Causal and Probabilistic Reasoning

Slides Set 5:

Exact Inference Algorithms
Bucket-elimination

(Dechter chapter 4, Darwiche chapter 6)

slides5 276 2024

i Inference for probabilistic networks

= Bucket elimination (Dechter chapter 4)
= Belief-updating, P(e), partition function
= Marginals, probability of evidence
= The impact of evidence
« for MPE (=MAP)
=« for MAP (- Marginal Map)
= Influence diagrams ?

= Induced-Width (Dechter, Chapter 3.4)

i Inference for probabilistic networks

= Bucket elimination
» Belief-updating, P(e), partition function
= Marginals, probability of evidence

(Pearl, 1988)

| Bayesian Networks: Example

P(S)

BN = (G, O)

P(CIS) P(B|S)

P(X|C,S) P(D|C,B)

P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)
Belief Updating:
P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?
slides5 276 2024

A Bayesian Network

-

L@
f,,: L"T.q]rinlrcl\e1'?.'\\I
B
—
.
S

A

true
true
false
false

C

true
false
true
false

a s
/Wet Grass?™,

. (D) B f,,r" /Sllppe

O¢la

O = by

o

S

,r’f Eain? \.

'KR_ (Cj ,/I

.-"'Fl""'.

-

-

-

-

..\'i-

\

4

ry Road? ™

A

. B
E C D e D|BC
true true true .05
true true false .05
true false true .9
true false false 1
false true true .8
false true false 2
false false true 0
false false false 1

A

true
true
false
false

true
true
false
false

B

true
false
true
false

true
false
true
false

.8
.75
.25

Ok |c

[T

» Max-Inference f(x*) = max@ fo(Xa)

» Sum-Inference Z =

» Mixed-Inference | f(x},) max(f\ (ED
XS
’//

= NP-hard: exponentially many terms

= We will focus on exact and then on approximation algorithms
= Anytime: very fast & very approximate ! Slower & more accurate

i Belief Updating is NP-hard

= Each SAT formula can be mapped into a
belief updating query in a Bayesian network

= Example
(=UV =WV Y)AUV=VV W

‘L A Simple Network

= How can we compute P(D)?, P(D|A=0)? P(A|D=0)?
= Brute force O(k*)
0 Maybe O(4k2)

slides5 276 2024

Elimination as a Basis for Inference

r/ N\ 7N J \,l
@/’ \{3_'/ CC/

A
A S true
true .6 true
false .4 false
false

To compute the prior marginal on variable C, Pr(C)

B

true
false
true
false

©OpB|a
.9

1
2
8

B

true
true
false
false

we first eliminate variable A and then variable B

C

true
false
true
false

Elimination as a Basis for Inference

@ There are two factors that mention variable A, ©4 and ©g|4

@ We multiply these factors first and then sum out variable A
from the resulting factor.

e Multiplying ©4 and Opga:

A B ©a0Opga
true true | .54
true false | .06
false true | .08
false false | .32

@ Summing out variable A:
B 3,0940p4
true .62 = .54 + .08
false .38 = .06 + .32

Elimination as a Basis for Inference

e We now have two factors,) , ©4©Op|a and O¢ g, and we
want to eliminate variable B

@ Since B appears in both factors, we must multiply them first

and then sum out B from the result.
o Multiplying:
B C ©qs> 04084
true true .186
true false .434

false true .190
false false .190

@ Summing out:
C >.59ciBY 4 ©aCpa
true | .376
false | .624

Elimination as a Basis for Inference

e We now have two factors,) , ©4©Op|a and O¢ g, and we
want to eliminate variable B

@ Since B appears in both factors, we must multiply them first
and then sum out B from the result.

o Multiplying:

B € ©qgfa0a0sp

true true .186
true false .434
false true .190
false false .190

€ |CAOciT,©40ma)

true 376
false | .624

@ Summing out:

i Belief Updating

P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

slides5 276 2024

‘LBeIief updating: P(X|evidence)=?

P(ale=0) oc P(a,e=0)=

Z P(a)P(bla)P(cla)P(d|b. a)P(elb c)=
e=0,d,c,b —
“Moral” h \ l

oI P(a)z ZZP(qa ZP(b|a)P(d|b a)P(elb,c)
'\'&\/\ ~ M/

Variable Elimination h®(a,d,c,e)

Bucket elimination
iAlgorithm BE-bel (Dechter 1996)

P(A|[E=0)=« ZP(A)-P(B|A)-P(C|A)-P(D|A,B)-P(E|B,C)

ZH<— Elimination operator
b A

bucket B: P(bja) P(d]b,a) P(e|b,c)

bucket C: P(c|a) AB(a,d,C,e)
\/ M
bucket D: A% (a,d,e)

bucket E: e=0 A°(a,e)

\ / W*=4

bucket A: P(a) JE (a) “iInduced width”

//M (max clique size)
—) i
P(a!e=0)—P(a,€ 0)

P(e=0)

P(a,e=0)

-
/@E‘»&asm

A Bayesian Network —c
Ordering: A,C,B,E,D,G e \@’;m

© siopery

(a) Directed acyclic graph

(b) Moral graph

Pla,g=1)= Y Plabedeg = > Plglf)P(f|b,c)P(dla,b)P(c|a)P(bla)P(a).

chedg—1 b dg=1

Pla,g=1) = P(a) Z,:: P(cla) Zﬁ: P{blﬂ-}zfl P(flb.c) Zd: P(d|b,a) ; P(glf). (4.1)
Pla,g = 1) = P(a) Z P(c|a) Zb: P(bla) Zf: P(f|b, c)Aa(f) Zdj P(d|b, a). (4.2)
P(a,g =1) = P(a) Z P(cla) ij P(bla)Ap(a,b) ij P(f|b,c)Ac(f) (4.3)

