

COMPSCI 276, Spring 2017 Set 7, Rina dechter

- Loop-cutset conditioning
- AND/OR search Trees for graphical models
- AND/OR search graphs for graphical models
- Generating good pseudo-trees
- AND/OR search for optimization: the AND/OR branch and bound scheme
- Back to AND/OR cutset-conditioning

Probabilistic Inference Tasks

Belief updating:

$$BEL(X_i) = P(X_i = x_i | evidence)$$

Finding most probable explanation (MPE)

$$\overline{\mathbf{x}}^* = \arg \max_{\overline{\mathbf{x}}} \mathbf{P}(\overline{\mathbf{x}}, \mathbf{e})$$

Finding maximum a-posteriory hypothesis

$$(a_1^*,...,a_k^*) = \arg\max_{\overline{a}} \sum_{X/A} P(\overline{X},e)$$
 $A \subseteq X:$ hypothesis variables

Finding maximum-expected-utility (MEU) decision

$$(d_1^*,...,d_k^*) = \arg \max_{\overline{d}} \sum_{X/D} P(\overline{X},e)U(\overline{X})$$
 $D \subseteq X$: decision variables $U(\overline{X})$: utility function

1

Belief Updating

P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

- More on cutset-conditioning
- AND/OR search Trees for graphical models
- AND/OR search graphs for graphical models
- Generating good pseudo-trees
- AND/OR search for optimization: the AND/OR branch and bound scheme
- Back to AND/OR cutset-conditioning

Conditioning Generates the Probability Tree

$$P(a, e = 0) = P(a) \sum_{b} P(b \mid a) \sum_{c} P(c \mid a) \sum_{b} P(d \mid a, b) \sum_{e=0} P(e \mid b, c)$$

Complexity of conditioning: exponential time, linear space

CS 276

6

Conditioning+Elimination

Idea: conditioning until w^* of a (sub)problem gets small

Loop-Cutset Decomposition

You condition until you get a polytree

$$P(B|F=0) = P(B, A=0|F=0) + P(B,A=1|F=0)$$

Loop-cutset method is time exp in loop-cutset size and linear space

- Loop-cutset conditioning
- AND/OR search Trees for graphical models
- AND/OR search graphs for graphical models
- Generating good pseudo-trees
- AND/OR search for optimization: the AND/OR branch and bound scheme
- Back to AND/OR cutset-conditioning

C

D

DFS tree

OR Space vs. AND/OR Space

width	height	OR space		AND/OR space			
		time(sec.)	nodes	backtracks	time(sec.)	AND nodes	OR nodes
5	10	3.154	2,097,150	1,048,575	0.03	10,494	5,247
4	9	3.135	2,097,150	1,048,575	0.01	5,102	2,551
5	10	3.124	2,097,150	1,048,575	0.03	8,926	4,463
4	10	3.125	2,097,150	1,048,575	0.02	7,806	3,903
5	13	3.104	2,097,150	1,048,575	0.1	36,510	18,255
5	10	3.125	2,097,150	1,048,575	0.02	8,254	4,127
6	9	3.124	2,097,150	1,048,575	0.02	6,318	3,159
5	10	3.125	2,097,150	1,048,575	0.02	7,134	3,567
5	13	3.114	2,097,150	1,048,575	0.121	37,374	18,687
5	10	3.114	2,097,150	1,048,575	0.02	7,326	3,663

AND/OR Search Tree for Graphical Models

The AND/OR search tree of a GM relative to a spanning-tree, T, has:

- Alternating levels of: OR nodes (variables) and AND nodes (values)
- **Successor function:**
 - The successors of OR nodes X are all its consistent values along its path

- A solution is a consistent subtree
- **Task:** compute the value of the root node

Agenda

- Loop-cutset conditioning
- AND/OR search Trees for graphical models
 - Pseudo-trees
 - Arc weights
- AND/OR search graphs for graphical models
- Generating good pseudo-trees
- AND/OR search for optimization: the AND/OR branch and bound scheme
- Back to AND/OR cutset-conditioning

From DFS Trees to Pseudo-Trees (Freuder 85, Bayardo 95)

(a) Graph

(c) pseudo- tree depth=2

(d) Chain depth=6

Given undirected graph G = (V, E), a directed rooted tree T = (V, E') defined on all its nodes is a pseudo tree if any arc of G which is not included in E' is a back-arc in T, namely it connects a node in T to an ancestor in T. The arcs in E' may not all be included in E.

Given a pseudo tree T of G, the extended graph of G relative to T includes also the arcs in E' that are not in E: as $GT = (V, E \cup E')$.

