bucket B: P(bla) P(d]b,a) P(e|b,c) p=;
/
bucket C: P(c|a) AB(a,d,C,e)
\/ \ v
bucket D: A (a,d,e)

bucket E: e=0 A°(a,e)

\ / W*=4

bucket A: P(a) JE (a) “iInduced width”

//M (max clique size)
=0)

P(ale=0)

MPE = max P(X) %

+

Y isreplaced by max :

MPE = max P(a)P(c|a)P(b|a)P(d |a,b)P(e|b,c)

bucket B:
bucket C:
bucket D:

bucket E:
bucket A:

mglx Ef Elimination operator
ﬁ(bQ P(dlb,a) P(e[b,c)
i

P(cla) h®(a,d,c,e)
\/ Y

h®(a,d,e)

e=Q h"(a.e)

~. WH=4

E
P(z{‘ Ah/ (@) i duced width”

MPE (max clique size)

‘L Generating the MPE-tuple

5. b'=arg max P(b|a')x
xP(d'|b,a")xP(e'|b,c")

4. c'=argmax P(c|a')x
xh®(@" ,d"',c,e')

3. d'=arg max h(a' ,d,e')

2.e' =0

1. a' =arg max P(a)-h(a)

B: P(bla) P(d|b,a) P(elb,c)

C: P(cla) h°(ad,c,e)
D: h®(a,d,e)
E: e=0 h°(ae)

A: P@) he@

Return (a',b',c' ,d',e')

i Inference for probabilistic networks

s Bucket elimination

= Induced-Width (Dechter 3.4,3.5)

i Finding a Small Induced-Width

= NP-complete
s A tree has induced-width of ?

= Greedy algorithms:
= Min width
= Min induced-width
= Max-cardinality and chordal graphs
= Fill-in (thought as the best)

= Anytime algorithms
= Search-based
= Stochastic (CVO)

* Finding a Small Induced-Width

= NP-complete
s A tree has induced-width of ?

s Greedy algorithms:
= Min width
= Min induced-width
= Max-cardinality and chordal graphs
» Fill-in (thought as the best)

= Anytime algorithms

s Search-based [Gogate & Dechter 2003]
s Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

slides6 276 2024

i Finding a Small Induced-Width

s NP-complete
m A tree has induced-width of ?

= Greedy algorithms:
= Min width
= Min induced-width
» Max-cardinality and chordal graphs
= Fill-in (thought as the best)

= Anytime algorithms

s Search-based [Gogate & Dechter 2003]
s Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

slides6 276 2024

i Min-width Ordering

MIN-WIDTH (MW)

input: a graph G = (V,E), V ={v,...,v,}

output: A min-width ordering of the nodes d = (vy, ..., v,).
1. for j=nto1lby-1do

2. r < a node in GG with smallest degree.
3. put 7 in position 7 and G «— G — 7.

(Delete from V' node r and from F all its adjacent edges)
4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph
What is the Complexity of MW?
O(e) slides6 276 2024

i Greedy Orderings Heuristics

s Min-induced-width

= From last to first, pick a node with smallest
width, then connect parent and remove

s Min-Fill
= From last to first, pick a node with smallest
fill-edges

Complexity? OMm3)

i Min-Fill Heuristic
s Select the variable that creates the fewest “fill-in”

edges l
Eliminate B next? (B) (T
. W Eliminate E next?
Connect neighbors :
= /'nf’ _ 3/g " , ' Neighbors already connected
(AD), (GE), (D,E) GG Filkin” =0

A G Q

slides6 276 2024

i Different Induced-Graphs

(c) (d)
A Miw ordering
A Min-fill ordering

i Which Greedy Algorithm is Best?

= Min-Fill, prefers a node who adds the least
number of fill-in arcs.

= Empirically, fill-in is the best among the
greedy algorithms (MW,MIW,MF,MC)

= Complexity of greedy orderings?
= MW is O(e), MIW: O(n3), MF O(n3), MC is
O(e+n) (MC: read on your own)

i Inference for probabilistic networks

= Bucket elimination (Dechter chapter 4)

=« for MAP (- Marginal Map)

‘L Marginal Map

» Max-Inference f(x*) = max | [fa(xa)

» Sum-Inference Z=> 1] fa(xa)

» Mixed-Inference | f(xs) = Iﬁﬁfz 1] fo(xa)
Xs

= NP-hard: exponentially many terms

Example for MMAP A pI cations

= Haplotype in Family pedlgrees ,%.
) G L]