Pla,g=1) = P(a)}_ Plcla) Y P(bla)An(a,HAr(b.) (4.4)
© b

P(a,g=1) = P(a)) P(cla)As(a.c) (4.5)

slides5 276 2024

\)Seasm

A Bayesian Network g\ bm

Ordering: A,C,B,E,D,G waero @ wenes
@ Slippery
(a) Directed acyclic graph (b) Moral graph
Pla,g=1) = Z Pla.b,c.d. e, g) P(g|f)P(f|b.c)P(d|a,b)P(c|la)P(bla)P(a).
cbedg=1 c,b, f.dg=1

Pla,g=1)=P(a)) _P(cla)d P(bla)> P(flb,c) P(dlbal> Plglf)-] (4.1)
c b f d g=1
Pla,g=1) = P(a) Y _ P(cla)) _ P(bla) Z P(f|b.c)Aa(H)> " P(d]b.a). (4.2)
o i) d

P(a, = P(a)) P(cla)) P(bla)Ap(a,b) (4.3)
c i

P(a,g=1) = P(a)) _ P(cla)} _ P(bla)\p(a, b)Ax(b,
c b

Pla,g=1) = P(a) Y Plela)rsla) (4.5

slides5 276 2024

A Bayesian Network
Ordering: A,C,B,F,D,G

2 11
—

Bucket G: P(GIF) G=I

Bucket D: P(DIB,A

Bucket F: P(FIB,C)\, A,(F)

Bucket B: P(BIA) i,(B.A) A{B,C)

Bucket C: P(CIA) Az(AC)

Bucket A: P(A) AAA)

P(G=1)

QSeasm

Sprinkler Q« b Rain

Watering | D 6 6 Weiness
@ Slippery

(a) Directed acyclic graph

(b) Moral graph

Se.asm

A Different Ordering - ,~

Watering @ G Wetness (D)

@ Slippery

(a) Directed acyclic graph b) Moral graph

Ordering: A, ED,CB,G

I-H

(a,g=1)=Pla)>_;> 4. Plcla) >, P(bla) P(d|a,b)P(flb,c)> o, P(g]f)
Pla) 225 Aa(f) 224220 Plela) X2, P(bla) P(d|a,b)P(f[b.c)
Pla)>_; Ac(f) 2oa2.c Plcla)Agla,d,c, f)

Pla))_; Ag(f) 2.qAc(a.d. f)
P
Py

a)dAc(f)Apla, f) o=
ﬂ.),lp(ﬂ:] Bucket G: P(GIF) G=1

Bucket B: P(FIB,C) P(DIB.A) P(BIA)

Bucket C: P(CIA) AMAD.CF)
BucketD: AS(AD.F)
Bucket F: AP(AF) AS(F)
Bucket A: P(A) AT(A)

P(G=1)
(a)

Figure 4.3'Sﬁ‘aﬂe]§§kt2'76u?ﬁtz&2‘hen processing along ds = A F. D, C, B, G

QSeason

A Different Ordering -« »-

Watering { D 5 5 Weiness
@ Slippery

(a) Directed acyclic graph (b) Moral graph

Ordering: A, ED,CB,G

Pla,g=1)=Pla) 2_; 342, Plecla) 32, P(bla) P(d|a,b)P(f|b,c) >, Plgl|f)
= Pla) X s Aa(f) 2oa2_. Plecla) X2, P(bla) P(d|a,b)P(f|b,c)
= Pla) . Ac(f) 2_42.. Plcla)Agla,d. c, f)

= Pla) X2 Ae(f) 2aAcla,d, f)

= P(a) 3> ; Ac(f)Anla, f) =t

= Pla)A;

(:l Bucket G: P(GIF) G=1—__

-)o
Bucket B: P(FIB,C) P(DIB.A) P(BIA) B
Bucket C: P(CIA) ABAD,CF)

. / (@
| m{' | .II
f o

)

Bucket D: AS(ADF)

T D
W - / .
Bucket F: ANALF) AS(F) | .f 1 W
l.— \ N
Bucket A: P(A) A7 mj P
l / A
A
P(G=1)
(a) (b)

Figure 4.3: The bucket’s output when processing along dy = A, F. D, C. B, G

A Bayesian Network

Processed Along 2 Orderings

ZH

Bucket G: P(GfF) G 1
Bucket D: P(DIB A
Bucket F: P(FIB,C) J{G(F,J
Bucket B: P(BIA) DrBA) AHB.C)
Bucket C: P(CIA) AglAC)
Bucket A: PfA) AAA)
I

P(G=1)

d1=A,GB DG

\)\Seasm

Sprinkler (ﬁ\k b Fain
Watering (D 6 (:‘) Welness

© swpery

(a) Directed acyclic graph

(b) Moral graph

> 11
M

¢ ™
Bucket G: P(GIF) G=1 —__

Bucket B: F{FIB,C) P{INB.A) P(BIA) \'Il

foy
" | / B
Bucket C: P(CIA) AyAD,CF) / (1
/
\ / / kc/’ i
Bucket D: AAADF) / \ \-. J,.-" |I
I'; Al i‘ ﬂ !
" AN
Bucket F: Ap(AF) AF) 'I \r-\‘ ,./_L"\ s
l - ES
.-"-—-- - '-} 'Il
Bucket A: P(A 'mF o/
cket A: A v /
e J‘ F J \;,-’A ;ff
i / R
P(G=1)
(a) (b)

