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i Outline

= Basic of Probability Theory
= Bayesian Networks, DAGS, Markov(G)

= Graphoids axioms for Conditional
Independence

= d-separation: Inferring CIs in graphs



Basics of Probabilistic Calculus

i (Chapter 3)
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Degrees of Belief

@ Assign a degree of belief or probability in [0, 1] to each world
w and denote it by Pr(w).
@ [he belief in, or probability of, a sentence a:

Pr(a) « ZPI‘(L{J).

wEa
world | Earthquake Burglary Alarm  Pr(.)
W1 true true true  .0190
Wo true true false  .0010
W3 true false true  .0560
W4 true false false  .0240
Wws false true true  .1620
We false true false .0180
Wy false false true  .0072
ws false false false  .7128




Properties of Beliefs

@ A bound on the belief in any sentence:

0 < Pr(a) <1 forany sentence «.
@ A baseline for inconsistent sentences:

Pr(a) =0 when « is inconsistent.
@ A baseline for valid sentences:

Pr(a) =1  when « is valid.



Properties of Beliefs
o
X

@ [he belief in a sentence given the belief in its negation:

Pr(a) 4+ Pr(—a) = 1.

Example

Pr(Burglary) = Pr(wi)+ Pr(ws) + Pr(ws) + Pr(wg) = .2
Pr(—Burglary) = Pr(ws3)+ Pr(ws)+ Pr(wz) + Pr(ws) = .8




Properties of Beliefs
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@ The belief in a disjunction:
Pr(a Vv 3) = Pr(a) + Pr(3) — Pr(a A 3).

o Example:

Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(wsz) + Pr(ws) = .1
Pr(Burglary) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .2
Pr(Earthquake A Burglary) = Pr(wi) + Pr(wz) = .02
Pr(Earthquake vV Burglary) = .1+ .2 - .02 = .28



Properties of Beliefs
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@ [he belief in a disjunction:

Pr(av3) = Pr(a)+Pr(3) when « and 3 are mutually exclusive.



Quantify uncertainty about a variable X using the notion of
entropy:

ENT(X) % —ZPr x) log, Pr(x),

where 0log0 = 0 by convention.

Earthquake Burglary Alarm
true 1 2 2442
false 9 8 7558

ENT(.) 469 722 802

10



@ The entropy for a binary variable X and varying p = Pr(X).
@ Entropy is non-negative.

@ When p=0or p =1, the entropy of X is zero and at a
minimum, indicating no uncertainty about the value of X.

@ When p = % we have Pr(X) = Pr(—X) and the entropy is at

a maximum (indicating complete uncertainty).
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Bayes Conditioning

Alpha and beta are events

Closed form for Bayes conditioning:

Pr(a A 3)

Pr(«|3) =

Pr(/3)

Defined only when Pr(/3) # 0.
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Degrees of Belief

world | Earthquake Burglary Alarm  Pr(.)

W1 true true true .0190
Wo true true false  .0010
W3 true false true  .0560
Wy true false false .0240
W false true true  .1620
We false true false  .0180
Wy false false true  .0072
wg false false false .7128

Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .1

Pr(Burglary) = .2

Pr(—Burglary) = .8

Pr(Alarm) = .2442

13



Belief Change

Burglary is independent of Earthquake

Conditioning on evidence Earthquake:

Pr(Burglary) = .2
Pr(Burglary|Earthquake) 2

Pr(Alarm) = .2442
Pr(Alarm|Earthquake) ~ 751

The belief in Burglary is not changed, but the belief in Alarm
Increases.

14



Belief Change

Earthguake is independent of burglary

Conditioning on evidence Burglary:

Pr(Alarm) = .2442
Pr(Alarm|Burglary) ~ .9051
Pr(Earthquake) = .1
Pr(Earthquake|Burglary) = .1

The belief in Alarm increases in this case, but the belief in
Earthquake stays the same.
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Belief Change

The belief in Burglary increases when accepting the evidence
Alarm. How would such a belief change further upon obtaining
more evidence?

@ Confirming that an Earthquake took place:

Pr(Burglary|Alarm) ~ .741
Pr(Burglary|Alarm A Earthquake) ~ .253 |
We now have an explanation of Alarm.
@ Confirming that there was no Earthquake:
Pr(Burglary|Alarm) 741

Pr(Burglary|Alarm A —=Earthquake) =~ .957

New evidence will further establish burglary as an explanation.
16



Conditional Independence

Pr finds a conditionally independent of (3 given -y iff

Pr(a|3 A ~v) = Pr(aly) or Pr(BA~v)=0.