Extended Graphs

Definition 6.11 Pseudo tree, extended graph. Given an undirected graph G = (V, E), a directed rooted tree $\mathcal{T} = (V, E')$ defined on all its nodes is a *pseudo tree* if any arc in E which is not in E' is a back-arc in \mathcal{T} , namely, it connects a node in \mathcal{T} to an ancestor in \mathcal{T} . The arcs in E' may not all be included in E. Given a pseudo tree \mathcal{T} of G, the *extended graph* of G relative to \mathcal{T} includes also the arcs in E' that are not in E. That is, the extended graph is defined as $G^{\mathcal{T}} = (V, E \cup E')$.

Theorem 6.14 Size of AND/OR search tree. Given a graphical model \mathcal{M} , with domains size bounded by k, having a pseudo tree \mathcal{T} whose height is k and having k leaves, the size of its AND/OR search tree $S_{\mathcal{T}}(\mathcal{M})$ is $O(l \cdot k^h)$ and therefore also $O(nk^h)$ and $O((bk)^h)$ when k bounds the branching degree of \mathcal{T} and k bounds the number of nodes. The size of its OR search tree along any ordering is $O(k^n)$ and these bounds are tight. (See Appendix for proof.)

Question: given, n,k,w,h,b develop and expression that study the size of the AND/OR search tree As a function of these parameters, which are not independent of each other

From DFS to Pseudo Trees

Finding min-depth Pseudo-trees

- Finding min depth DFS, or pseudo tree is NPcomplete, but:
- Given a tree-decomposition whose treewidth is w*, there exists a pseudo -tree T of G whose depth, satisfies h <= w* log n,

AND/OR Search-tree properties

(k = domain size, h = pseudo-tree height. n = number of variables)

- Theorem: Any AND/OR search tree based on a pseudotree is sound and complete (expresses all and only solutions)
- **Theorem:** Size of AND/OR search tree is O(n k^h)
 Size of OR search tree is O(kⁿ)
- Theorem: Size of AND/OR search tree can be bounded by O(exp(w* log n))
- When the pseudo-tree is a chain we get an OR space

- V(n) is the value of the tree T(n) for the task:
 - Counting: v(n) is number of solutions in T(n)
 - Consistency: v(n) is 0 if T(n) inconsistent, 1 othewise.
 - Optimization: v(n) is the optimal solution in T(n)
 - Belief updating: v(n), probability of evidence in T(n).
 - Partition function: v(n) is the total probability in T(n).
- Goal: compute the value of the root node recursively using dfs search of the AND/OR tree.
- Theorem: Complexity of AO dfs search is

Space: O(n)

■ Time: O(n k^h)

■ Time: O(exp(w* log n))

Agenda

- Loop-cutset conditioning
- AND/OR search Trees for graphical models
 - Pseudo-trees
 - Arc weights
- AND/OR search graphs for graphical models
- Generating good pseudo-trees
- AND/OR search for optimization: the AND/OR branch and bound scheme
- Back to AND/OR cutset-conditioning

Weights on AND/OT Tree: Belief-Updating on Example

A Bayesian Network

Α	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	C	D	$ \Theta_D _{BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

С	Ε	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

.75

false

A Bayesian Network

Weights on AND/OR Trees

Figure 6.4: Arc weights for probabilistic networks.

A weight of a Solution Tree

Definition 7.1.9 (weight of a solution subtree) Given a weighted AND/OR tree $S_{\mathcal{T}}(\mathcal{M})$, of a graphical model \mathcal{M} , and given a solution subtree t, the weight of t is $w(t) = \bigotimes_{e \in arcs(t)} w(e)$, where arcs(t) is the set of arcs in subtree t.

AND/OR Tree DFS Algorithm (Belief Updating)

Complexity of AND/OR Tree Search

	AND/OR tree	OR tree
Space	O(n)	O(n)
Time	O(n kh) O(n kw* log n) [Freuder & Quinn85], [Collin, Dechter & Katz91], [Bayardo & Miranker95], [Darwiche01]	O(k ⁿ)

k = domain size

h = height of pseudo-tree

n = number of variables

w*= treewidth CS 276

Agenda

- Loop-cutset conditioning
- AND/OR search Trees for graphical models
 - Pseudo-trees
 - Arc weights
- AND/OR search graphs for graphical models
- Generating good pseudo-trees
- AND/OR search for optimization: the AND/OR branch and bound scheme
- Back to AND/OR cutset-conditioning

From Search Trees to Search Graphs

 Any two nodes that root identical subtrees (subgraphs) can be merged

From Search Trees to Search Graphs

 Any two nodes that root identical subtrees (subgraphs) can be merged

Merging Based on Context

One way of recognizing nodes that can be merged:

context (X) = ancestors of X in pseudo tree that are connected
to X, or to descendants of X (OR context)

Context-Based Minimal AND/OR Search Graph

Definition 7.2.13 (context minimal AND/OR search graph) The AND/OR search graph of M guided by a pseudo-tree T that is closed under context-based merge operator, is called the context minimal AND/OR search graph and is denoted by $C_T(R)$.