Figure 4.4: The bucket’s output when processing along d = A.F, D.C. B.G.
slides5 276 2024

i The Operation In a Bucket

= Multiplying functions
= Marginalizing (summing-out) functions

i Combination of Cost Functions

A | B | f(A,B) B| C | f(B,C)
b|b 0.4 b| b 0.2
b|lg 0.1 ‘ bl g 0
g|b 0 g| b 0
a | g 0.5 A| B | C f(A,B,C) e 0.8

b (b |b 0.1

b b g 0

b | g b 0

b g g 0.08 =0.1 x0.8

g b b 0

g b g 0

gl g b 0

g | 9|49 0.4

Factors: Sum-Out Operation

The result of variable X from factor f(X)
is another factor over variables Y = X\ { X }:

Sy €S f(xy)
X X

B C D fi

true true true .95 B C
true true false | .05
true false true 9
true false false 1
false true true | .8
false true false | .2
false false true | O
false false false | 1

true true
true false
false true
false false

2.82.c2.ph
T 4

Thanks to Darwiche

Bucket Elimimnation and
Induced wWidth

Ordering: a, e, d, ¢, b

bucket(12) Ple|lb, e), Pld|la, b)), P(b|la)

bucket (') = Plcla) || Ap(a,c.d,e)
buclket (1) =] e, £,)
bucket(F) — e = 0 || Ap(a,c)

slides5 276 2024

BEBucket Elimination and
Induced wvwwidth

W*=2
O rderimng: a, b, c, d, e
bucket() — Ple|lb,c), e = O
bucket (1) = FPd|la, B)
bucket () = Plcla) || P(e = 0O|b, <)
bucket(B) — Plila) || An(a,b), Aa(b, o)
bucket(A) — FPla) || As(a)
Ordering: a, e, d, c, b
bucket(B) — Plelb, o). P(d|la,. b)Y, P(bla)
bucket () — Plcla)y || Ap(a,c,d,e)
buclket (1) = [] Ao, e, =)
bucket(F) — e —= 0 || Ao(a, <)
bucket((A) = Pla) || Asla) W*=4

AvrcoriTuMm BE-BEL

Input: A belief network B = (X, D, Pg. ||}, an orderingd = (X,..... X,); evidence ¢
output: The beliet P(X;|e) and probability of evidence F(e)
1. Partition the input functions (CPIs) into bucket,, ..., bucket, as follows:
tor i < n downto 1, put in bucket; all unplaced functions mentioning X;.
Put each observed variable in its bucket. Denote by ¥; the product of input
functions in bucket;.

2. backward: for p < n downto 1 do
3. forall the functions ¥g5,.Ag,...., As; in bucket, do

It (observed variable) X, = x, appears in bucketp,
assign Xp = xp to each function in bucket, and then
put each resulting function in the bucket of the closest variable in its scope.
else,
dp = L, VoIl ds,
place Ap in bucket of the latest variable in scope(dp),
6. return (as a result of processing bucket;):
P(e)=a =3y, V1| lichucken 4
P(Xile) = g1 - [Ticoucken *

Figure 4.5: BE-bel: a sum-product bucket-elimination algorithm.

slides5 276 2024

i Student Network Example

« PO

i Induced Width (continued)

w’ (d) —the induced width of the primal graph along ordering d
The effect of the ordering:

Primal (moraal)
graph

W*(dl):4 W*(dz):2

* Inference for Probabilistic Networks

= Bucket elimination
s Belief-updating, P(e), partition function
» Marginals, probability of evidence
= The impact of evidence
= for MPE (- MAP)
= for MAP (= Marginal Map)

s Induced-Width

slides5 276 2024

The Impact of Evidence? %

| Algorithm BE-be/

P(A|[E=0)=« ZP(A)-P(B|A)-P(C|A)-P(D|A,B)-P(E|B,C)

E=0,D,C,B

ZH<— Elimination operator

_ b A —
bucket B: P(bla) P(d]b,a) P(e|b,c) p=;
/
bucket C: P(c|a) AB(a,d,C,e)
\/ \ v
bucket D: A (a,d,e)

bucket E: e=0 A°(a,e)

\ / W*=4

bucket A: P(a) JE (a) “iInduced width”

//M (max clique size)
=0)

P(ale=0)

The Impact of Evidence?

7

| Algorithm BE-be/

P(A|[E=0)=« ZP(A)-P(B|A)-P(C|A)-P(D|A,B)-P(E|B,C)

P(A/E=0,B=1)?

bucket B:
bucket C:

bucket D:

bucket E:

bucket A:

P(ale=0)

E=0,D,C,B

ZH<— Elimination operator
b A

P(bla) P(dlb,a) P(elbc) B=?
v
Ple/b=1,c)

P(cla)

P(d/b=1,a)

e=0 ‘\
P(a) P(b=1/a) J
>(@26)

P(e= P(a,e=0)
indesSqu(lgélzo)_ P(e=0)

(a)} Directed acyclic graph (b) Moral graph

(a) (b) (c)

Figure 4.9: Adjusted induced graph relative to observing B.

