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Counterfactual in Experimental
Settings

So we can answer counterfactual question from a fully specified structural model.
But what to do when a model is not available, and we have only a finite sample of observed individuals?

Let’s consider again the “encouragement design” model in which we analyzed the behavior of an individual named

Joe. Assume that the experimenter observes a set of 10 individuals, with Joe being participant 1. Each,
characterized by a distinct vector U:= (Ux,Ux,Uy), as shown in the first 3 columns

X =Ux
H=a -X-+ LTH
Table 4.3 Potential and observed outcomes predicted by the structural model of Figure 4.1 units Y=b-X+c-H+Uy
were selected at random, with each UV, uniformly distributed over [0, 1] o =0 foralli,je {X,H.Y}
Uiy = alli,j e {X,H,
Participant Observed Predicted
characteristics behavior potential outcomes
Participant Ux Uy Uy | X Y H | Yo Y1 Ho H, Yoo... (Encouragement) . (Homework) (Exam Score)
X a=05 H c=04 Y
I 05 075 075 |05 150 1.0 1.0s 195 075 125 0.75 =‘~-\ ¢ -
2 03 01 04 |03 071 025|044 134 01 06 0.4 . ) be 07
3 05 09 02 |05 101 115|035 146 09 1.4 0.2 —
4 0.6 0.5 0.3 0.6 1.04 0.8 050 140 0.5 1.0 0.3 Figure 4.1: A model depicting the effect of Encouragement (X') on student’s score
5 05 08 09 | 05 Le7 105 1.22 212 08 1.3 0.9
6 07 09 03 |07 120 125|066 156 09 1.4 0.3 .
7 02 03 o0s o2 10 o0s 0w 1m os os os Ve usethe model to fill the data from the
8 04 06 02 |04 080 08 | 044 134 06 1.1 0.2 1
9 06 04 03 |06 100 07 | 046 136 04 09 0.3 U Varlables
10 03 08 03 | 03 089 095|062 152 08 1.3 0.3

Firstitem: Y _0=0.4times 1+ 0.75=1.05



Counterfactual in Experimental
Settings

From this synthetic population, one can estimate the probability of every counterfactual query on
variables X, Y,Z, assuming, of course, that we are in possession of all entries of the table.

Clearly the table is not available to us in either observational or experimental studies. This was deduced from the fully
specified model from which we could infer the defining characteristics {Ux,Ux,Ur} of each participant, given the
observations {X,H, Y }.

Without a parametric model, the observed behavior {X,H, Y } tells very little of the potential outcome Y_1orY_O.
We know only the consistency rule: that Y1 must be equalto Y incase X =1,and Y _0 must be equal to Y in case X = 0.

Yet we can say much at the population level estimating their probabilities or expectation. We can use
The adjustment formula of (4.16), where we were able to compute E(Y_1 -Y 0) using the graph alone as we will see next.
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Using Experimental Data

Randomized: participants 1, 5, 6, 8 and
10 assigned to X =0, and the rest to X =
1. The first two columns give the true

i potential outcomes (taken from Table
Assume that we have no information whatsoever about the underlying model. All we have 4.3) while the last two columns describe
are measurements on Y taken in an experimental study in which X is randomized over two the information available to the

levels, X =0and X = L .
experimenter.

Table 4.4 Potential and observed outcomes in a randomized clinical trial with X

randomized over X = 0 and X = 1 The difference between the observed
Predicted Observed means in the treatment and control groups
potential outcomes outcomes will converge to the difference of the
Participant Yo Y Yo Yi population averages, E(Y_1-Y_0)=0.9
| 1.05 1.95 1.05 [ | -
” 0.44 134 - L34 due to randomization.
3 0.56 1.46 [ | 1.46 o _
4 0.50 1.40 | 1.40 Under randomization, the adjustment formula
3 1.22 2.12 1.22 u (4.16) is applicable with Z = {empty}, yielding
6 0.66 1.56 0.66 [ | E[Y x]=E[Y |X = x]
7 0.92 1.82 n 1.82 Xl = =Xl .
g 0.44 1.34 0.44 = So, Table 4.4 helps us understand what is
9 0.46 1.36 L 1.36 actually computed when we take sample averages
. 57 7 . . .
10 0.62 .52 0.62 u in experimental settings and how those averages
v v are related to the underlying counterfactuals, Y_1
True average treatment effect  Study average treatment effect: -
0.90 0.68 and Y 0.
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ATE (Average Treatment Effect)

No information on the underlying model, we can run experiments
o What does random X do?

o Removes arrows into X Predicted Observed
] potential outcomes outcomes
o Estimates Y, and Y, Participant Y, Y, Y, Y,
o E[Yx = 2,E[Y|zX]-P(2) 1 1.05 1.95 1.05 5
m Z=0 2 0.44 1.34 m 1.34
_ 3 0.56 1.46 n 1.46
o E[Yx] = E[Y|X] 4 0.50 1.40 - 1.40
Estimate E[Y; - Y] 5 122 2.12 122 o
_ 6 0.66 1.56 0.66 -
0 Average observations 7 0.92 1.82 m 1.82
— ) 8 0.44 1.34 0.44 n
© 2YaIn - 3 Yoln 9 0.46 1.36 - 1.36
o =0.68 10 0.62 1.52 0.62 n
o Should be 0.9, why isn't it? N . y N g y

o Small Sample size True average treatment effect: 0.90  Study average treatment effect: 0.68
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Practical Uses of Counterfactuals

Recruitment program
Additive Interventions
Personal decision making
Sex discrimination in hiring

Mediation and path disabling
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Recruitment Program Job Training
Helps?