AND/OR Search Graph

Constraint Satisfaction – Counting Solutions

Context

Α	В	С	R _{ABC}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

context minimal graph

AND/OR Tree DFS Algorithm (Belief Updating)

AND/OR Graph DFS Algorithm (Belief Updating)

Finding Good Pseudo-Trees

Finding Min-Height Pseudo-trees

- Finding min height DFS, or pseudo tree is NP-complete, but:
- Given a tree-decomposition whose tree-width is w*, there exists a pseudo -tree T of G whose depth, satisfies h <= w* log n,

Generating Pseudo-Trees from Bucket Trees

Bucket-tree used as pseudo-tree

AND/OR search tree

Generating Pseudo-Trees...

Proposition 7.3.1 Given a graphical model $\mathcal{M} = \langle X, D, F, \bigotimes \rangle$ and an ordering d,

- 1. The bucket-tree derived from the induced ordered graph along d of \mathcal{M} T = (X, E) with $E = \{(X_i, X_j) | (B_{X_i}, B_{X_j}) \in bucket tree\}$, is a pseudo tree of \mathcal{M} .
- 2. The dfs tree generated by Algorithm Generate-Pseudo-tree 7.12 is a pseudo-tree.
- 3. Given an induced-graph of G, its bucket-tree and its dfs-bassed spanning tree scheme yield identical pseudo-trees of G.

Constructing Pseudo Trees

- Min-Fill (Kjaerulff, 1990)
 - Depth-first traversal of the induced graph obtained along the minfill elimination order, or generate the bucket-tree
 - Variables ordered according to the smallest "fill-set"
- Hypergraph Partitioning (Karypis and Kumar, 2000)
 - Functions are vertices in the hypergraph and variables are hyperedges
 - Recursive decomposition of the hypergraph while minimizing the separator size at each step
 - Using state-of-the-art software package hMeTiS

Definition 6.34 Hypergraph separators. Given a dual hypergraph $\mathcal{H} = (V, E)$ of a graphical model, a *hypergraph separator decomposition* of size k by nodes S is obtained if removing S yields a hypergraph having k disconnected components. S is called a separator.

Quality of the Pseudo Trees

Network	hypergraph		min-fill	
	width	depth	width	depth
barley	7	13	7	23
diabetes	7	16	4	77
link	21	40	15	53
mildew	5	9	4	13
munin1	12	17	12	29
munin2	9	16	9	32
munin3	9	15	9	30
munin4	9	18	9	30
water	11	16	10	15
pigs	11	20	11	26

Network	hypergraph		min	-fill
	width	depth	width	depth
spot5	47	152	39	204
spot28	108	138	79	199
spot29	16	23	14	42
spot42	36	48	33	87
spot54	12	16	11	33
spot404	19	26	19	42
spot408	47	52	35	97
spot503	11	20	9	39
spot505	29	42	23	74
spot507	70	122	59	160

Bayesian Networks Repository

SPOT5 Benchmarks

AND/OR Context Minimal Graph

How Big Is the Context?

Theorem: The maximum context size for a pseudo tree is equal to the treewidth of the graph along the pseudo tree.

(CKHABEJSN75DPMFG)

Generating Pseudo-Trees from Bucket Trees

Bucket-tree used as pseudo-tree

AND/OR search tree

The impact of the pseudo-tree

Treewidth vs. Pathwidth

Tasks and value of nodes

- V(n) is the value of the tree T(n) for the task:
 - Counting: v(n) is number of solutions in T(n)
 - Consistency: v(n) is 0 if T(n) inconsistent, 1 othewise.
 - Optimization: v(n) is the optimal solution in T(n)
 - Belief updating: v(n), probability of evidence in T(n).
 - Partition function: v(n) is the total probability in T(n).
- Theorem: Complexity of AO dfs search tree is
 - Space: O(n)
 - Time: O(n k^h)
 - Time: O(exp(w* log n))
- Theorem: Complexity of AO dfs search tree is
 - Space: O(n k^{w*})
 - Time: O(n k^{w*})
- We can have hybrids trading space for time

Complexity of AND/OR Graph Search

	AND/OR graph	OR graph
Space	O(n k ^{w*})	O(n k ^{pw*})
Time	O(n k ^{w*})	O(n k ^{pw*})

k = domain size

n = number of variables

w*= treewidth

pw*= pathwidth

$$w^* \le pw^* \le w^* \log n$$

Searching AND/OR Graphs

- AO(i): searches depth-first, cache i-context
 - i = the max size of a cache table (i.e. number of variables in a context)

All four search spaces

CS 276

Full OR search tree

Context minimal OR search graph

Full AND/OR search tree

Context minimal AND/OR search graph?