Ordered graph Induced graph Ordered conditioned graph

* Inference for Probabilistic Networks

= Bucket elimination
s Belief-updating, P(e), partition function
» Marginals, probability of evidence
= The impact of evidence
« for MPE (=MAP)
= for MAP (= Marginal Map)

s Induced-Width

slides5 276 2024

i MPE = max P(X) %

Y isreplaced by max :
MPE = max P(a)P(c|a)P(b|a)P(d |a,b)P(e|Db,c)

MPE = max P(X) %

+

Y isreplaced by max :

MPE = max P(a)P(c|a)P(b|a)P(d |a,b)P(e|b,c)

bucket B:
bucket C:
bucket D:

bucket E:
bucket A:

mglx Ef Elimination operator
ﬁ(bQ P(dlb,a) P(e[b,c)
i

P(cla) h®(a,d,c,e)
\/ Y

h®(a,d,e)

e=Q h"(a.e)

~. WH=4

E
P(z{‘ Ah/ (@) i duced width”

MPE (max clique size)

‘L Generating the MPE-tuple

5. b'=arg max P(b|a')x
xP(d'|b,a")xP(e'|b,c")

4. c'=argmax P(c|a')x
xh®(@" ,d"',c,e')

3. d'=arg max h(a' ,d,e')

2.e' =0

1. a' =arg max P(a)-h(a)

B: P(bla) P(d|b,a) P(elb,c)

C: P(cla) h°(ad,c,e)
D: h®(a,d,e)
E: e=0 h°(ae)

A: P@) he@

Return (a',b',c' ,d',e')

i Induced Width

Width is the max number of parents in the ordered graph

= Induced-width is the width of the induced ordered graph: recursively connecting
parents going from last node to first.

= Induced-width w*(d) is the max induced-width over all nodes in ordering d
Induced-width of a graph, w* is the min w*(d) over all orderings d

566 0 @

S
*
—~
S

(\V)

I
DO

Complexity of Bucket Elimination

Bucket-Elimination is time and space
O(rexp(wy))

wy - the induced width of the primal graph along ordering d

r = number of functions The effect of the ordering:
(A & ®©
@ ©)
) ©
Ay &8
© & ® ®
primal w(d1) =4 w(dy) =2

9PN Einding smallest induced-width is hard!

A Bayesian Network

Example with mpe?

If Winter?

\
™ ..

f,,: L"T.q]rinlrcl\e1'?.'\\I
N (B) S
—
.
S

A

true
true
false
false

C

true
false
true
false

(A /

e
e

e

-,

-

— e L
e

il
/Wet Grass?
. Dy J /Slippe

O¢la

O = by

o

S

,r’f Eain? \.
I"- G)
kh__(/ 4
.-'"-- L
.-""-'-'f l'"“
\
-
ry Road ’?“\I
r
. B S
E C 0 Sp |BC
true true true .05
true true false .0k
true false true .9
true false false 1
false true true .8
false true false 2
false false true 0
false false false 1

A

true
true
false
false

true
true
false
false

B

true
false
true
false

true
false
true
false

.8
.75
.25

Ok |c

[T

Try to compute MPE when E=0

Winter?

A B4
) 2
false 4
Sprinkler?
true true 2
true false 8
false true 75
Wet Grass? false false 25
(D) Slippery Road?
(E)
E C D E‘D| BC
true true true .05
A C ec|A true true false .05 C E EIE| C
true true .8 true false true .9 true true T
true false 2 true false false 1 true false 3
false true 1 false true true .8 false true 0
false false .9 false true false 2 false false 1
false false true 0
false false false 1

slides5 276 2024

i Complexity of Bucket-Elimination

= Theorem:

BE is O(n exp(w*+1)) time and O(n exp(w*))
space, when w* is the induced-width of the
moral graph along d when evidence nodes are
processed (edges from evidence nodes to
earlier variables are removed.)

More accurately: O(r exp(w*(d)) where r is the number of CPTs.
For Bayesian networks r=n. For Markov networks?

i Inference for probabilistic networks

s Bucket elimination

= Induced-Width (Dechter 3.4,3.5)

i Finding a Small Induced-Width

= NP-complete
s A tree has induced-width of ?

= Greedy algorithms:
= Min width
= Min induced-width
= Max-cardinality and chordal graphs
= Fill-in (thought as the best)

= Anytime algorithms
= Search-based
= Stochastic (CVO)

* Finding a Small Induced-Width

= NP-complete
s A tree has induced-width of ?

s Greedy algorithms:
= Min width
= Min induced-width
= Max-cardinality and chordal graphs
» Fill-in (thought as the best)

= Anytime algorithms

s Search-based [Gogate & Dechter 2003]
s Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

slides5 276 2024

i Finding a Small Induced-Width

= Greedy algorithms:

Min width

Min induced-width

Max-cardinality and chordal graphs
Fill-in (thought as the best)

i Min-width Ordering

MIN-WIDTH (MW)

input: a graph G = (V,E), V ={v,...,v,}

output: A min-width ordering of the nodes d = (vy, ..., v,).
1. for j=nto1lby-1do

2. r < a node in GG with smallest degree.
3. put 7 in position 7 and G «— G — 7.

(Delete from V' node r and from F all its adjacent edges)
4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph
What is the Complexity of MW?
O(e) slides5 276 2024

i Greedy Orderings Heuristics

s Min-induced-width

= From last to first, pick a node with smallest
width, then connect parent and remove

s Min-Fill
= From last to first, pick a node with smallest
fill-edges

Complexity? OMm3)

i Min-Fill Heuristic
s Select the variable that creates the fewest “fill-in”

edges l
Eliminate B next? (B) (T
. W Eliminate E next?
Connect neighbors :
= /'nf’ _ 3/g " , ' Neighbors already connected
(AD), (GE), (D,E) GG Filkin” =0

A G Q

slides5 276 2024

i Different Induced-Graphs

(c) (d)
A Miw ordering
A Min-fill ordering

i Which Greedy Algorithm is Best?

= Min-Fill, prefers a node who add the least
number of fill-in arcs.