¥ (,s',)

L (:()(jir1§J r]EEt\AIC)rF(E; 8 ® @

¥ 5
N _‘) (5
oy a5 il 7Y
@ O (’;{/__7 @
~ ” -}\ P) T
KON KON) @)]
O R ERO SRR OSSR O
3 A D SN A A
) @ ® ® C‘I/ ® & ®
n AN N Y N P
VN OHONONOROHONO)

= Probabilistic p‘anning Al

2

Al
LT T -Ip 2 B ja |5
2 2 eallle 1 2= (= l) == | B
L g Py
EINIEE = E]l

0 Dlag NOSIS i

= T

Bucket Elimination for MMAP

Bucket Elimination

Oy
¢

XM :{AaDaE}

A

Xs={B,C}

constrained elimination order

SUM

MAX

B:

C:

(A, B) f(B,0) {(B,

D)f(B, E)

I S
A(A,C.D, B)f(A,C) f(C, E)

X
)\C(A D.E) f(A, D)I

MAP* is the marginal MAP value

70
(®

',-""II'L"-"?_ S

N \CAN
1
\' (D“<

EV

A/AODE

%/hy is MMAP harder?

XM — {AaDaE}
Xg = {BaC}

(Park & Darwiche, 2003)
(Yuan & Hansen, 2009)

constrained elimination order

SUM

MAX

exact upper
boun

unconstrained elimination order

W 4
In practice, constrained induced is much

larger!
max E qb < E maxgb
X - X

* Inference for probabilistic networks

m Bucket elimination (Dechter chapter 4)
= Belief-updating, P(e), partition function
= Marginals, probability of evidence
= The impact of evidence
« for MPE (=>MAP)
= for MAP (= Marginal Map)

s Induced-Width (Dechter, Chapter 3.4)
s Mixed networks
= Influence diagrams ?

slides6 276 2024

7R . 1),
‘ EX . OI | WI |d Catte r e.g., [Raiffa 1968; Shachter 1986]
|

* Influence diagram:

Test
=
result
Seismic Qil
Cm e

* Three actions: test, drill, sales policy

oil
produced

QOil sale
policy

* Chance variables:
P(oil) P(seismic|oil) P(result | seismic, test) P(produced | oil, drill) P(market)

* Utilities capture costs of actions, rewards of sale

Oil sales - Test cost - Drill cost - Sales cost

Influence Diagrams

Influence diagram ID = (X,D,P,R).

T e

T @ﬁ D %% OSP

T v

CPT’s for chance variables Pi=P(Xi| pai),I =1..n
Reward components R ={ru,...,ri}
Utility function U= 2_ili

|Common examples
|

* Markov decision process
— Markov chain state sequence
— Actions “di” influence state transition

— Rewards based on action, new state

— Temporally homogeneous

* Partially observable MDP
— Hidden Markov chain state sequence

— Generate observations
— Actions based on observations

Influence Diagrams

(continue)

A decision rule for Djis a mapping: i : Qpapi — Qb

where (s is the cross product of domains in S.

A policy is a list of decision rules A = (J1,....,0m)

Task: Find an optimal policy that maximizes the expected utility.

E= max Z HiPi(x)u(x)

A=(81,...,0m) x=(xt,..., Xn)

General Graphical Models

Definition 2.2 Graphical model. A graphical model M is a 4-tuple, M = (X.D.F.),
where:

1. X ={X,,..., X,} is a finite set of variables;
2. D ={D,.....D,} is the set of their respective finite domains of values;

3. F=1{f1...., fr} is a set of positive real-valued discrete functions, defined over scopes of
variables S = {Sy, ..., S;}, where S; C X. They are called /oca/ functions.

4. Q) is a combination operator (e.g., @ € {[[. D_. <t} (product, sum, join)). The combination
operator can also be defined axiomatically as in [Shenoy, 1992], but for the sake of our
discussion we can define it explicitly, by enumeration.

The graphical model represents a global function whose scope is X which is the combination of all
its functions: @;_, fi.

General Bucket Elimination

Algorithm General bucket elimination (GBE)

Input: M = (X.D,F.®) . F ={fi...., fa} an ordering of the variables, d = X,..., X;;;
Y cX.

Output: A new compiled set of functions from which the query ||y ®7_, fi can be derived
in linear time.

1. Initialize: Generate an ordered partition of the functions into bucket,, ..., bucket,, where
bucket; contains all the functions whose highest variable in their scope is X;. An input func-
tion in each bucket ¥, ¥ = ®7_, fi.