Example 4.4.1 A government is funding a job training program aimed at getting jobless

people back into the workforce. A pilot randomized experiment shows that the program is

effective; a higher percentage of people were hired among those who finished the program

than among those who did not go through the program. As a result, the program is approved, and a recruitment effort is
launched to encourage enrollment among the unemployed, by offering the job training program to any unemployed
person who elects to enroll.

Enrollment is successful, and the hiring rate among the program’s graduates turns out even higher than in the
randomized pilot study. Success!!!

Critics say: Those who self-enroll, may be more intelligent, more resourceful, and more socially connected
than the eligible who did not enroll and are more likely to have found a job regardless of the training.

The critics claim that what we need to estimate is the differential benefit of the
program on those enrolled: the extent to which hiring rate has increased among the enrolled, ETT=
compared to what it would have been had they not been trained.
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X =1 represent training and Y = 1 represent hiring, the quantity that needs to be evaluated is the effect of training on the
trained (ETT, better known as “effect of treatment on the treated,”

ETT = E[Y.- Yo| X = 1] (4.20)

Here the difference Y.- Yorepresents the causal effect of training (X) on hiring (Y) for a randomly

chosen individual, and the condition X = 1 limits the choice to those actually choosing the training program on their own
initiative. As in our freeway example of Section 4.1, we are
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Personal Decision Making

Example 4.4.3 Ms. Jones, a cancer patient, is facing a tough decision between two possible
treatments: (i) lumpectomy alone, or (ii) lumpectomy plus irradiation. In consultation with
her oncologist, she decides on (ii). Ten years later, Ms. Jones is alive, and the tumor has not
recurred. She speculates: Do | owe my life to irradiation?

Mrs. Smith, on the other hand, had a lumpectomy alone, and her tumor recurred after a
year. And she is regretting: | should have gone through irradiation.

Can these speculations ever be substantiated from statistical data? Moreover, what good
would it do to confirm Ms. Jones’s triumph or Mrs. Smith’s regret?
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Sex Discrimination in Hiring

Example 4.4.4 Mary files a law suit against the New York-based XYZ International, alleging
discriminatory hiring practices. According to her, she has applied for a job with XYZ
International, and she has all the credentials for the job, yet she was not hired, allegedly
because she mentioned, during the course of her interview, that she is gay. Moreover, she
claims, the hiring record of XYZ International shows consistent preferences for straight
employees. Does she have a case? Can hiring records prove whether XYZ International was
discriminating when declining her job application?

At the time of writing, U.S. law doesn’t specifically prohibit employment discrimination on
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Why Learn Bayesian Networks?

Combining domain expert Lz
knowledge with data ;&‘ ’{

o~

Efficient representation and U
inference

Incremental learning: P(H) /r \

Handling missing data: <13 28?27 01>

Learning causal relationships: &»—@
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Learning Bayesian Networks

Known graph —learn parameters

Complete data:
parameter estimation (ML, MAP) P(C[S) P(B|S)
Incomplete data:

non-linear parametric
optimization (gradient descent, EM)

(S)

P(X|C,S) P(D|C,B)

Unknown graph — learn graph and parameters

Complete data:
optimization (search
in space of graphs) T
Incomplete data: X >

structural EM,
mixture models

N

G=arg max Score(G)



The Learning Problem

Known Structure

Unknown Structure

Complete Data

Statistical
parametric

estimation
(closed-form eq.)

Discrete optimization

over structures
(discrete search)

Incomplete Data

Parametric

optimization

(EM, gradient
descent...)
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(Structural EM, mixture
models...)



Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,N>
<Y,Y,Y>
<N.N,Y> Eo GO
<N,Y,Y>
| D i
<N,Y,Y>
(ED B
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,N>
<Y, Y>
<N.N,Y> ED &GO
<N,Y, > |j>
| D CAD
< YY>
(D &2
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,N>
<Y,Y,Y>

<N.N,Y> ED G
<N,Y,Y> |j>
| D CA>
<N,Y,Y>
&
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,N>
<Y, Y>

<NN,Y> ED GO
< YY> |j>
| D CA>
<N,Y, >
&S
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Introduction

One can distinguish between three general approaches to the
learning problem.

The first approach is based on the

which favors those estimates that have a maximal likelihood, i.e.,
ones that maximize the probability of observing the given data set.
This approach is therefore known as the maximum likelihood
approach to learning.

This is the approach treated in this chapter.
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Introduction

The second approach requires more input to the learning process

as it demands one to define a meta distribution over network
structures and parameters. |t then reduces the problem of learning

to a problem of classical inference in which the data set is viewed
as evidence. In particular, it first conditions the meta distribution
on the given data set, and then uses the posterior meta
distribution as a criterion for defining estimates.

This approach is known as the Bayesian approach to learning and
will be treated in Chapter 18.
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Estimating Parameters from Complete Data

Assume each data

: Case | H S E
IS generated ] T F T
independently from 2 T F T
he true distribution 3 £ T F
the true distributio > e H s E | Prp()
5 r F F r T T 2/16
6 T F T Tr T F 0/16
7 F F F r F T 9/16
8 T F T r F F 1/16
Hmllhm’-ﬂlr 9 r F T F T T 0/16
10 F F T F T F 1/16
11 r F T F F T 2/16
12 T T T F F F 1/16
13 r F T
Smokes /qurusl.:\ 14 rr.r
) (B P L
— ~// 16 T F T
(a) network structure (b) complete data (c) empirical distribution
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Estimating Parameters from Complete Data

Data simulated from the true Bayesian network: the cases generated
independently according to their true probabilities.