= Empirically, fill-in is the best among the
greedy algorithms (MW,MIW,MF,MC)

= Complexity of greedy orderings?
= MW is O(e), MIW: O(n3) MF O(n3) MCis
O(e+n)

i Propagation in Both Directions

= Messages can propagate both ways and we
get beliefs for each variable

i Inference for probabilistic networks

= Bucket elimination (Dechter chapter 4)

=« for MAP (- Marginal Map)

‘L Marginal Map

» Max-Inference f(x*) = max | [fa(xa)

» Sum-Inference Z=> 1] fa(xa)

» Mixed-Inference | f(xs) = Iﬁﬁfz 1] fo(xa)
Xs

= NP-hard: exponentially many terms

Example for MMAP A pI cations

= Haplotype in Family pedlgrees ,%.
) G L]

¥ (,s',)

L (:()(jir1§J r]EEt\AIC)rF(E; 8 ® @

¥ 5
N _‘) (5
oy a5 il 7Y
@ O (’;{/__7 @
~ ” -}\ P) T
KON KON) @)]
O R ERO SRR OSSR O
3 A D SN A A
) @ ® ® C‘I/ ® & ®
n AN N Y N P
VN OHONONOROHONO)

= Probabilistic p‘anning Al

2

Al
LT T -Ip 2 B ja |5
2 2 eallle 1 2= (= l) == | B
L g Py
EINIEE = E]l

0 Dlag NOSIS i

= T

i Marginal MAP is Not Easy on TreeS

s Pure MAP or summation tasks

=« Dynamic programming
= Ex: efficient on trees
_>

/

= Marginal MAP

_ Max variables
= Operations do not commute:

—\

= Sum must be done first!

Z max # max Z

Bucket Elimination for MMAP

Bucket Elimination

Oy
¢

XM :{AaDaE}

A

Xs={B,C}

constrained elimination order

SUM

MAX

B:

C:

(A, B) f(B,0) {(B,

D)f(B, E)

I S
A(A,C.D, B)f(A,C) f(C, E)

X
)\C(A D.E) f(A, D)I

MAP* is the marginal MAP value

70
(®

',-""II'L"-"?_ S

N \CAN
1
\' (D“<

EV

A/AODE

%/hy is MMAP harder?

XM — {AaDaE}
Xg = {BaC}

(Park & Darwiche, 2003)
(Yuan & Hansen, 2009)

constrained elimination order

SUM

MAX

exact upper
boun

unconstrained elimination order

W 4
In practice, constrained induced is much

larger!
max < max
x> @<) mgxd

* Inference for probabilistic networks

m Bucket elimination (Dechter chapter 4)
= Belief-updating, P(e), partition function
= Marginals, probability of evidence
= The impact of evidence
« for MPE (=>MAP)
= for MAP (= Marginal Map)

s Induced-Width (Dechter, Chapter 3.4)
s Mixed networks
= Influence diagrams ?

slides5 276 2024

7R . 1),
‘ EX . OI | WI |d Catte r e.g., [Raiffa 1968; Shachter 1986]
|

* Influence diagram:

Test
=
result
Seismic Qil
Cm e

* Three actions: test, drill, sales policy

oil
produced

QOil sale
policy

* Chance variables:
P(oil) P(seismic|oil) P(result | seismic, test) P(produced | oil, drill) P(market)

* Utilities capture costs of actions, rewards of sale

Oil sales - Test cost - Drill cost - Sales cost

Influence Diagrams

Influence diagram ID = (X,D,P,R).

T e

T @ﬁ D %% OSP

T v

CPT’s for chance variables Pi=P(Xi| pai),I =1..n
Reward components R ={ru,...,ri}
Utility function U= 2_ili

|Common examples
|

* Markov decision process
— Markov chain state sequence
— Actions “di” influence state transition

— Rewards based on action, new state

— Temporally homogeneous

* Partially observable MDP
— Hidden Markov chain state sequence

— Generate observations
— Actions based on observations

Influence Diagrams

(continue)

A decision rule for Djis a mapping: i : Qpapi — Qb

where (s is the cross product of domains in S.

A policy is a list of decision rules A = (J1,....,0m)

Task: Find an optimal policy that maximizes the expected utility.

E= max Z HiPi(x)u(x)

A=(81,...,0m) x=(xt,..., Xn)

The Car Example

(Howard 1976)

A car buyer needs to buy one of two used cars. The buyer can carry
out tests with various costs, and then, decide which car to buy.

T: Test variable (t,, t;, t,) (t; test car 1, t, test car 2)

D: the decision of which car to buy, D e {buyl, buy2}

C;: the quality of car i, C; € {q,, 0,}

t.: the outcome of the test on car i, t; € {pass, fail, null}. T ——e<> r(T)
r(T): The cost of testing,

r(C,,D), r(C,,D): the reward in buying cars 1 and 2. @ / \ @
The utility is: r(T) + r(C,,D) + r(C,,D). \‘ ‘/

@) | &

Task: determine decision rules T and D such that: \ /
E=max 2, P(ts|C2T)P(C2)P(t1CLT)- OeT[o]—>

T.,D t2,11,C2,C1

P(C)[r(T)+r(C2,D)+r(Cy,D)]

r(C4,D) r(C,,D)

Bucket Elimination for meu

(Algorithm Elim-meu-id)

Input: An Influence diagram ID = {Py,...,P,r;,...,r;}
Output: Meu and optimizing policies.