Another definition

Pr(a A Bly) = Pr(a|y)Pr(3|y) or Pr(vy) = 0.

17



Variable Independence

Pr finds X independent of Y given Z, denoted /p.(X,Z.Y), means
that Pr finds x independent of y given z for all instantiations x, y
and z.

X={A,B},)Y={C}and Z={D.E}, where A,B,C,D and E
are all propositional variables. The statement /p,(X,Z.,Y) is then a
compact notation for a number of statements about independence:

A » B is independent of C given D / E;
A n =B is independent of C given D / E;

—A A =B is independent of = C given =D A —E;

That is, lpr(X,Z,Y) is a compact notation for 4 x 2 x 4 = 32
independence statements of the above form.
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Chain rule

Further Properties of Beliefs
Chanrgle . ... ...

Pr(ai Aas AL A ap)
= Pr(ai|ag A ... Aap)Pr(az|laz Ao A ap) ... Pr(ag).

Case analysis (law of total probability)

n
Pr(a) = Z Pr(a A 5;),
i=1

where the events /31, .... (3, are mutually exclusive and exhaustive.

>
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Further Properties of Beliefs
 Another version of case analysis |

Another version of case analysis

Pr(a) =) Pr(a|8;)Pr(3),

i=1

where the events 31, ..., 3, are mutually exclusive and exhaustive.

o

Two simple and useful forms of case analysis are these:

Pr(a) = Pr(aApB)+ Pr(aA—/3)
Pr(a) = Pr(a|8)Pr(3)+ Pr(a|-=38)Pr(—73).

The main value of case analysis is that, in many situations,
computing our beliefs in the cases is easier than computing our
beliefs in «v. We shall see many examples of this phenomena in
later chapters.
20



Further Properties of Beliefs

Bayes rule

Pr(3|a)Pr(a)

Pr(a|3) = Pr(3)

@ Classical usage: «v is perceived to be a cause of /3.
@ Example: a is a disease and (3 is a symptom-—
@ Assess our belief in the cause given the effect.

@ Belief in an effect given its cause, Pr(/3|«), is usually more

readily available than the belief in a cause given one of its
effects, Pr(a|/3).

21



i Outline

= Bayesian Networks, DAGS, Markov(G)
=« From a distribution to a BN
« From BN to distributions, DAGs, Markov(G)
= Parameterization




i Outline

= Bayesian Networks, DAGS, Markov(G)
« From a distribution to a BN



Bayesian Networks (BNs) in 2 ways:

From a distribution to a BN:

« A Bayesian network is factorize probability distribution along an ordering.

« The DAG emerging is a Bayesian network of the distribution

« The factorization is guided by a set of Markov assumption that transform
the chain product formula into a Bayesian network.

slides2 Winter 2024



Frobabilistic Madeling with Joint Distribution

Difficulty: Complexity in model construction and inference

Earthqla\ke‘ /Burglary
m In Alarm example:

m 31 numbers needed, /A|<

m Quite unnatural to assess: e.g. M
John arry

PB=y E=y A=y, J=y M=y)

m Computing P(B=y|M=y) takes 29 additions.
m In general,

m P(Xy, Xa,...,X,) needs at least 2" — 1 numbers to specify the joint
probability. Exponential model size,
m Knowledge acquisition difficult (complex, unnatural),

m Exponential storage and inference.

MNevin L. Zhang (HKUST) Bavesian MNetworks Spring 2007 B /54



Conditional Independence and Factorization

Chain Rule and Factorization

Overcome the problem of exponential size by exploiting conditional independence

m [he chain rule of probabilities:

P(X1,X2) = P(X1)P(X2]|X1)
P(X1, X2, X3) = P(X1)P(X2|X1)P(X3] X1, X2)

P(X1, Xay- . X)) = PX)P(Xa|X1) ... P(Xpl X1, ..o Xoet)

m No gains yet. The number of parameters required by the factors is:
pn=lgon=l4 +1=2"-1.

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007 10 / 54



Conditional Independence and Factorization

Conditional Independence

m About P(X;|X1,...,Xi—1):

m Domain knowledge usually allows one to identify a subset
pa(X;) € {X1,...,Xj—1} such that

m Given pa(X;), X; is independent of all variables in
[ X1, ..., Xic1}\ pa( X)), ie.