All four search spaces

The Recursive Value Rule

$$v(n) = \bigotimes_{n' \in children(n)} v(n'),$$
 if $n = \langle X, x \rangle$ is an AND node, $v(n) = \bigvee_{n' \in children(n)} (w_{(n,n')} \bigotimes v(n')),$ if $n = X$ is an OR node.

Dead Caches

Definition 8.1.9 (dead cache) If X is the parent of Y in pseudo-tree \mathcal{T} , and context(X) \subset context(Y), then context(Y) represents a dead cache.

Example 8.1.10 Consider the graphical models and the pseudo-tree in Figure 7.13. The context in the left branch (C, CK, CKL, CKLN) are all dead-caches. The only one which is not is CKO of P. As you can see, there are converging arcs into P only along this branch. Indeed if we describe the clusters of the corresponding bucket-tree. we would have just two maximal clusters: CKLNO and PCKO whose separator is CKO, the context of P.

(CKHABEJLNODPMFG)


```
Algorithm 2: AO-COUNTING / AO-BELIEF-UPDATING
    A constraint network \mathcal{M} = \langle X, D, C \rangle, or a belief network \mathcal{P} = \langle X, D, P \rangle; a pseudo tree \mathcal{T} rooted
    at X_1; parents pa_i (OR-context) for every variable X_i; caching set to true or false. The number
    of solutions, or the updated belief, v(X_1).
    if caching == true then
                                                                                      // Initialize cache tables
         Initialize cache tables with entries of "-1"
 v(X_1) \leftarrow 0; OPEN \leftarrow \{X_1\}
                                                                                   // Initialize the stack OPEN
 3 while OPEN \neq \varphi do
         n \leftarrow top(OPEN); remove n from OPEN
         if caching == true and n is OR, labeled X_i and Cache(asgn(\pi_n)[pa_i]) \neq -1 then // In
 5
          cache
              v(\mathbf{n}) \leftarrow Cache(asgn(\pi_n)[pa_i])
 6
                                                                                                  // Retrieve value
 7
               successors(n) \leftarrow \varphi
                                                                                      // No need to expand below
         else
                                                                                                         // EXPAND
 8
              if n is an OR node labeled X_i then
 9
                                                                                                          // OR-expand
                   successors(\mathbf{n}) \leftarrow \{\langle X_i, x_i \rangle \mid \langle X_i, x_i \rangle \text{ is consistent with } \pi_n \}
 10
                   v(\langle X_i, x_i \rangle) \leftarrow 1, for all \langle X_i, x_i \rangle \in successors(\mathbf{n})
11
                   v(\langle X_i, x_i \rangle) \leftarrow \prod_{f \in B_{\mathcal{T}}(X_i)} f(asgn(\pi_n)[pa_i]), \quad \text{for all } \langle X_i, x_i \rangle \in successors(\mathbf{n}) \text{ // AO-BU}
12
              if n is an AND node labeled \langle X_i, x_i \rangle then
                                                                                                        // AND-expand
13
                   successors(n) \leftarrow children_{\mathcal{T}}(X_i)
14
                   v(X_i) \leftarrow 0 for all X_i \in successors(\mathbf{n})
 15
           Add successors(n) to top of OPEN
16
         while successors(n) == \varphi do
                                                                                                   // PROPAGATE
17
              if n is an OR node labeled X_i then
18
                   if X_i == X_1 then
                                                                                             // Search is complete
19
                        return v(n)
20
                   if caching == true then
21
                        Cache(asgn(\pi_n)[pa_i]) \leftarrow v(\mathbf{n})
22
                                                                                                    // Save in cache
23
                   v(p) \leftarrow v(p) * v(c)
                   if v(p) == 0 then
                                                                                       // Check if p is dead-end
^{24}
                        remove successors(p) from OPEN
25
                        successors(p) \leftarrow \varphi
26
              if n is an AND node labeled (X_i, x_i) then
27
                   let p be the parent of n
28
                   v(\mathbf{p}) \leftarrow v(\mathbf{p}) + v(\mathbf{n});
              remove n from successors(p)
                                                                                                                   199
```

. .