H S E | Prp()

T T T | 2/16

o ] _ _ T T F 0/16
Empirical distribution T F T 9/16
_ T F F | 1/16
summarizes data set. F T T | 0/16
F T F | 1/16

F F T | 2/16

F F F | 1/16

The empirical probability of instantiation h, s, e

is its frequency of occurrence in the data set:

Di(h. s. )

Prop(h, s, e) = N

where D#(h, s, e) is the number of cases in the data set D that satisfy
instantiation h.s.e, and N is the data set size.




Estimating Parameters from Complete Data

Estimate parameters based on the empirical distribution

Consider the parameter 0, for example, which corresponds to the
probability that a person will smoke given that they are health
aware, Pr(s|h). Our estimate for this parameter is now given by:

Prp(s,h)  2/16
P?D(h) T 12/16 1/6

Prop(s|h) =
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Estimating Parameters from Complete Data

Basic definitions

A data set D for variables X is a vector dq, . ... dp, where each d;
is called a case and represents a partial instantiation of variables X.
The data set is complete if each case is a complete instantiation of
variables X; otherwise, the data set is incomplete. The empirical
distribution for a complete data set D is defined as follows:

Prp(a) € D#AEQ),

where D# () is the number of cases d; in the data set D that
satisfy event «, that is, d; = «.

Di#(a) = N when « is a valid event (« satisfied by every case d;)
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Estimating Parameters from Complete Data

W
7]
m

©~NOU A WN A

e R R R R

B T M M P U T o o e e e i | IV

NSNS NH NSNS NN m

Dyt ()
Dir ()
Dy ()

= 9. whenais(H=T)N(S=F)N(E=T);
= 12, whenais (H=T);
= 14 whenais(H=T)V(E=T).
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Estimating Parameters from Complete Data

We estimate the parameter 0,|, by the empirical probability

def D (x, u)

= Prp(x|u) =

er‘

X|u

The count D#(x, u) is called a sufficient statistic in this case.

More generally though, any function of the data is called a
statistic. Moreover, a sufficient statistic is a statistic that contains
all of the information in the data set that is needed for a particular
estimation task.
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Estimating Parameters from Complete Data

Estimating Parameters from Complete Data

Cas: H S E
1 T F T
2 T F T
3 F T F
4 F F T H § E | Prp(.)
5 T F F T T T 2/16
6 T F T T T F 0/16
7 F F F T F T 9/16
o 8 T F T T F F 1/16
Health Aware 9 T F T F T T 0/16
(H) 10 F F T F T F 1/16
— — 11 T F T F F T 2/16
/\ 12 T T T F F F 1/16
13 T F T
Smokes /Excrciscs\\ 1 ()
2 T ® / 15 T F T
— — 16 T F T
(a) networ k structure (b) complete data (c) empirical distribution

We have the tollowing parameter estimates:

H S|ogy OF

o7
3/4
1/4

1/6
5/6
1/4
3/4

11/12
1/12
1/2
1/2

>l > I

>l >
=gl - sl
® ® o o |Mm

il 1 Wl n
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Estimating Parameters from Complete Data

@ Estimate 6’;’{] will have different values depending on the

given data set.

@ [he variance of this estimate will decrease as the data set
InCreases in size.

If data set D is a sample of size N simulated from distribution Pr

The distribution of estimate 6’;’{1 is asymptotically Normal and can

be approximated by a Normal distribution with mean Pr(x|u) and
variance:

Pr(x|u)(1 — Pr(x|u))
N - Pr(u)
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Estimating Parameters from Complete Data

Likelihood of parameter estimates

Let 6 be the set of all parameter estimates for network structure
G, and let Pry(.) be the probability distribution induced by
structure G and estimates #. The likelihood of these estimates is:

L(6

N
D) déf HPlg(d;)
i=1

Likelihood of estimates 6 is the probability of observing the data
set D under these estimates.

276 winter 2024



Estimating Parameters from Complete Data

Likelihood of parameter estimates

Let 6 be the set of all parameter estimates for network structure
G, and let Pry(.) be the probability distribution induced by
structure G and estimates #. The likelihood of these estimates is:

L(6

N
D) déf HPlg(d;)
i=1

Likelihood of estimates 6 is the probability of observing the data
set D under these estimates.

276 winter 2024



Estimating Parameters from Complete Data

Let D be a complete data set

The parameter estimates defined earlier are the only estimates that
maximize the likelihood function:?

0 = argmax L(0|D) iff 67, = Prp(x|u)
6

X|u

“Assumes Pro (u) > 0 for every instantiation u of every parent set U

It is for this reason that these estimates are called maximum
likelihood (ML) estimates and are denoted by 6™

9™ = argmax L(#
0

D)

276 winter 2024



Estimating Parameters from Complete Data

Another property of our ML estimates is that they minimize the

KL—divergence between the learned Bayesian network and the
empirical distribution.