P{X,.‘|X]_, - ,X,.'_]_] = P{XJJU'E(X,.}}

m [ hen

m Joint distribution factorized.

B [he number of parameters might have been substantially reduced.

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007 11 /54



- Conditional Independence and Factorization
Example continued

Spring 2007 12 / 54




Example continued

m Conditional probabilities tables (CPT)

E FIE
E_P(B) = P(E) A B E FP(A|B, E)
¥ 01 T 02
. " o5 Y Y Y .85
N .99 . N Y Y .05
¥ ¥ H .54
N Y N .06
M A P(M|A) J A PB(J|A) Y N v .29
¥ Y .9 ¥ ¥ -7 H H ¥ .71
M Y .1 H ¥ .3 ¥ N N LO01
Y N .05 ¥ N .01 N N N .99
N N .95 N N .99

Spring 2007 12 /54



Conditional Independence and Factorization

Example continued

m Model size reduced from 31 to 1+14+4+2+42=10

m Model construction easier

m Fewer parameters to assess.
m Parameters more natural to d55€55.2.8.

P(B=Y),P(E=Y),P(A=Y|B=Y,E=Y),

P(J=Y|A=Y),P(M=Y|A=Y)

m Inference easier.\Will see this later.

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007 13 /54



i Outline

= Bayesian Networks, DAGS, Markov(G)

« From BN to distributions, DAGs, Markov(G)



Capturing Independence Graphically

The causal interpretation

@rthqual@ Gur{g;rys
e — Assume that edges in this

graph represent direct causal
influences among these
variables.

The alarm triggering (A) is a direct cause of receiving a call from a
neighbor (C).




Capturing Independence Graphically

But influences can be indirect as well.
For example...

QQ;BBFE\

anhquak

@

;Eaﬁgﬁﬁx\
o

We expect our belief in C to be
influenced by evidence on K.

If we get a radio report that an
earthquake took place in our
neighborhood, our belief in the
alarm triggering would probably
Increase, which would also
increase our belief in receiving
a call from our neighbor.




Capturing Independence Graphically

&

arthquak
(E)

e‘?>

We would not change this
belief, however, if we knew for
sure that the alarm did not
trigger. That is, we would find
C independent of R given —A
iIn the context of this causal
structure.



Capturing Independence Graphically

7 Visitto Asia? N

_/

/’/-— Tuberculosis?

Tuberculosis or Cancer?

We would clearly find a visit to
Asia relevant to our belief in
the X-Ray test coming out
positive, but we would find the
visit irrelevant if we know for
sure that the patient does not
have Tuberculosis. That is, X
is dependent on A, but is
independent of A given —T.



Graphs Convey Independence Statements

+

= Directed graphs by graph’s d-separation
= Undirected graphs by graph separation

= Goal: capture probabilistic conditional
independence by graphs.

= We focus on directed graphs.



Capturing Independence Graphically

These examples of independence are all implied by a formal
interpretation of each DAG as a set of conditional independence
statements.

Given a variable V in a DAG G:

Parents(V') are the parents of V in DAG G, that is, the set of
variables N with an edge from N to V.

Descendants(V') are the descendants of V' in DAG G, that is, the
set of variables N with a directed path from V to N
(we also say that V is an ancestor of N in this case).

Non Descendants( V) are all variables in DAG G other than V,
Parents(V') and Descendants(V'). We will call these
variables the non-descendants of V' in DAG G.



Capturing Independence Graphically

We will formally interpret each DAG G as a compact
representation of the following independence statements

(Markovian assumptions):

[(V,Parents(V), Non Descendants(V)),

for all variables V' in DAG G. )

@ If we view the DAG as a causal structure, then Parents( V)
denotes the direct causes of V' and Descendants(V') denotes

the effects of V.

@ Given the direct causes of a variable, our beliefs in that
variable will no longer be influenced by any other variable
except possibly by its effects.



Capturing Independence Graphically

What are the Markov assumptions here?

Note that variables B and E have no parents, hence, they are
marginally independent of their non-descendants.

slides2 Winter 2024



Capturing Independence Graphically

What are the Markov assumptions here?

Earthquakef“ ]gl;lg aryN
(B ) <JB_-/ I(C.A {B,E.R})
I(R,E.{A.B,C})
- I(A. {B,E},R)
Al(éfljll‘l)ll'?/l /(B, @., {E., R})
T I(E. (. B)
cilﬁ
(@/

Note that variables B and E have no parents, hence, they are
marginally independent of their non-descendants.



