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Counterfactual in Experimental 
Settings

So we can answer counterfactual question from a fully specified structural model. 

But what to do when a model is not available, and we have only a finite sample of observed individuals?

Let’s  consider again  the “encouragement design” model  in which we analyzed the behavior of an individual named 

Joe. Assume that the experimenter observes a set of 10 individuals, with Joe being participant 1. Each, 
characterized by a distinct vector 𝑈𝑖 = (𝑈𝑋,𝑈𝐻,𝑈𝑌 ), as shown in the first 3 columns

We use the model to fill the data from the 
U variables.

First item: Y_0 = 0.4 times 1 + 0.75= 1.05



Counterfactual in Experimental 
Settings
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Clearly the table is not available to us in either observational or experimental studies. This was deduced from the fully 
specified model from which we could infer the defining characteristics {𝑈𝑋,𝑈𝐻,𝑈𝑌 } of each participant, given the 
observations {𝑋,𝐻, 𝑌 }.

Without a parametric model, the observed behavior {𝑋,𝐻, 𝑌 } tells very little of the potential outcome Y_1 or Y_0.

We know only the consistency rule: that 𝑌1 must be equal to 𝑌 in case 𝑋 = 1, and 𝑌_0 must be equal to 𝑌 in case 𝑋 = 0. 

Yet  we can say much  at the population level estimating their probabilities or expectation.  We can use
The adjustment formula of (4.16), where we were able to compute 𝐸(𝑌_1 − 𝑌_0) using the graph alone as we will see next.

From this synthetic population, one can estimate the probability of every counterfactual query on
variables 𝑋, 𝑌,𝑍, assuming, of course, that we are in possession of all entries of the table.



Using Experimental Data
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Randomized: participants 1, 5, 6, 8 and 
10 assigned to 𝑋 = 0, and the rest to 𝑋 = 
1. The first two columns give the true 
potential outcomes (taken from Table 
4.3) while the last two columns describe 
the information available to the 
experimenter.

The difference between the observed 
means in the treatment and control groups 
will converge to the difference of the 

population averages, 𝐸(𝑌_1 − 𝑌_0) = 0.9 
due to randomization.

Under randomization, the adjustment formula 
(4.16) is applicable with 𝑍 = {empty}, yielding 
𝐸[𝑌_𝑥] = 𝐸[𝑌 |𝑋 = 𝑥] .
So, Table 4.4 helps us understand what is
actually computed when we take sample averages 
in experimental settings and how those averages 
are related to the underlying counterfactuals, 𝑌_1 
and 𝑌_0.



ATE (Average Treatment Effect)
● No information on the underlying model, we can run experiments

○ What does random X do?

○ Removes arrows into X

○ Estimates Y₀ and Y₁

○ E[Yₓ] = ∑zE[Y|z,x]·P(z)

■ Z = ∅

○ E[Yₓ] = E[Y|x]

● Estimate E[Y₁ - Y₀]

○ Average observations

○ = ∑Y₁/n - ∑Y₀/n

○ = 0.68

○ Should be 0.9, why isn’t it?

○ Small sample size



Outline

Overview of last class:

Counterfactuals

Defining and computing counterfactuals. 

The tree steps of computing counterfactuals (the 
deterministic case)

Nondeterministic counterfactuals.

The 3-steps

Do operators are limited and Expressing do by 
counterfactuals

The graphical representation of counterfactuals

Counterfactuals in Experimental Settings

Practical use of counterfactuals



Practical Uses of Counterfactuals

Recruitment program

Additive Interventions

Personal decision making

Sex discrimination in hiring

Mediation and path disabling
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Recruitment Program Job Training 
Helps?

276 winter 2024

Example 4.4.1 A government is funding a job training program aimed at getting jobless
people back into the workforce. A pilot randomized experiment shows that the program is
effective; a higher percentage of people were hired among those who finished the program
than among those who did not go through the program. As a result, the program is approved, and a recruitment effort is 
launched to encourage enrollment among the unemployed, by offering the job training program to any unemployed 
person who elects to enroll.

Enrollment is successful, and the hiring rate among the program’s graduates turns out even higher than in the 
randomized pilot study. Success!!!