Let D be a complete data set over variables X

argmax L(6|D) = argmin KL(Prp(X), Prg(X))
6 6

P(x)

KL(P, Q) = zp(X) 108 55,
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Estimating Parameters from Complete Data

Since ML estimates are unique for a given structure G and
complete data set D

the likelihood of these parameters is then a function of the
structure G and data set D

We will therefore define the likelihood of structure G given data
set ‘D as follows:

L(G|D) E L™

D),

where 0™ are the ML estimates for structure G and data set D
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Estimating Parameters from Complete Data

More convenient to work with the Iogarithm of likelihood

LL(O|D) € logL(0|D) = Zbgm

The log-likelihood of structure G is defined similarly:

LL(GID) ¥ logL(G|D)

Likelihood is > 0 while log-likelihood is < 0
Maximizing likelihood is equivalent to maximizing log-likelihood.

We will use log, but write log.
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Estimating Parameters from Complete Data

Log-likelihood decomposes into family-based components

Let G be a network structure and D be a complete data set of size
N. If XU ranges over the families of structure G, then

LL(

)=—NY» ENTp(X|U).
XU

where ENT'p(X|U) is the conditional entropy defined as follows:

ENT»(X|U) = ZPl_D (xu) log, Proy(x|u)

Decomposition is critical when learning network structure.
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,N>
<Y,Y,Y>
<N.N,Y> Eo GO
<N,Y,Y>
| D i
<N,Y,Y>
(ED B
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,N>
<Y, Y>
<N.N,Y> ED &GO
<N,Y, > |j>
| D CAD
< YY>
(D &2
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Estimating Parameters from Incomplete Data

We still seek the maximum likelihood objective

Consider a network structure C — T, where C represents a
medical condition and T represents a test for detecting this

condition:
True parameters C T 9t|c
C f. yes —+ve .80
yes .25 yes —ve .20
no ./5 no -+ve .40

no —ve .60

Note: Pr(T=+4ve) =Pr(T =—ve) = 1/2
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Estimating Parameters from Incomplete Data

=)

O ~N O O B W N =

SN RN N EEES EEES RS NN ] i o

Values of variable C are
missing in all cases of the first
data set, perhaps because we
can never determine this
condition directly. We will say
In this situation that variable C
Is hidden or latent.
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Estimating Parameters from Incomplete Data

=)

O ~N O O B W N =

SN RN N EEES EEES RS NN ] i o

Values of variable C are
missing in all cases of the first
data set, perhaps because we
can never determine this
condition directly. We will say
In this situation that variable C
Is hidden or latent.
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Estimating Parameters from Incomplete Data

D2l C T
1 | yes —Hve
2 | yes -ve
3 | yes —ve
4 | no 7
5 |yes —ve
6 |yes -ve
/ | no 7
3 | no —ve

Variable C is always observed,
while variable T has some

missing values, but is not
hidden.
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Estimating Parameters from Incomplete Data

D C T
1 | yes —Hve
2 | yes -ve
3 7 —ve
4 | no 7
5 |yes —ve
6 7 Hve
{f | no 7
8 | no -—ve

Both variables have some
missing values, but neither is

hidden.

276 winter 2024



Estimating Parameters from Incomplete Data

=

D | C T

1 | 7 —ve

2 | 7 dve Cases are split equally between
3 | 2 _ye the +ve and —ve values of T.
4 |7 —ve We expect this to be true in

5 | 7 —ve the limit, given the distribution
(75 :’; tve generating this data.

8 | 7

ML estimates are characterized by

1
QT:—I—VE|C:yes ) QC:yes + 9Tz+\fe|C:no ) QC:no — 5
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Estimating Parameters from Incomplete Data

ML estimates are characterized by

1
QT:WE|C:}/'ES ' QCZ}’ES + QT:we\C:no ’ QC:no — 5

The true parameter values satisfy the above equation. But the
following estimates do as well:

QC%;’ES = 1. 6’T:—|—ve|C:yes — 1/2~

with 07— ve|c=no taking any value.
ML estimates are not unique.
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Expectation Maximization

Our first local search method, called Expectation Maximization
(EM), is based on the method of complete data we discussed
earlier.

This method will first complete the data set, inducing an empirical
distribution, and then use it to estimate parameters as we did
earlier.

The new set of parameters are guaranteed to have no less

likelihood than the initial parameters, so this process can be
repeated until some convergence condition is met.
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Expectation Maximization

(A »

A B

d | ? b

ee d | 7 by
d; | 7 by

ds | 7 by

@ ds | 7 by

Our goal is to find ML estimates for the given data set.
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Expectation Maximization

Let’'s assume these initial parameters o

A B &, A C|6, B D&,
A 92 dl bl (5 dl .50 bl dl .20
d] .20 al bg .25 dy o .50 bl d2 .80
do .80 dao bl .10 d (O 25 b2 dl .70
an b2 .90 dy (o .75 b2 dz .30

A Bayesian network inducing a probability distribution Pryo(.)
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Expectation Maximization

The initial estimates #° have the following likelihood:

L(6°|D) = H Prgo(d;)

= P]ﬁ'g{) (blj Cg)Prgﬂ(bh dg)PI‘g[}(bgT C1, dl)PI‘,g{)(bQ: C1, dl)PI‘gﬂ (bl, dz)
= (.135)(.184)(.144)(.144)(.184)
= 05x107

Evaluating the terms in the above product would generally require
inference on the Bayesian network.
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Expectation Maximization