1. Order the variables and partition into buckets.
2. Process buckets from last to first:
o=Tt,t,,D,C,C,

bucket(C,): P(C,), P(t,|C,,T), r(C,,D)

bucket(C,): P(C,), P(t,IC,.T), r(C,D)

bucket(®): €. (t,,T,D), % (1, T,D)

bucket(t,): Ao (4, T) 64,5, T), 6(t,t,T)
bucket(t)): Ac (t,, T) 0 (t,,T)

bucket(T): r(T) ~ A4, (T)" A, (T) 0,(T),

——

b, o

3. Forward: Assign values in orgering ¢

i The Bucket Description

Final buckets: (As or Ps) utility components (85 or r’s).

bucket(C,): P(C),P(t,|C,,T),r(C,,D)
bucket(C,): P(CZ),P(t2|C2,T),r(C2,D)J
bucket(D): /6. (t,T, D),é’c2 (t2,T,D)
bucket(t,): ﬂ“cl(tl’T)’ go(t11t21T)
bucket(t,): \ Ac (8,,T), 6, (L,,T)
bucket(T): r(T)

Optimizing policies: ¢, Is argmax of &; computed in
bucket(T), and 6,(t,,t,,T) in bucket(t,).

General Graphical Models

Definition 2.2 Graphical model. A graphical model M is a 4-tuple, M = (X.D.F.),
where:

1. X ={X,,..., X,} is a finite set of variables;
2. D ={D,.....D,} is the set of their respective finite domains of values;

3. F=1{f1...., fr} is a set of positive real-valued discrete functions, defined over scopes of
variables S = {Sy, ..., S;}, where S; C X. They are called /oca/ functions.

4. Q) is a combination operator (e.g., @ € {[[. D_. <t} (product, sum, join)). The combination
operator can also be defined axiomatically as in [Shenoy, 1992], but for the sake of our
discussion we can define it explicitly, by enumeration.

The graphical model represents a global function whose scope is X which is the combination of all
its functions: @;_, fi.

General Bucket Elimination

Algorithm General bucket elimination (GBE)

Input: M = (X.D,F.®) . F ={fi...., fa} an ordering of the variables, d = X,..., X;;;
Y cX.

Output: A new compiled set of functions from which the query ||y ®7_, fi can be derived
in linear time.

1. Initialize: Generate an ordered partition of the functions into bucket,, ..., bucket,, where
bucket; contains all the functions whose highest variable in their scope is X;. An input func-
tion in each bucket ¥, ¥ = ®7_, fi.

2. Backward: For p < n downto 1, do

for all the functions vV, A1, A5, ...,A; in bucket,, do

» If (observed variable) X, = x,, appears in bucket,, assign X, = x, in ¥, and to each
A; and put each resulting function in appropriate bucket.

» else, (combine and marginalize)
Ap <s, ¥p, ® (®/_,A;) and add A, to the largest-index variable in scope(A,).

3. Return: all the functions in each bucket.

Theorem 4.23 Correctness and complexity. Algorithm GBE is sound and complete for its task. Its
time and space complexities is exponential in the w*(d) + 1 and w* (d), respectively, along the order

of processing d.

i Inference for probabilistic networks

s Bucket elimination

= Induced-Width (Dechter 3.4,3.5)

i Finding a Small Induced-Width

= NP-complete
s A tree has induced-width of ?

= Greedy algorithms:
= Min width
= Min induced-width
= Max-cardinality and chordal graphs
= Fill-in (thought as the best)

= Anytime algorithms
= Search-based
= Stochastic (CVO)

* Finding a Small Induced-Width

= NP-complete
s A tree has induced-width of ?

s Greedy algorithms:
= Min width
= Min induced-width
= Max-cardinality and chordal graphs
» Fill-in (thought as the best)

= Anytime algorithms

s Search-based [Gogate & Dechter 2003]
s Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

slides5 276 2024

i Finding a Small Induced-Width

= Greedy algorithms:

Min width

Min induced-width

Max-cardinality and chordal graphs
Fill-in (thought as the best)

i Min-width Ordering

MIN-WIDTH (MW)

input: a graph G = (V,E), V ={v,...,v,}

output: A min-width ordering of the nodes d = (vy, ..., v,).
1. for j=nto1lby-1do

2. r < a node in GG with smallest degree.
3. put 7 in position 7 and G «— G — 7.

(Delete from V' node r and from F all its adjacent edges)
4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph
What is the Complexity of MW?
O(e) slides5 276 2024

i Greedy Orderings Heuristics

s Min-induced-width

= From last to first, pick a node with smallest
width, then connect parent and remove

s Min-Fill
= From last to first, pick a node with smallest
fill-edges

Complexity? OMm3)

i Min-Fill Heuristic
s Select the variable that creates the fewest “fill-in”

edges l
Eliminate B next? (B) (T
. W Eliminate E next?
Connect neighbors :
= /'nf’ _ 3/g " , ' Neighbors already connected
(AD), (GE), (D,E) GG Filkin” =0

A G Q

slides5 276 2024

i Different Induced-Graphs

(c) (d)
A Miw ordering
A Min-fill ordering

i Which Greedy Algorithm is Best?

= Min-Fill, prefers a node who add the least
number of fill-in arcs.