2. Backward: For p < n downto 1, do

for all the functions vV, A1, A5, ...,A; in bucket,, do

» If (observed variable) X, = x,, appears in bucket,, assign X, = x, in ¥, and to each
A; and put each resulting function in appropriate bucket.

» else, (combine and marginalize)
Ap <s, ¥p, ® (®/_,A;) and add A, to the largest-index variable in scope(A,).

3. Return: all the functions in each bucket.

Theorem 4.23 Correctness and complexity. Algorithm GBE is sound and complete for its task. Its
time and space complexities is exponential in the w*(d) + 1 and w* (d), respectively, along the order

of processing d.

Causal and Probabilistic Reasoning

Slides Set 6:

Exact Inference Algorithms
Tree-Decomposition Schemes

(Dechter chapter 5, Darwiche chapter 6-7)

slides6 276 2024

Outline

= From bucket-elimination (BE) to bucket-tree elimination (BTE)

= Conditioning with elimination (Dechter, 7.1, 7.2)

Outline

= From bucket-elimination (BE) to bucket-tree elimination (BTE)
s From BTE to CTE, Acyclic networks, the join-tree algorithm

s Generating join-trees, the treewidth

s Examples of CTE for Bayesian network

m Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

slides6 276 2024

From BE to Bucket-Tree Elimination(BTE)

First, observe the BE operates on a tree. /@
Second, What if we want the marginal on D? o Cf
©

Bucket G: P(G|F) G

Bucket F: P(’F|BJ>)),\G_>F(F) Aoor(F
F

Bucket D: P(D|4,B) P(F|B,C) D
Wro(B.C) | P(D _LB)
Bucket C: P(Cl4) \ Ap_¢(B,C) (4.3

Moo5l(A B)
1 P(D)?

Bucket B: P(B|4)) Y (A, B)\c_p(A, B . .-,f,‘;..g)
BucketA: P(4) Ap_,a(A) {,-1}

Tagla) = P(A),
e pla.b) = p(bla) - ma_pla) - Ae— g(b)

\=

bel(d) = “Z P(d|a,b) - mg_,pla,b).

‘L BTE: Allows Messages Both Ways

G

Initial buckets
+ messages /©
& 7
©
Output buckets "
a G
P(F) = z P(F|b,c)mcopr (b, c) Agor(F) P(G|F), 2. (F)] P(D) = Z P(D|a,b) mz-p(a,b)
b,c F ab
~ P(F|B,0), *o-+) D
‘ ﬂC—»F(B,C) [P(D |A’B), o (A:B)]/

C
Ao (B.O)
{P (ClA), 7, A B)

B

Ao, p(AB)
P(B‘A)) AD—»B(A:B)

74,54

A
[P(A), Ap_a(4)

(b)

‘L BTE

Theorem: When BTE terminates The ALGORITHM BUCKET-TREE ELIMINATION {BTE)
product of functions in each bucket is the Input: A problem M = (X, D.F,[[.5). ordering d.
beliefs of the variables joint with the X={X),..Xp}tand F = {f1, ..., fr}

evidence. Evidence E = e.

Output: Augmented buckets { B'; }. containing the original functions and all the
m and A functions received from neighbors in the bucket tree.
1. Pre-processing: Partition functions to the ordered buckets as usual
i i1 = — and generate the bucket tree.
e||m(|,_]) - Scope(Bi) Scope(Bj) 2. T(I]]-gl;h'lr']l phase: A messages (BE) do
for i = mto 1, in reverse order of d process bucket B;:
The mes el 10 jis nt B, is:
JIlf—u" = Zecz‘mn‘,j} Wi - HkEchird{t’] Aki
endfor
bottom-up phase: = messages
for j = 1 1o n, process bucket B; do:
B; takes m._, j received from its parent Bj., and computes a message m;_,;
fi :

Mj—i = Zerim[j:f] The—j * i"'ll_f ’ Hr;éi ‘j"F'—U' j

endfor
Output: augmented buckets By, ..., B';,, where each B”; contains the
original bucket functions and the A and = messages it received.

o

-

Figure 5.3: Algorithm buckei-tree elimination.

slides6 276 2024

i Bucket-Tree Construction From the Graph
1. Pick a (good) variable ordering, d. zg;%

2. Generate the induced ordered graph

3. From top to bottom, each bucket of X is mapped to
pairs (variables, functions)

4. The variables are the cligue of X, the functions are
those placed in the bucket

5. Connect the bucket of X to earlier bucket of Y if Y is
the closest node connected to X

Example: Create bucket tree for ordering A,B,C,D,FEG

Asynchronous BTE:
Bucket-tree Propagation (BTP)

Bucker-TreE ProracaTion (BTP)

Input: A problem M = (X,D,F.[[,))), ordering d. X = {X;,.... X,,} and
F={fi.... /+}, E=e. Anordering d and a corresponding bucket-tree structure,
in which for each node Xj;, its bucket B; and its neighboring buckets are well defined.