Capturing Independence Graphically

The formal interpretation of a DAG as a set of conditional
independence statements makes no reference to the notion of
causality, even though we have used causality to motivate this
Interpretation.

If one constructs the DAG based on causal perceptions, then one
would tend to agree with the independencies declared by the DAG.

It is perfectly possible to have a DAG that does not match our
causal perceptions, yet we agree with the independencies declared

by the DAG.




Capturing Independence Graphically

< Farthquake? ™ Eﬁr%ﬂr?‘?“:). <I~ arthqu: u.u,\ By
_ _(E}____f 4 m____'[-_f_)_;_, . (El ___f{ \____( E)__-f /
(/ al{tuh;;\ A|Jmﬂ< / Radio 7N / A_Iarr;r\
N B’ S H @ NG R S @

| |

L |

Call? ™\ - fE?alI'?)
o/ (O

Every independence which is declared (or implied) by the second
DAG is also declared (or implied) by the first one. Hence, if we
accept the first DAG, then we must also accept the second.



Capturing Independence Graphically

7 I—'d]:l]'lq_UI_k_:?\\ ﬁu;g] i‘;? ™ <P arlhqu lkb\ -~ ’éh};ﬁ:{;\
B a-.__gf_,.,/ B S
(/ fiizldi;_'.;\\ Aldrm ! ‘4 / Rddlﬂ }\ / ;;.Id["r;]_r\
N B N R @/
| |
4 )

Call? ™\ - fE?alI'?)
o/ (O

Every independence which is declared (or implied) by the second
DAG is also declared (or implied) by the first one. Hence, if we
accept the first DAG, then we must also accept the second.



i Outline

= Bayesian Networks, DAGS, Markov(G)

= Parameterization



Parameterizing the Independence Structure

@ The DAG G is a partial
specification of our state of belief

 Farthquake? ™ ~ Burglary? ™ Pr.
N B ~® S . .
/T @ By constructing G, we are saying
/ . that the distribution Pr must
.;(Rf;;if‘? ) C Alg;“?/. satisfy the independence
o T assumptions in Markov(G).
| : : :

™ @ This clearly constrains the possible
_© choices for the distribution Pr, but

does not uniquely define it.

We can augment the DAG G by a set of conditional probabilities
that together with Markov(G) are guaranteed to define the
distribution Pr uniquely.




Parameterizing the Independence Structure

'<Eart'1qg‘;ak6?>- (fur{,e]?r}}) For every variable X in the DAG G,
/ 7 and its parents U, we need to provide
i . the prol::fa bility Pr(x|u) for. every Yallue
N N x of variable X and every instantiation
T| u of parents U.
<D

We need to provide the following conditional probabilities:

Pr(c|a), Pr(rle), Pr(alb,e), Pr(e), Pr(b),

where a, b, ¢, e and r are values of variables A, B, C. E and R.




Parameterizing the Independence Structure

The conditional probabilities required for

- variable C:
_:r;,_-_ 1;1_*1 ' Eurg]ar ;\
<E ﬂqu) ke> \u.__'f]j_.../ A C Pr(cl|a)
a /"" true true | .80
e \ - true false | .20
(" Radio? ™ ( A‘a““?<. false true | .001
R \“‘"-{AT)--*"/ false false | .999
/|l The above table is known as a Conditional
C Probability Table (CPT) for variable C.

Pr(c|a) + Pr(c|a) = 1 and Pr(c|a) + Pr(c|a) = 1.

Two of the probabilities in the above CPT are redundant and can
be inferred from the other two. We only need 10 independent
probabilities to completely specify the CP Ts for this DAG.




Parameterizing the Independence Structure

A Bayesian network for variables Z is a pair (G, ©), where

@ G is a directed acyclic graph over variables Z, called the
network structure.

@ © is a set of conditional probability tables (CPTs), one for
each variable in Z, called the network parametrization.

@ Ox|y: the CPT for variable X and its parents U.
@ XU: a network family.

@ ,u: the value assigned by CPT © x|y to the conditional
probability Pr(x|u). Called a network parameter.

We must have ) 0,), = 1 for every parent instantiation u.