= Empirically, fill-in is the best among the
greedy algorithms (MW,MIW,MF,MC)

= Complexity of greedy orderings?
= MW is O(e), MIW: O(n3) MF O(n3) MCis
O(e+n)

i Propagation in Both Directions

= Messages can propagate both ways and we
get beliefs for each variable

i Inference for probabilistic networks

= Bucket elimination (Dechter chapter 4)

=« for MAP (- Marginal Map)

‘L Marginal Map

» Max-Inference f(x*) = max | [fa(xa)

» Sum-Inference Z=> 1] fa(xa)

» Mixed-Inference | f(xs) = Iﬁﬁfz 1] fo(xa)
Xs

= NP-hard: exponentially many terms

Example for MMAP A pI cations

= Haplotype in Family pedlgrees ,%.
) G L]

¥ (,s',)

L (:()(jir1§J r]EEt\AIC)rF(E; 8 ® @

¥ 5
N _‘) (5
oy a5 il 7Y
@ O (’;{/__7 @
~ ” -}\ P) T
KON KON) @)]
O R ERO SRR OSSR O
3 A D SN A A
) @ ® ® C‘I/ ® & ®
n AN N Y N P
VN OHONONOROHONO)

= Probabilistic p‘anning Al

2

Al
LT T -Ip 2 B ja |5
2 2 eallle 1 2= (= l) == | B
L g Py
EINIEE = E]l

0 Dlag NOSIS i

= T

i Marginal MAP is Not Easy on TreeS

s Pure MAP or summation tasks

=« Dynamic programming
= Ex: efficient on trees
_>

/

= Marginal MAP

_ Max variables
= Operations do not commute:

—\

= Sum must be done first!

Z max # max Z

Bucket Elimination for MMAP

Bucket Elimination

Oy
¢

XM :{AaDaE}

A

Xs={B,C}

constrained elimination order

SUM

MAX

B:

C:

(A, B) f(B,0) {(B,

D)f(B, E)

I S
A(A,C.D, B)f(A,C) f(C, E)

X
)\C(A D.E) f(A, D)I

MAP* is the marginal MAP value

70
(®

',-""II'L"-"?_ S

N \CAN
1
\' (D“<

EV

A/AODE

%/hy is MMAP harder?

XM — {AaDaE}
Xg = {BaC}

(Park & Darwiche, 2003)
(Yuan & Hansen, 2009)

constrained elimination order

SUM

MAX

exact upper
boun

unconstrained elimination order

W 4
In practice, constrained induced is much

larger!
max < max
x> @<) mgxd

* Inference for probabilistic networks

m Bucket elimination (Dechter chapter 4)
= Belief-updating, P(e), partition function
= Marginals, probability of evidence
= The impact of evidence
« for MPE (=>MAP)
= for MAP (= Marginal Map)

s Induced-Width (Dechter, Chapter 3.4)
s Mixed networks
= Influence diagrams ?

slides5 276 2024

7R . 1),
‘ EX . OI | WI |d Catte r e.g., [Raiffa 1968; Shachter 1986]
|

* Influence diagram:

Test
=
result
Seismic Qil
Cm e

* Three actions: test, drill, sales policy

oil
produced

QOil sale
policy

* Chance variables:
P(oil) P(seismic|oil) P(result | seismic, test) P(produced | oil, drill) P(market)

* Utilities capture costs of actions, rewards of sale

Oil sales - Test cost - Drill cost - Sales cost

Influence Diagrams

Influence diagram ID = (X,D,P,R).

T e

T @ﬁ D %% OSP

T v

CPT’s for chance variables Pi=P(Xi| pai),I =1..n
Reward components R ={ru,...,ri}
Utility function U= 2_ili

|Common examples
|

* Markov decision process
— Markov chain state sequence
— Actions “di” influence state transition

— Rewards based on action, new state

— Temporally homogeneous

* Partially observable MDP
— Hidden Markov chain state sequence

— Generate observations
— Actions based on observations

Influence Diagrams

(continue)

A decision rule for Djis a mapping: i : Qpapi — Qb

where (s is the cross product of domains in S.

A policy is a list of decision rules A = (J1,....,0m)

Task: Find an optimal policy that maximizes the expected utility.

E= max Z HiPi(x)u(x)

A=(81,...,0m) x=(xt,..., Xn)

The Car Example

(Howard 1976)

A car buyer needs to buy one of two used cars. The buyer can carry
out tests with various costs, and then, decide which car to buy.

T: Test variable (t,, t;, t,) (t; test car 1, t, test car 2)

D: the decision of which car to buy, D e {buyl, buy2}

C;: the quality of car i, C; € {q,, 0,}

t.: the outcome of the test on car i, t; € {pass, fail, null}. T ——e<> r(T)
r(T): The cost of testing,

r(C,,D), r(C,,D): the reward in buying cars 1 and 2. @ / \ @
The utility is: r(T) + r(C,,D) + r(C,,D). \‘ ‘/

@) | &

Task: determine decision rules T and D such that: \ /
E=max 2, P(ts|C2T)P(C2)P(t1CLT)- OeT[o]—>

T.,D t2,11,C2,C1

P(C)[r(T)+r(C2,D)+r(Cy,D)]

r(C4,D) r(C,,D)

Bucket Elimination for meu

(Algorithm Elim-meu-id)

Input: An Influence diagram ID = {Py,...,P,r;,...,r;}
Output: Meu and optimizing policies.

1. Order the variables and partition into buckets.
2. Process buckets from last to first:
o=Tt,t,,D,C,C,

bucket(C,): P(C,), P(t,|C,,T), r(C,,D)

bucket(C,): P(C,), P(t,IC,.T), r(C,D)

bucket(®): €. (t,,T,D), % (1, T,D)

bucket(t,): Ao (4, T) 64,5, T), 6(t,t,T)
bucket(t)): Ac (t,, T) 0 (t,,T)

bucket(T): r(T) ~ A4, (T)" A, (T) 0,(T),

——

b, o

3. Forward: Assign values in orgering ¢

i The Bucket Description

Final buckets: (As or Ps) utility components (85 or r’s).

bucket(C,): P(C),P(t,|C,,T),r(C,,D)
bucket(C,): P(CZ),P(t2|C2,T),r(C2,D)J
bucket(D): /6. (t,T, D),é’c2 (t2,T,D)
bucket(t,): ﬂ“cl(tl’T)’ go(t11t21T)
bucket(t,): \ Ac (8,,T), 6, (L,,T)
bucket(T): r(T)

Optimizing policies: ¢, Is argmax of &; computed in
bucket(T), and 6,(t,,t,,T) in bucket(t,).