Output: Explicit buckets. Assume functions assigned with the evidence.

1. for bucket B; do:
2. for each neighbor bucket B; do,

once all messages from all other neighbors were received, do

compute and send to RJ; the message
[Aisj € 2 etim.py Vi~ Ul Aesi)]

3. Output: augmented buckets By, ..., B’;,, where each B’; contains the

original bucket functions and the A messages it received.

slides6 276 2024

‘L Query Answering

COMPUTING MARGINAL BELIEFS

Input: a bucket tree processed by BTE with augmented buckets: Bry..... Br,

output: beliefs of each vanable, bucket, and probability of evidence.

bel(B;) <= a - llsep. f
bel(X;) <= a-Yp._(xyHien, f
Plevidence) <= Y g [iep. f

Figure 5.4: Query answering.

i Complexity of BTE/BTP on Trees

Theorem 5.6 Complexity of BTE. Ler w*(d) be the induced width of (G*.d) where G is the
primal graph of M = (X.D.F, [1.20), r be the number of functions in ¥ and k be the maximum
domain size. The time complexity of BT E is O(r - deg - k" ANy wwheredeg is the maximum degree
of a node in the bucket tree. The space complexity of BTE is O(n - fw*(d)y,

Proposition 5.8 BTE on trees For tree graphical models, algorithms BTE and BTP are time and
space O(nk?) and O(nk), respectively, when k bound the domain size and n bounds the number of
variables.

This will be extended to acyclic graphical models shortly

i From Buckets to Tree-Clusters

Merge non-maximal buckets into maximal clusters.

s Connect clusters into a tree: connect each cluster to one with which it
shares a largest subset of variables.

= Separators are variable-intersection on adjacent clusters.

A B _ Time exp(5)
A O ®) Time exp(3) Memory exp(1)

M 2
@ AL, 1 @ emory exp(2) (C)

F F

iMessage Passing on a Tree Decomposition

@_. J vl y
Mrype equation here.

53§tn;ea;(/-5£g%ucz- C/USter(U) = lp (u) U {mX1—>u' le_,u; mX2—>u’ s an_)u}

With max. Elim(u,v) = cluster(u)-sep(u,v)

My -y =Zelim(u,v) l/)(u) [€Eneighbor(u),r#v {mr—m}

i Propagation in Both Directions

= Messages can propagate both ways and we
get beliefs for each variable

Outline

s From bucket-elimination (BE) to bucket-tree elimination (BTE)
s From BTE to CTE, Acyclic networks, the join-tree algorithm

s Generating join-trees, the treewidth

s Examples of CTE for Bayesian network

m Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

= Conditioning with elimination (Dechter, 7.1, 7.2)

slides6 276 2024

i The Idea of Cutset-Conditioning

Figure 7.1: An instantiated variable cuts its own cycles.

slides6 276 2024

Itonditioning - the Probability Tree

P(D=1.G=0)) =) P@)_ Plla)) Pbla)) P(flb.c)P(d =1lb,a)P(g=0|f)
a C b f‘

© Slippery
(a) Directed Acyclic Graph

P(d=1]b,a) P(g=0| f-0)
P(d=1]b,a)P(g=0| 1)
P(d=1]b,a) P(g0| -0)

P fibch
N P(d=1]b.a)P(g=0|=1)

Figure 6.1: Probability tree for computing Pi{d = 1. g = 0).

Complexity of conditioning. exponential time, linear space

Slides7 COMPSCI 2021

i Cycle-Cutset Conditioning

e 09 P e G a @90 F©
P Sy ORI e ©
ea?‘:'a - GG:'o)G

Cycle cutset = {A,B,C} ‘B

<y

1-cutset = {A,B,C}, size 3

‘_L Search Over the Cutset (cont)

Graph o Inference may require too much memory

Coloring
problem

N
A=yellow
m B=yellow

e Condition on some of the variables

2-cutset = {A B}, size =2

The Impact of Observations ¢ ¥~

© sipery

(a)} Directed acyclic graph (b) Moral graph

(a) (b) (c)

Figure 4.9: Adjusted induced graph relative to observing B.