To illustrate the process of completing a data set, consider again
the data set:

DA B C D
di | 7 by o 7
d, | ? b 7 d
d3 ? b2 C1 dl
d4 ? b2 C1 dl
ds | 7 b1 7 d

The first case in this data set has two variables with missing
values, A and D. Hence, there are four possible completions for
this case. Although we do not know which one of these
completions is the correct one, we can compute the probability of

each completion based on the initial set of parameters we have.
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Expectation Maximization

D| A B C D Pry(Cld)
& | 7 b o 7
a1 b1 ¢ di 111 = Prg(a1,d1]b1, @)

ai by Co do 444 A B C 0 PrTJ' 90( )
aa by o dp .089 aa b o d O
a2 by < dp .356 a1 gl a jz : {1)3'121

d- ? by ? do 91 1 2 1 c
a1 by c1 da .326 = Prng(al, =] | by , dz) a1 by 2 do .219
ay by c dy .326 aa b o d .049
aa by ¢ dy .087 aa b a d 0
a by e dy 261 aa b o d4 O

d3 ? bg <1 dl a1 Ez e cd;,z g
ag b2 <« di 122 = Pryo(a1|b2, c1. dp) 22 bl 21 dl 035
(=l bg <1 dl 878 32 bl 1 dz .018

d; | 7 by <o d 2 12 q

4 2 1 1 aa by o d» .176

a bo 1 dq 122 = Prng(al |bo., c1,d1) 3o by o oy 351
an bo 1 dy 678 ap by a da 0

dg ? by ? do an by co dy 0
agz b a da  .326=Pry(ar,c1lby, d2) a» b o d 0
al by co o .326
an by c1 do 087
d2 bl o d'z .261

(a) completed data set, with expected values (b) expected empirical
of completed cases distribution
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Expectation Maximization

There are three occurrences of the instantiation aj. by. ¢, dy in the
completed data set, which result from completing the cases dq, d>

and ds.

The probability of seeing these completions is given by:

Pl‘g[}(ah d2|d1) —+ Prgu(al, C2|d2) -+ Prgn(al,_ C2|C|5)
N

Proy go(a1, b1, co. d2) =

A44 4 326 + .326
5

= .219

Note here that we are using Prqy 4o(.) to denote the expected
empirical distribution based on parameters #°
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Expectation Maximization

The of data set D under

parameters % is defined as follows
1
Pl“D,Q’“ (Of") = N ; Z); P (C,—‘d;)j
iCi =

where « is an event and C; are the variables with missing values in
case d;.

Recall that d;,c; = a means that event « is satisfied by complete
case d;, ¢;. Hence, we are summing Prg(c;|d;) for all cases d; and
their completions c; that satisfy event «.
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Expectation Maximization

When the data set is complete, Pr., g«(.) reduces to the empirical
distribution Pro(.) which is independent of parameters #*.

Moreover, N - Prq, g« (x) is called the expected count of

instantiation x in data set D, just as N - Prp(x) represents the
count of instantiation X in a complete data set D.
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Expectation Maximization

We can now use this expected empirical distribution to estimate
parameters, just as we did for complete data.

For example, we have the following estimate for parameter 0. |,

6’2”32 — Pl‘fD?gD(Cl‘az) —

276 winter 2024



Expectation Maximization

Parameters after one iteration o

A B Y, A C o, B D|6,
A 62 ap b, .883 ag ¢ 426 by d | .067
=h 420 al bg 17 a1 O b74 bl dg 033
dao .b30 dan b1 .395 d» 6606 b2 dl 1.00
=0 bg .605 d> (Co 334 bg dg 0.00

A Bayesian network inducing a probability distribution Pryi(.)
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Expectation Maximization

The new estimates 6! have likelihood:

L(#*

5
D) — HPI‘E)l(dF)
i=1

— (.290)(.560)(.255)(.255)(.560)
— 50x 1073
> L(0°|D)

The new estimates have a higher likelihood than the initial ones we
started with. This holds more generally as we will now show.

276 winter 2024



Expectation Maximization

for data set D and parameters 0%

k+1 def o
erl: = Propgr(x|u)

EM estimates are based on the expected empirical distribution, just
as our estimates for complete data were based on the empirical
distribution. We now have the following key result.
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Expectation Maximization

EM estimates satisfy the following property

LL(#* D) > LL(6%|D)

This is a corollary of Theorems to be discussed later, which
characterize the EM algorithm and also explain its name
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Expectation Maximization

EM estimates can be computed without constructing the expected
empirical distribution.

The expected empirical distribution of data set D given

parameters 6% can be computed as follows

Pro g (@) Z Pro«(a|d;)

o

That is, we simply iterate over the data set cases, while computing
the probability of « given each case (i.e., no need to explicitly
consider the completion of each case).
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Expectation Maximization

The EM estimates for data set ‘D and parameters 8% can now be
computed as follows:

gk+1 _ Z;le PI‘Q*(Xu‘dI)

o SN Prye(uldy)

Does not reference the expected empirical distribution.

Equation computes EM estimates by performing inference on a
Bayesian network parameterized by the previous parameter
estimates 6%

For example,

ga Siy Prs(cr,aald;) 0+ .087 4 .878 +.878 + .087
al TS pl(aald;) 444+ 348 + 878 + 878 + 348

= .666




Expectation Maximization

EM may converge to different parameters, with different
likelihoods, depending on the initial estimates #° that it starts with.