Parameterizing the Independence Structure

.f//;\-'imer?m\
u\ (4) /"I
T A B SED A C Ocla
Py SR true  true | .2 true  true | .8
L/ 5"“{;")'“? \‘; f Rf}"]? \ true  false | .8 true false | .2
S __{_../ \“:;;«‘— — false  true | .75 false true | .1
~. - \\\_ false false | .25 false false | .9
7 ‘:’\-'et Gras s¥<\, ---—\.\‘ —

! | e Ry
(1] ! I ™,
\-..ﬁ ] ! |'/ Slippery Road? ™,

— . (E) y

B C D ©pi,c
true  true  true .95
true  true false | .05 C E OF|c
A | ©a true  false true | .9 true  true | .7
true | .6 true false false | .1 true false | .3
false | .4 false true true | .8 false true | O
false true false | .2 false false | 1
false false true | O
false false false | 1 Use GeNie/SmiIe

To create this network



Parameterizing the Independence Structure

Chain rule for Bayesian networks

A Bayesian network is an implicit representation of a unique
probability distribution Pr given by

Prz) = [ Ouu

9x|u~

The probability assigned to a network instantiation z is simply the
product of all network parameters that are compatible with z.




Parameterizing the Independence Structure

Chain rule for Bayesian networks

A Bayesian network is an implicit representation of a unique
probability distribution Pr given by

Prz) = [ Ouu

9x|u~

The probability assigned to a network instantiation z is simply the
product of all network parameters that are compatible with z.




Parameterizing the Independence Structure

Pr(a, b, c, d, &)
= 0, 9b|a 9&|a 9d|b,€ ‘9@|E

= (:6)(:2)(:2)(-9)(1)
— .0216

S >

— (4)(25)(.9)(1)(1)
= .09




Parameterizing the Independence Structure

o The CPT ©x)y is exponential in the number of parents U.

@ If every variable can take up to d values, and has at most k
parents, the size of any CPT is bounded by O(d**1).

@ If we have n network variables, the total number of Bayesian
network parameters is bounded by O(n- d**+1).

@ This number is quite reasonable as long as the number of
parents per variable is relatively small.



i Bayesian Networks: Representation

P(S)

BN = (G, ©)

P(C|S) P(B|S)

P(X]C,S)

P(S, C, B, X, D) =P(S)P(C|S) P(BIS) P(X|C,S) P(D|C,B)
Conditional Independencies == Efficient Representation

slides2 Winter 2024



i Outline

= Graphoids axioms for Conditional
Independence



Properties of Probabilistic Independence

This independence follows from the Markov assumption

The distribution Pr specified by a
Bayesian network (G, ©) is
guaranteed to satisfy every

independence assumption in
Markov(G).

These, however, are not the only independencies satisfied by the
distribution Pr.

slides2 Winter 2024



Properties of Probabilistic Independence
(Pearl ch 3)

THEOREM 1: Let X, Y, and Z be three disjoint subsets of
variables from U. If I (X, Z, Y) stands for the Telation *‘X is in-
dependent of Y, given Z’’ in some probabilistic model P, then /
must satisfy the following four independent conditions:

= Symmetry:
I(X,2,Y) > I(Y,ZX)

= Decomposition:
I(X,Z,YW)> I(X,Z,Y) and I(X,Z,W)

= Weak union:
I(X,Z,YW)->I(X,ZW,Y)

= Contraction:
I(X,2,Y) and I(X,ZY,W)->I(X,Z,YW)

= Intersection:
I(X,ZY,W) and I(X,ZW,Y) > I(X,Z,YW)
slides2 Winter 2024



~ Earthquake? ™, 7 Burglary? ™ _
B B S (X, Z.Y) iff Ip.(Y,Z,X)
/

-/ - /"' : :
r/m{\;\,m —d |f Iearn!ng_y does not |nfl.uence
B WS our belief in x, then learning x

1 does not influence our belief in
7 ca N y either.
N ’

From the independencies declared by Markov(G), we know that
by (A, {B,E}, R). Using Symmetry, we can then conclude that
Ipr(R,{B, E}, A), which is not part of the independencies declared
by Markov(G).




If some information is irrelevant, then any part of it is also
irrelevant.

Ior(X, Z,Y UW) emig=if Ip, (X, Z,Y) and lpy(X, Z, W).

If learning yw does not influence our belief in X, then learning y
alone, or learning w alone, will not influence our belief in x either.

i

Pearl’s language:
If two pieces of information are irrelevant to X then each one is irrelevant to X



The opposite of Decomposition, called Composition:

Ipr(X.Z,Y) and Ipr(X. Z,W) emiy= Ipr(X. Z. Y UW)

does not hold in general.

i

Two pieces of information may each be irrelevant on their own, yet
their combination may be relevant.

Example: Two coins (C1,C2,) and a bell (B)



More generally...