Critics say: Those who self-enroll, may be more intelligent, more resourceful, and more socially connected
than the eligible who did not enroll and are more likely to have found a job regardless of the training. 

The critics claim that what we need to estimate is the differential benefit of the
program on those enrolled: the extent to which hiring rate has increased among the enrolled,
compared to what it would have been had they not been trained.

ETT= 
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X = 1 represent training and Y = 1 represent hiring, the quantity that needs to be evaluated is the effect of training on the

trained (ETT, better known as “effect of treatment on the treated,”

ETT = E[Y1 − Y0|X = 1] (4.20)

Here the difference Y1 − Y0 represents the causal effect of training (X) on hiring (Y) for a randomly

chosen individual, and the condition X = 1 limits the choice to those actually choosing the training program on their own 

initiative. As in our freeway example of Section 4.1, we are



Personal Decision Making
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Example 4.4.3 Ms. Jones, a cancer patient, is facing a tough decision between two possible
treatments: (i) lumpectomy alone, or (ii) lumpectomy plus irradiation. In consultation with
her oncologist, she decides on (ii). Ten years later, Ms. Jones is alive, and the tumor has not
recurred. She speculates: Do I owe my life to irradiation?
Mrs. Smith, on the other hand, had a lumpectomy alone, and her tumor recurred after a
year. And she is regretting: I should have gone through irradiation.
Can these speculations ever be substantiated from statistical data? Moreover, what good
would it do to confirm Ms. Jones’s triumph or Mrs. Smith’s regret?



Sex Discrimination in Hiring
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Example 4.4.4 Mary files a law suit against the New York-based XYZ International, alleging
discriminatory hiring practices. According to her, she has applied for a job with XYZ
International, and she has all the credentials for the job, yet she was not hired, allegedly
because she mentioned, during the course of her interview, that she is gay. Moreover, she
claims, the hiring record of XYZ International shows consistent preferences for straight
employees. Does she have a case? Can hiring records prove whether XYZ International was
discriminating when declining her job application?
At the time of writing, U.S. law doesn’t specifically prohibit employment discrimination on
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Why Learn Bayesian Networks?

◼ Incremental learning:   P(H)   or

S C◼ Learning causal relationships:

◼ Efficient representation and 
inference 

◼ Handling missing data:      <1.3  2.8 ??  0  1 >

 <9.7  0.6  8  14 18>
 <0.2  1.3  5  ??  ??>  
 <1.3  2.8  ??  0  1 >
 <??   5.6  0   10 ??>
       ……………….

◼ Combining domain expert 
knowledge with data



Learning Bayesian Networks

◼ Known graph

C

S

B

DX

➢Complete data:
parameter estimation (ML, MAP)

➢Incomplete data: 

non-linear parametric 
       optimization (gradient descent, EM)

P(S)

P(B|S)

P(X|C,S)

P(C|S)

P(D|C,B)

– learn  parameters

C

S

B

DX

)ˆ Score(G max arg  G
G

=

C

S

B

DX

◼ Unknown graph

➢Complete data: 
       optimization (search 
       in space of graphs)

➢Incomplete data:
structural EM,
mixture models

– learn graph and parameters 
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The Learning Problem

Known Structure Unknown Structure

Complete Data Statistical
parametric
estimation

(closed-form eq.)

Discrete optimization
over structures
(discrete search)

Incomplete Data Parametric
optimization
(EM, gradient

descent...)

Combined
(Structural EM, mixture

models…)
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Assume each data 
is generated 
independently from 
the true distribution
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𝐾𝐿 𝑃, 𝑄 =  ෍

𝑋

𝑃 𝑋 log
𝑃(𝑥)

𝑄(𝑋)
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We still seek the maximum likelihood objective

True parameters
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Let’s assume these initial parameters
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Parameters after one iteration
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For more read in Darwiche book, chapter 17
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reminder



276 winter 2024



276 winter 2024



276 winter 2024



276 winter 2024



276 winter 2024



276 winter 2024



276 winter 2024



276 winter 2024

The dimension is the number of free parameters:
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