Each iteration of the EM algorithm will have to perform inference
on a Bayesian network.

In each iteration, the algorithm computes the probability of each
Instantiation xu given each case d; as evidence.

— — :
All of these computations correspond to posterior marginals over\
network Hi
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Expectation Maximization

Recall the log-likelihood function:

LL(8

N
D) =) log Pry(d;)
i=1

We have seen earlier how one can maximize this function for a
complete data set by choosing parameter estimates based on the
empirical distribution:

Qx\u — Pr‘D (X‘U)
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Expectation Maximization

Following result draws a parallel between the two cases of
log-likelihood and expected log-likelihood.

EM parameter estimates are the only estimates that maximize the

expected log-likelihood function

lu

0"t = argmax ELL(0|D, 6%) iff 6551 = Pry g (x|u)
6

Hence, EM is indeed searching for estimates that maximize the
expected log-likelihood function, which also explains its name.
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Expectation Maximization

Parameters that maximize the expected log-likelihood function
cannot decrease the log-likelihood function

If 651 = argmax ELL(6|D, 6%), then LL(6%T|D) > LL(6%|D)
0

i
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Expectation Maximization

EM is capable of converging to every local maxima of the

log-likelihood function

The fixed points of EM are precisely the stationary points of the
log-likelihood function.

The EM algorithm is known to converge very slowly if the fraction
of missing data is quite large.
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Gradient Ascent

Another approach for maximizing the log-likelihood function is to view the problem as one of optimizing a
continuous nonlinear function.

This is a widely studied problem, where most of the solutions are based on local search, which starts by assuming
some initial value QSW for each parameter '9x|u- and then move through the parameter space in steps of the form

phtl — gk 4 ok

x|u x|u |u

Different algorithms will use different values for the increment 6;;'”. yet most of them will use gradient information
for determining this increment.

Recall that for a function f(vy, ..., vp), the gradient is the vector of partial derivatives df /vy, ..., Of /Ovp
When evaluated at a particular point (v, ..., vp), the gradient gives the direction of the greatest increase in the
value of f

Hence, a direct use of the gradient, called fgradient ascent, suggests that we move in the direction of the gradient

by incrementing each variable v; with T?%(Vl-. ..., Vvn), where 17 is a constant known as the learning rate.
i

For more read in Darwiche book, chapter 17
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Learning Network Structure

Our main approach for estimating network parameters has been to search
for ML estimates, that is, ones that maximize the probability of observing
the given data set.

We will now assume that the structure itself is unknown, and suggest
methods for learning it from the given data set.

It is natural here to adopt the same approach we adopted for parameter
estimation, that is, search for network structures that maximize the
probability of observing the given data set.

We will indeed start with this approach first, and then show that it needs
some further refinements, leading to a general class of scoring functions

for network structures.
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Learning Network Structure

Consider the ML estimates for the following structure and data set.

Structure G
DI A B C D

o di|a1 b1 o d

d | a1 b1 o d
9 G d; a1 by c d
dy | a2 b1 < d>
Q ds a1 b1 o d

The log-likelihood of this network structure is given by:

LL(G|D) = —13.3
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Learning Network Structure

A B|op A Clom B D om
A 9;”! =h bl 3/4 d O 1/4 bl dl 1/4
dl 4/5 ai b2 1/4 dp O 3/4 bl dg 3/4
do 1/5 dan bl 1 d>» QO 1 b2 dl 1

an b2 0 dy O 0 bg d2 0

A network structure with its maximum likelihood parameters.
The log-likelihood of this structure is —13.3



Learning Network Structure

Consider the ML estimates for the following structure and data set.

DA B C D
d131b1C2d1

o dy | ag by o d

d3 | a1 by 1 dj
dgs | a0 b1 g do
(8) (o) (0 ds |0 by o d

The log-likelihood of this network structure is given by:

Structure G*

LL(G*

D) = —14.1,

which is smaller than the likelihood for structure G.
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Learning Network Structure

A B oy A C|om A D|om
A 921" =3 bl 3/4 d G 1/4 dil dl 1/2
al 4/5 al bg 1/4 d G 3/4 dil d2 1/2
an 1/5 dn bl 1 d 1 do dl 0

an bg 0 dy O 0 dao dg 1

A network structure with its maximum likelihood parameters.
The log-likelihood of this structure is —14.1
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Learning Tree Structures

We will next present an algorithm for finding ML tree structures in
time and space that are quadratic in the number of nodes in the
structure.

Consider the mutual information between two variables in the
empirical distribution:

Pro(x, u)
»(x)Pro(u)

Mln(X,U) & > Pro(x. u)log
;

X,U

Given a tree structure G with edges U — X, its score is given by

tScore(GID) = N MlIn(X, U)

U — X
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Learning Tree Structures

0
S
B) c
™~
D)
(a) mutual information graph (b) maximum spanning tree
N
\A
B B ©
D) D)
(c) maximum likelihood tree (d) maximum likelihood tree
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Estimating Parameters from Complete Data

reminder

Log-likelihood decomposes into family-based components

Let G be a network structure and D be a complete data set of size
N. If XU ranges over the families of structure G, then

LL(

)=—NY» ENTp(X|U).
XU

where ENT'p(X|U) is the conditional entropy defined as follows:

ENT»(X|U) = ZPl_D (xu) log, Proy(x|u)

Decomposition is critical when learning network structure.
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Learning Tree Structures

We can obtain log-likelihood by computing the probability of each

case in the data set using any of these tree structures (and its
corresponding ML estimates).