General Graphical Models

Definition 2.2 Graphical model. A graphical model M is a 4-tuple, M = (X.D.F.),
where:

1. X ={X,,..., X,} is a finite set of variables;
2. D ={D,.....D,} is the set of their respective finite domains of values;

3. F=1{f1...., fr} is a set of positive real-valued discrete functions, defined over scopes of
variables S = {Sy, ..., S;}, where S; C X. They are called /oca/ functions.

4. Q) is a combination operator (e.g., @ € {[[. D_. <t} (product, sum, join)). The combination
operator can also be defined axiomatically as in [Shenoy, 1992], but for the sake of our
discussion we can define it explicitly, by enumeration.

The graphical model represents a global function whose scope is X which is the combination of all
its functions: @;_, fi.

General Bucket Elimination

Algorithm General bucket elimination (GBE)

Input: M = (X.D,F.®) . F ={fi...., fa} an ordering of the variables, d = X,..., X;;;
Y cX.

Output: A new compiled set of functions from which the query ||y ®7_, fi can be derived
in linear time.

1. Initialize: Generate an ordered partition of the functions into bucket,, ..., bucket,, where
bucket; contains all the functions whose highest variable in their scope is X;. An input func-
tion in each bucket ¥, ¥ = ®7_, fi.

2. Backward: For p < n downto 1, do

for all the functions vV, A1, A5, ...,A; in bucket,, do

» If (observed variable) X, = x,, appears in bucket,, assign X, = x, in ¥, and to each
A; and put each resulting function in appropriate bucket.

» else, (combine and marginalize)
Ap <s, ¥p, ® (®/_,A;) and add A, to the largest-index variable in scope(A,).

3. Return: all the functions in each bucket.

Theorem 4.23 Correctness and complexity. Algorithm GBE is sound and complete for its task. Its
time and space complexities is exponential in the w*(d) + 1 and w* (d), respectively, along the order

of processing d.

	Slide 1
	Slide 2: Inference for probabilistic networks
	Slide 3: Inference for probabilistic networks
	Slide 4: Bayesian Networks: Example (Pearl, 1988)
	Slide 5
	Slide 7: Types of queries
	Slide 8: Belief Updating is NP-hard
	Slide 9: A Simple Network
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15: Belief Updating
	Slide 16: Belief updating: P(X|evidence)=?
	Slide 17: Bucket elimination Algorithm BE-bel (Dechter 1996)
	Slide 18: A Bayesian Network Ordering: A,C,B,E,D,G
	Slide 19: A Bayesian Network Ordering: A,C,B,E,D,G
	Slide 20: A Bayesian Network Ordering: A,C,B,F,D,G
	Slide 21: A Different Ordering
	Slide 22
	Slide 23: A Bayesian Network Processed Along 2 Orderings
	Slide 24: The Operation In a Bucket
	Slide 25: Combination of Cost Functions
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 33: Student Network Example
	Slide 34: Induced Width (continued)
	Slide 35: Inference for Probabilistic Networks
	Slide 36: The Impact of Evidence? Algorithm BE-bel
	Slide 37: The Impact of Evidence? Algorithm BE-bel
	Slide 38: The Impact of Observations
	Slide 47: Inference for Probabilistic Networks
	Slide 48
	Slide 49
	Slide 50: Generating the MPE-tuple
	Slide 51: Induced Width
	Slide 52: Complexity of Bucket Elimination
	Slide 53
	Slide 54
	Slide 55: Complexity of Bucket-Elimination
	Slide 57: Inference for probabilistic networks
	Slide 58: Finding a Small Induced-Width
	Slide 59: Finding a Small Induced-Width
	Slide 60: Finding a Small Induced-Width
	Slide 61: Min-width Ordering
	Slide 62: Greedy Orderings Heuristics
	Slide 63: Min-Fill Heuristic
	Slide 64: Example
	Slide 65: Different Induced-Graphs
	Slide 70: Which Greedy Algorithm is Best?
	Slide 71: Propagation in Both Directions
	Slide 73: Inference for probabilistic networks
	Slide 74: Marginal Map
	Slide 75: Example for MMAP Applications
	Slide 76: Marginal MAP is Not Easy on Trees
	Slide 77: Bucket Elimination for MMAP
	Slide 78: Why is MMAP harder?
	Slide 91: Inference for probabilistic networks
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 98
	Slide 99
	Slide 101: General Graphical Models
	Slide 102: General Bucket Elimination
	Slide 103: Inference for probabilistic networks
	Slide 104: Finding a Small Induced-Width
	Slide 105: Finding a Small Induced-Width
	Slide 106: Finding a Small Induced-Width
	Slide 107: Min-width Ordering
	Slide 108: Greedy Orderings Heuristics
	Slide 109: Min-Fill Heuristic
	Slide 110: Example
	Slide 111: Different Induced-Graphs
	Slide 116: Which Greedy Algorithm is Best?
	Slide 117: Propagation in Both Directions
	Slide 119: Inference for probabilistic networks
	Slide 120: Marginal Map
	Slide 121: Example for MMAP Applications
	Slide 122: Marginal MAP is Not Easy on Trees
	Slide 123: Bucket Elimination for MMAP
	Slide 124: Why is MMAP harder?
	Slide 136: Inference for probabilistic networks
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 143
	Slide 144
	Slide 146: General Graphical Models
	Slide 147: General Bucket Elimination