Ordered graph Induced graph Ordered conditioned graph

i The Idea of Cutset-Conditioning

We observed that when variables are assigned, connectivity reduces.
The magnitude of saving is reflected through the "conditioned-induced graph”

Cutset-conditioning exploit this in a systematic way:
Select a subset of variables, assign them values, and
Solve the conditioned problem by bucket-elimination.
Repeat for all assignments to the cutset,

Algorithm VEC

The Cycle-Cutset Scheme:
Condition Until Treeness

* Cycle-cutset
* |-cutset
» C(i)-size of i-cutset

‘L Loop-Cutset Conditioning

= You condition until you get a polytree

gy

P(B/F=0) = P(B, A=0/F=0)+P(B,A=1/F=0)

Loop-cutset method is time exponential in loop-cutset size
but linear space. For each cutset we can do BE (belief propagation.)

i Loop-Cutset, g-Cutset, cycle-cutset

= A loop-cutset is a subset of nodes of a
directed graph that when removed the
remaining graph is a poly-tree

= A g-cutset is a subset of nodes of an
undirected graph that when removed

the remaining graph has an induced-
width of g or less.

= A cycle-cutset is a g-cutset such that
g=1.

‘_L Search Over the Cutset (cont)

Graph o Inference may require too much memory

Coloring

problem e Condition on some of the variables

2-cutset = {A B}, size =2

or, g-cutset Igorithms

i VEC: Variable Elimination with Conditioning;

s VEC-bel:
» Identify a g-cutset, C, of the network

= For each assignment to C=c solve the conditioned
sub-problem by CTE or BTE.

= Accumulate probabilities.
= Time complexity: nkctat!
= Space complexity: nk4

Algorithm VEC (Variable-elimination with conditioning)

ALGORITHM V EC-EVIDENCE
Input: A belief network B =< X.D.G.P >, an ordering d =
(x1,...,1,) ; evidence e over E. a subset C' of conditioned vari-
ables:
output: The probability of evidence P(e)
Initialize: A = 0.
1. For every assignment ' = ¢, do
e \; « The output of BE-bel with ¢ U e as observations.
e \ +— A+ 1. (update the sum).

(R

. Return P(e) = a - A (a isg.nopmalization constant.)

i What Hybrid Should We Use?

= =17 (loop-cutset?)

= 4=07 (Full search?)

= q=w* (Full inference)?
= g in between?

= depends... on the graph

= What is relation between cycle-cutset
and the induced-width?

Properties; Conditioning+Elimination

Definition 5.6.1 (cycle-cutset.,w-cutset) Given a graph G. a subset of nodes is called
a w-cutset iff when removed from the graph the resulting graph has an induced-width less
than or equal to w. A minimal w-cutset of a graph has a smallest size among all w-cutsets

of the graph. A cycle-cutset is a I-cutset of a graph.

A cycle-cutset 1s known by the name a feedback vertex set and 1t 18 known that finding
the minimal such set 18 NP-complete [41]. However, we can always settle for approx-

mmations, provided by greedy schemes. Cutset-decomposition schemes call for a new

optimization task on graphs:

Definition 5.6.2 (finding a minimal w-cutset) Given a graph G = (V. E) and a con-
stant w, find a smallest subset of nodes U, such that when removed, the resulting graph

has induced-width less than or equal w.

slides6 276 2024

Tradeoff between w* and g-cutstes

Theorem 7.7 Given graph G, and denoting by E: its munimal g-cutset then,

l+eiz24c; 2. g+, . zw" +cg. =w'

Proof. Let’s assume that we have a q-cutset of size ¢;. Then if we remove it from the graph the
result is a graph having a tree decomposition whose treewidth is bounded by g. Let's T be this
decomposition where each cluter has size ¢ + 1 or less. If we now take the g-cutset variables and
add them back to every cluster of T', we will get a tree decomposition of the whole graph (exercise:
show that) whose treewidth is ¢y + ¢. Therefore, we showed that for every c4-size g-cutset, there
is a tree decomposition whose treewidth is ¢; + ¢. In particular, for an optimal g-cutset of size ¢*
we have that w#, the treewidth obeys, w* < ¢7 + ¢. This does not complete the proof because we
only showed that for every ¢, w* < ¢z + g. But, if we remove even a single node from a minimal
g-cutset whose size is ::.‘; , we get a ¢ + 1 cutset by definition, whose size is {‘; — 1. Theretore,
Cq+1 = ¢4 — 1. Adding ¢ to both sides of the last inequality we get that for every 1 = ¢ = w*,
g+cgz=g+1+c5,, which completes the proets 276 2024 O

+

Generating Join-trees
(Junction-trees); a special type of
lree-decompositions

ASSEMBLING A JOIN TREE

. Use the fill-in algorithm to generate a chordal graph G’ (if G is
chordal, G =G").