67

Available code

http://graphmod.ics.uci.edu/group/Software

Agenda

- Loop-cutset conditioning
- AND/OR search Trees for graphical models
 - Pseudo-trees
 - Arc weights
- AND/OR search graphs for graphical models
- Generating good pseudo-trees
- AND/OR for Mixed networks and for optimization: the AND/OR branch and bound scheme
- Back to AND/OR cutset-conditioning

AND/OR Search for Mixed Networks

Definition 8.2.1 (backtrack-free AND/OR search tree) Given graphical model \mathcal{M} and given an AND/OR search tree $S_{\mathcal{T}}(\mathcal{M})$, the backtrack-free AND/OR search tree of \mathcal{M} based on \mathcal{T} , denoted $BF_{\mathcal{T}}(\mathcal{M})$, is obtained by pruning from $S_{\mathcal{T}}(\mathcal{M})$ all inconsistent subtrees, namely all nodes that root no consistent partial solution.

 No-good and good learning are automatically performed by AND/OR (backjumping) and by caching.

AND/OR Backtrack-Free

Figure 8.1: AND/OR search tree and backtrack-free tree

AND/OR CPE (Constraint Probability Evaluation)

Figure 8.2: Mixed network defined by the query $\varphi = (A \vee C) \wedge (B \vee \neg E) \wedge (B \vee D)$ Example 8.2.6 We refer back to the example in Figure 7.4. Consider a constraint network that is defined by the CNF formula $\varphi = (A \vee C) \wedge (B \vee \neg E) \wedge (B \vee D)$. The trace of algorithm AND-OR-CPE without caching is given in Figure 8.2. Notice that the clause $(A \vee C)$ is not satisfied if A = 0 and C = 0, therefore the paths that contain this assignment cannot be part of a solution of the mixed network. The value of each node is shown to its left (the leaf nodes assume a dummy value of 1, not shown in the figure). The value of the root node is the probability of φ . Figure 8.2 is similar to Figure 7.4. In Figure 7.4 the evidence can be modeled as the CNF formula with unit clauses $D \wedge \neg E$. \square

Agenda

- Loop-cutset conditioning
- AND/OR search Trees for graphical models
 - Pseudo-trees
 - Arc weights
- AND/OR search graphs for graphical models
- Generating good pseudo-trees
- AND/OR for Mixed networks and for optimization: the AND/OR branch and bound scheme
- Back to AND/OR cutset-conditioning

Searching the AND/OR Space for MPE/MAP

Heuristic function $f(x^p)$ computes a lower bound on the best extension of x^p and can be used to guide a heuristic search algorithm. We focus on:

1. DF Branch-and-Bound

Use heuristic function **f(x**^p) to prune the depth-first search tree Linear space

2. Best-First Search

Always expand the node with the highest heuristic value **f(x**^p) Needs lots of memory

AND/OR Branch-and-Bound (AOBB)

(Marinescu & Dechter, IJCAI'05)

77

Extension(T') – solution trees that extend T'

Exact Evaluation Function

$$f^*(T') = w(A,0) + w(B,1) + w(C,0) + w(D,0) + v(D,0) + v(F)$$

Heuristic Evaluation Function

AND/OR Branch and Bound Search

AND/OR Branch-and-Bound Search (AOBB)

- Associate each node n with a heuristic lower bound h(n) on v(n)
- EXPAND (top-down)
 - Evaluate f(T') and prune search if f(T') ≥ UB
 - Generate successors of the tip node n
- PROPAGATE (bottom-up)
 - Update value of the parent p of n
 - OR nodes: minimization
 - AND nodes: summation

Value of node = number of solutions below it

OR node = Marginalization operator (minimization)

Agenda

- Loop-cutset conditioning
- AND/OR search Trees for graphical models
 - Pseudo-trees
 - Arc weights
- AND/OR search graphs for graphical models
- Generating good pseudo-trees
- AND/OR search for optimization: the AND/OR branch and bound scheme
- Back to AND/OR cutset-conditioning

1

AND/OR w-cutset

grahpical model

pseudo tree

1-cutset tree

w-Cutset Trees Over AND/OR Space

Definition:

 T_w is a w-cutset tree relative to backbone tree T, iff T_w is roots T and when removed, yields tree-width w.

Theorem:

- AO(i) time complexity for pseudo-tree T is time
 O(exp(i+m_i)) and space O(i), m_i is the depth of the T_i tree.
- Better than w-cutset: O(exp(i+c_i)) when c_i is the number of nodes in T_i