Decomposition allows us to state the following:
o (X, Parents(X), W)  for every W C Non_Descendants(X).

Every variable X is conditionally independent of any subset of its
non-descendants given its parents.

This is a strengthening of the independence statements declared by
Markov(G), which is a special case when W contains all
non-descendants of X.



Decomposition proves the chain rule for Bayesian networks. |

By the chain rule of probability calculus:

Pr(r,c,a, e, b) = Pr(r|c, a, e, b)Pr(c|a, e, b)Pr(ale, b)Pr(e|b)Pr(b).

o f/ B-L_Lr;n_j.-’ 1“\|
/xfz_ﬂ:g}:ake_)__/' _® By Decomposition:
_ / / Pr(r|lc,a,e,b) = Pr(r|e)
N
f\\ FT??IJD?J '\ Alf:i??; Pr(cla,e,b) = Pr(c|a)
T
| Pr(elb) = Pr(e).
e
o

This leads to the chain rule of Bayesian networks:

Pr(r,c,a,e,b) = Pr(r|e)Pr(c|a)Pr(ale, b)Pr(e)Pr(b)
= e Oca Oajep e Ob.

rle Yela Y3



Ipe(X.Z.Y UW) asbeif o, (X,ZUY, W)

If the information yw is not relevant to our belief in x, then the
partial information y will not make the rest of the information, w,

relevant. )
(BT (MR I(CLA{BLE,RY) is part of
/\f / Markov(G). By Weak Union:
L _ lb.(C,{A, B, E},R), which is
<1R?§]f> (fﬂ?é not part of the independencies
L declared by Markov(G).
/-t_fal]‘.;-\



loe(X,Z,Y) and Ip,(X.ZU Y, W) aabif [p, (X, Z,Y UW)

If after learning the irrelevant information y, the information w is
found to be irrelevant to our belief in x, then the combined
information yw must have been irrelevant from the beginning.

Compare Contraction with Composition:
(X, Z,Y) and Ip, (X, Z, W) emisg=# Ip, (X, Z. Y UW)

One can view Contraction as a weaker version of Composition.
Recall that Composition does not hold for probability distributions.



Strictly Positive Distributions

When there are no constraints

Definition

A strictly positive distribution assign a non-zero probability to
every consistent event.

: :

\x/ ] A strictly positive distribution

N4 cannot represent the behavior

CT ’D of Inverter X as it will have to
d J/l assign the probability zero to
"‘\z/" the event A=true, C =true. )

T

A strictly positive distribution cannot capture logical constraints.



Intersection

Holds only for strictly positive distributions
(X, ZUW.,Y) and Ip (X, ZUY, W) only if p.(X,Z,Y UW)

If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.

slides Inter




Intersection
Holds only for strictly positive distributions

Ior (X, ZUW.Y) and Ip,(X.Z UY., W) only if Ip,(X.Z,Y UW)

If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.

@ If we know the input A of

A B inverter X, its output C
becomes irrelevant to our belief

—? . v ] in the circuit output E.
(:;’f \\__ f/ @ If we know the output C of
cl [D inverter X, its input A becomes
\| irrelevant to this belief.
|\ — /I,.-l @ Yet, variables A and C are not
\Z/ irrelevant to our belief in the

TE circuit output E.



Properties of Probabilistic independence

THEOREM 1: Let X, Y, and Z be three disjoint subsets of

variables from U. If I (X, Z, Y) stands for the relation ‘X is in-
dependent of Y, given Z’’ in some probabilistic model P, then /
must satisfy the following four independent conditions:

= Symmetry:

I(X,2,Y) > I(Y,Z,X) . .
Graphoid axioms:

= Decomposition: Symmetry, decomposition

I(X,Z,YW)> I(X,Z,Y) and I(X,Z,W) Weak union and contraction
_ Positive graphoid:

= Weak union: +intersection

I(X,Z,YW)>I(X,ZW,Y)

In Pearl: the 5 axioms

are called Graphids,

the 4, semi-graphois

= Contraction:
I(X,Z,Y) and I(X,ZY,W)->I(X,Z,YW)

= Intersection:
I(X,ZY,W) and I(X,ZW,Y) > I(X,Z,YW)
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= Graphoids: axioms of for inferring
conditional independence (CI)
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Intersection

Holds only for strictly positive distributions
(X, ZUW.,Y) and Ip (X, ZUY, W) only if p.(X,Z,Y UW)

If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.
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