2. Identify all cliques in G’. Since any vertex and its parent set
(lower ranked nodes connected to it) form a clique in G’, the
maximum number of cliques is | V1.

3. Order the cliques C,, C»,..., C, by rank of the highest vertex in each
clique.

4. Form the join tree by connecting each C; to a predecessor C i G<i)
sharing the highest number of vertices with C;.

ia) (k) e)

EXAMPLE: Consider the graph in Figure 3.9a. One maximum
cardinality ordering is{A, B, C, D, E).

. Every vertex in this ordering has its preceding neighbors already
connected, hence the graph is chordal and no edges need be added.
e The cliques are ranked €, C;, and C as shown in Figure 3.95.

¢ C;={C, E) shares only vertex C with its predecessors C, and €,
so either one can be chosen as the parent of C;,

e These two choices yield the join trees of Figures 3.95 and 3.9¢.

* Now suppose we wish to assemble a join tree for the same graph
with the edge (8, C) missing.

. The ordering (A, B,C,D,E) is still a maximum cardinality
ordering, but now when we discover that the preceeding neighbors
of node D (i.e., 8 and C) are nonadjacent, we should fill in edge
(&, C).

. This renders the graph chordal, and the rest of the procedure yields
the same join trees as in Figures 3.9b and 3.9¢.

Y
A

i Examples of (Join)-Trees Construction

	Slide 1: Inference for probabilistic networks (continued)
	Slide 2: The Impact of Evidence? Algorithm BE-bel
	Slide 3
	Slide 4: Generating the MPE-tuple
	Slide 5: Inference for probabilistic networks
	Slide 6: Finding a Small Induced-Width
	Slide 7: Finding a Small Induced-Width
	Slide 8: Finding a Small Induced-Width
	Slide 9: Min-width Ordering
	Slide 10: Greedy Orderings Heuristics
	Slide 11: Min-Fill Heuristic
	Slide 12: Example
	Slide 13: Different Induced-Graphs
	Slide 18: Which Greedy Algorithm is Best?
	Slide 21: Inference for probabilistic networks
	Slide 22: Marginal Map
	Slide 23: Example for MMAP Applications
	Slide 25: Bucket Elimination for MMAP
	Slide 26: Why is MMAP harder?
	Slide 27: Inference for probabilistic networks
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 37: General Graphical Models
	Slide 38: General Bucket Elimination
	Slide 39
	Slide 40: Outline
	Slide 41: Outline
	Slide 42: From BE to Bucket-Tree Elimination(BTE)
	Slide 43: BTE: Allows Messages Both Ways
	Slide 46: BTE
	Slide 47: Bucket-Tree Construction From the Graph
	Slide 48: Asynchronous BTE: Bucket-tree Propagation (BTP)
	Slide 49: Query Answering
	Slide 51: Complexity of BTE/BTP on Trees
	Slide 52: From Buckets to Tree-Clusters
	Slide 53: Message Passing on a Tree Decomposition
	Slide 56: Propagation in Both Directions
	Slide 57: Outline
	Slide 58: The Idea of Cutset-Conditioning
	Slide 59: Conditioning - the Probability Tree
	Slide 60: Cycle-Cutset Conditioning
	Slide 61: Search Over the Cutset (cont)
	Slide 62: The Impact of Observations
	Slide 63: The Idea of Cutset-Conditioning
	Slide 64: The Cycle-Cutset Scheme: Condition Until Treeness
	Slide 67: Loop-Cutset Conditioning
	Slide 68: Loop-Cutset, q-Cutset, cycle-cutset
	Slide 69: Search Over the Cutset (cont)
	Slide 70: VEC: Variable Elimination with Conditioning; or, q-cutset lgorithms
	Slide 71: Algorithm VEC (Variable-elimination with conditioning)
	Slide 91: What Hybrid Should We Use?
	Slide 92: Properties; Conditioning+Elimination
	Slide 93: Tradeoff between w* and q-cutstes
	Slide 104
	Slide 105
	Slide 106
	Slide 107: Examples of (Join)-Trees Construction