We can also use an earlier result, which shows that the
log-likelihood corresponds to a sum of terms, one term for each
family in the network.

If we consider the tree structure G in (c) above, this result gives:

LL(G|D)
= —N x (ENT(A|C) + ENTx (B) + ENT(C|B) + ENT»(D|B))
=  —5x (.400 + .722 + .649 + .649)
= 121

The terms correspond to the families of given tree structure: AC,

B, CB and DB. 276 winter 2024



Learning DAG Structures

Suppose now that our goal is to find a maximum likelihood
structure, but without restricting ourselves to tree structures.

) tree ) complete DAG

276 winter 2024



Learning DAG Structures

Consider the DAG structure in (b) earlier, which is obtained by
adding an edge D — A to the tree structure in (a).

The log-likelihood of this DAG is given by:

LL(G|D)
— —N x (ENTp(A|C.D)+ENTqp (B) + ENTpn(C|B) + ENTo(D|B))
= —5x (0+.722 + .649 + .649)
= -10.1

which is larger than the log-likelihood of the tree in (a).
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Learning DAG Structures

Only difference between two likelihoods is the entropy term for variable
A, since this is the only variable with different families.

The family of Ais AC in the tree, and it is ACD in the DAG. Moreover,
ENTp(AC,D) < ENTH(A|C),

and, hence,

—ENTp (A|C,D) > —ENTp (A|C),
which is why the DAG has a larger log-likelihood than the tree.

More generally

If U C U*, then ENT(X|U) > ENT(X|U*)

By adding more parents to a variable, we will never increase its entropy
term and, hence, will never decrease the log-likelihood of resulting

structure. 276 winter 2024



Learning DAG Structures

If DAG G* is the result of adding edges to DAG G, then

LL(G*|D) > LL(G|D).

If we simply search for a network structure with maximal
likelihood, we will end up choosing a complete network structure;
that is, a DAG to which no more edges can be added (without
introducing directed cycles).?

°Recall that there are n! complete DAGs over n variables. Each of these
DAGs corresponds to a total variable ordering Xi,.... X, in which variable X;
has Xi....,Xj_1 as its parents. 276 winter 2024



Learning DAG Structures

Complete DAGs are undesirable for a number of reasons:

@ They make no assertions of conditional independence and,
hence, their topology does not reveal any properties of the
distribution they induce.

@ A complete DAG over n variables has a treewidth of n — 1 and
Is therefore impossible to work with practically.

© Complete DAGs suffer from the problem of overfitting, which
refers to the use of a model that has too many parameters
compared to the available data.
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Learning DAG Structures

Even though there is no agreed upon solution to the problem of
overfitting, all available solutions tend to be based on a common
principle known as Occam'’s razor, which says that one should
prefer simpler models over more complex models, others things
being equal.

To realize this principle, one needs a measure of model complexity,
and a method for balancing the complexity of a model with its
data fit.

For Bayesian networks (and many other modeling frameworks),
model complexity is measured using the number of independent
parameters in the model.
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Learning DAG Structures

The dimension is the number of free parameters:

) dimension 7 ) dimension 9 ) dimension 15

276 winter 2024



Learning DAG Structures

Scoring measures for structure G and data set D of size N:

def

Score(G|D) = LL(G|D) —¢(N)-||G|]

Note: Score is < 0

D), is the log-likelihood

The first component of this score, LL(G
function we considered before.

The second component, »(N) - ||G||, is a penalty term that favors
simpler models, i.e., ones with a smaller number of independent
parameters.

Penalty term has a weight, ©»(N) > 0, which is a function of the
data set size N 276 winter 2024



Learning DAG Structures

When the penalty weight ¢/(/N) is a constant that is independent of
N, one gets score in which model complexity is a secondary issue.

Log-likelihood function LL(G|D) grows linearly in the data set size
N and will quickly dominate the penalty term.

Model complexity will only be used to distinguish between models
that have relatively equal log-likelihood terms.

Scoring measure is known as the Akaike Information Criterion

(AIC).
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Learning DAG Structures

Another, yet more common, choice of the penalty weight is
P(N) = @, which leads to a more influential penalty term.

This term grows logarithmically in N, while the log-likelihood term
grows linearly in .

The influence of model complexity will decrease as N grows,
allowing the log-likelihood term to eventually dominate the score.

This penalty weight gives rise to the Minimum Description Length

(MDL) score:
) log, N
p)- (%) I6

276 winter 2024
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Learning DAG Structures

) I PR L N
7 - )

o — 202
() log, 5
| _ 10.1(‘3%22 )(9)
C D)
! — _10.1-10.4
@J = —-20.5

MDL prefers first structure even though it has smaller
log-likelihood.
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Learning DAG Structures

The MDL score is also known as the Bayesian Information

Criterion (BIC).

It is sometimes expressed as the negative of the given score, where
the goal is to minimize the score instead of maximizing it.
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Searching for Network Structure

Searching for a network structure that optimizes a particular score can be
quite expensive due to the very large number of structures one may need
to consider.

Greedy algorithms tend to be of more practical use when learning
network structures.

Systematic search algorithms can also be practical, but only under some
conditions.

Both classes of algorithms rely for their efficient implementation on a
property that most scoring functions have.

decomposability or modularity: allows one to decompose the score into
an aggregate of local scores, one for each network family.
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Searching for Network Structure

Score for structure G and data set D of size N

D) —4(N) - [|G]

Score(G|D) ¥ LI

Let XU range over the families of DAG G

This score can be decomposed as follows:

D).

where

. def - ,.
) = —N-ENTp(X|U)—o(N)-[[XU]

276 winter 2024
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Local Search

goé/ ~ :o

Adding or removing an edge will change only one family, while reversing an edge will change only two families.

Hence, the score can always be updated locally as a result of the local network change induced by adding, removing

or reversing an edge. 276 winter 2024



Local Search

The local modifications to the structure are then constrained to:
adding an edge, removing an edge, or reversing an edge, while
ensuring that the structure remains a DAG.

These local changes to the network structure will also change the
score, possibly increasing or decreasing it.

The goal, however, is to commit to the change that will increase
the score the most.

If none of the local changes can increase the score, the algorithm
will terminate and return the current structure.
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Local Search

Local search is not guaranteed to return an optimal network
structure, i.e., one that has the largest score.

The only guarantee provided by the algorithm is that the structure
it returns will be locally optimal in that no local change can
Improve Its score.

This sub-optimal behavior of local search can usually be improved
by techniques such as random restarts.

According to this technique, one would repeat the local search
multiple times, each time starting with a different initial network,
and then return the network with the best score across all

repetitions.
276 winter 2024



Constraining the Search Space

A common technique for reducing the search space size is to
assume a total ordering on network variables and then search only
among network structures that are consistent with the chosen
order.

If we use the variable order Xi,...,X,, the search process can by
viewed as trying to find, for each variable X;, a set of parents

UJ" C Xl:« SR Xf—l

Not only does this technique reduce the size of search space, but it
also allows one to decompose the search problem into n
independent problems, each concerned with finding a set of parents
for some network variable.
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Constraining the Search Space

&) &)

Greedy search for a parent set for variable Xg
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Constraining the Search Space

&) &)

Greedy search for a parent set for variable Xg
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Greedy Search

Suppose the goal is to find a set of parents for X5 from the set of variables
Xi,...,X4. The K3 algorithm will start by setting Us to the empty set, and
then find a variable X; (if any), i =1,..., 4, that will maximize

Score(Xs, Xi|D) > Score(Xs|D)

Suppose that X3 happens to be such a variable. The algorithm will then set
Us = { X3} and search for another variable X; in Xi, X2, Xs that will maximize

Score(Xs, X3Xi|D) > Score(Xs, X3|D)

Suppose again that X, happens to be such a variable, leading to the new set of

parents Us = { X5, X35}

It may happen that adding Xj to this set will not increase the score, and
neither will adding X,

In this case, K3 will terminate, returnir]r% Us = { X2, X3} as the parent set for X5
276 winter 2024 '



Greedy Search

K3 is a greedy algorithm that is not guaranteed to identify the
optimal set of parents U;, i.e., the one that maximizes

Score(Xi, U;|D)

Therefore, it is not uncommon to use the structure obtained by
this algorithm as a starting point for other algorithms, such as the
local search algorithm discussed earlier, or the optimal search
algorithm we shall discuss next.
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Optimal Search

We will next discuss an optimal search algorithm for network
structures, which is based on branch-and-bound depth-first search.

Similar to K3, the algorithm will assume a total order of network
variables, Xi...., X, and search only among network structures

that are consistent with this order.

As mentioned earlier, this allows one to decompose the search
process into n independent search problems.
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Optimal Search

A
X, Xy XX XL XJ XX (X, X, (X, X,

DN

(X, X,, X;) X, Xo, X, (X, X; X)) (X, X, X

\

(Xp Xo, X5 Xyf

(a) order X1, X5, X3, Xj

Tree nodes are in one-to-one correspondence with parent sets for Xg. A search tree for variable X; will have a

total of 271 nodes, corresponding to the number of subsets one can choose from variables X7, ..., X;_1
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Optimal Search

One can search the tree using depth-first search, while maintaining the score s
of the best parent set visited thus far.

The complexity of this algorithm can be improved on average if one can
compute for each search node U; an upper bound on Score(X;, U7 |D), where
U, C U7

If the computed upper bound at node U; is not better than the best score s
obtained thus far, then one can prune U; and all nodes below it in the search
tree, since none of these parent sets can be better than the one found thus far.

This pruning allows one to escape the exponential complexity in some cases.

The extent of pruning depends on the quality of upper bound used.
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Optimal Search
| Upper bound for MDLscore .|

Upper bound for MDL score

Let U; be a parent set, and let U?“ be the largest parent set
appearing below U; in the search tree. If U7 is a parent set in the
tree rooted at U;, then

MDL(X;. U D) < —N - ENTip(X;|U}") — t:(N) - || XU

Consider tree in (a). At the search node Us = { X5}, we get
U_E)L = {Xg,_Xg,X,i}. Moreover, U: ranges over parent sets { X3},
{X2, X3}, { X2, Xa} and {Xo, X3, Xs }
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Optimal Search

Qur discussion on the search for network structures has been
restricted to complete data sets.

The main reason for this is computational.

The likelihood of a network structure does not admit a closed form
when the data set is incomplete and does not decompose into
components.

Algorithms for learning structures with incomplete data will
typically involve two searches: an outer search in the space of
network structures, and an inner search in the space of network
parameters.
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