Exact Reasoning:

!'_ AND/OR Search and Hybrids

COMPSCI 276, Spring 2017
Set 7, Rina dechter

i Agenda

= Loop-cutset conditioning

= AND/OR search Trees for graphical models
= AND/OR search graphs for graphical models
= Generating good pseudo-trees

= AND/OR search for optimization: the AND/OR branch and bound
scheme

= Back to AND/OR cutset-conditioning

i Probabilistic Inference Tasks

= Belief updating:
BEL(X,)=P(X,=x,|evidence)

= Finding most probable explanation (MPE)
X*=argmax P(X,e)
= Finding maximum a-posteriory hypothesis

Ac X:

(@;,...,a,) = arg max Z/: P(x,e) hypothesis variables
XIA

= Finding maximum-expected-utility (MEU) decision

)) _ . D c X: decisionvariables
(dy,....d,) = argmax ;} P(X,eU(X) " (x): utility function

CS 276 3

* Belief Updating

P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

CS 276

i Agenda

= More on cutset-conditioning

= AND/OR search Trees for graphical models
= AND/OR search graphs for graphical models
= Generating good pseudo-trees

= AND/OR search for optimization: the AND/OR branch and bound
scheme

= Back to AND/OR cutset-conditioning

the Probability Tree
P(a,e=0)=P(a)) P(b| a)z P(c| a)z P(d |a,b)> P(e|b,c)

i Conditioning Generates

d=0
b=0_ ,_{_‘)-L_%:{g, =1 {:E)=t

Fia) -

Picla) Pidla h{:} {:_:) Pia)Phla)Picla)Pdla biPlelb,c)

Pielb,c

Figure 6.1: Probability tree for computing P{d=1,g-0).
Compliéxity Of conartioning: exponential time, linear space

CS 276

Conditioning+Elimination

P(a,e=0)=P(a)) P(b|a)> P(cla)d P(d|a,b)D> P(e|b,c)

A B C D E

maAy Pibla) Picla Pidla,by Pielb,
b (bla) icla) (dla.,b) {elb.c) Pia.e=01 b=0.c=0)

sam Piae=0lb=0)
» —
Pi@fa) — Pra.e=0l b=0,c=0)
L= 1 B T ————T
plOla Piimy_) ——
- Pi10.1)
Y Piae=0b=1)

E’Mm ______———___________

Idea: conditioning until W™ of a (sub)problem gets small

CS 276

‘L Loop-Cutset Decomposition

= You condition until you get a polytree

f@' — f‘/:’y

P(B|F=0) = P(B, A=0|F=0)+P(B,A=1|F=0)
Loop-cutset method is time exp in loop-cutset size and linear space

CS 276 9

i Agenda

= Loop-cutset conditioning

= AND/OR search Trees for graphical models
= AND/OR search graphs for graphical models
= Generating good pseudo-trees

= AND/OR search for optimization: the AND/OR branch and bound
scheme

= Back to AND/OR cutset-conditioning

10

OR search space

Ordering: ABECDF

()
7

ol o [of [af [of [sf [o] [a] [o [a] [of [af [of [af [o [a] f[of f[a] [of [af [of [af f[o f[a] f[ol [a] [of [af [of [af f[o] [a]

lo][1][o][1][o][z][o][1][o][2][o][1][o][1][0][2][o][1][0][2][o][2][o][1][0][2] [o]{z][o][1][0][2] [o][2][o]{z][o][z][o][2]o][][o][1][o][1][o][2][o][1][o][2][o][2][o][1][o][2][o][1][o][1][0][2]

CS 276 11

OR

OR

OR

OR

AND/OR search
o

e
e ®

space

Primal graph
™
0
(&) O,
9 0
(® O, (®) O, (® O, (®) O,
o @I [o @ @ o [[o [[

ol [a] [o] [a] [o] [a] [o] [a] [of [a] [o] [a] [o] [a] [o] [a] [of f[af [of [af [of [a] [o] [a] [of [x] [of [x] [0 [x] [o] [x]

CS 276

12

OR vs AND/O

0
OR (&) (&) AND/OR

OR

orR (B () (®) ©. (®) ©, (®) ©,
o @ [o @ [o @ [o @ [

OR O ® @@ 6@ ©®© 6® & ® @ 0 @ 6 @ 6 &
DI EEDdE Uil dolodl DO EOE O iEOE 6O

A
B g g OR
E o o 9 9

c B 0 0 0 o 0 o o

D o [a [of [[of [[of [l [of [1 [of [1f [o] I[4f 2 [o [o [of [[of [[of [& [o [2] [of [1] [of [a] [o] I[al

F [ollx][o][z][ol[1][0][x]lo]fx]{o][x][o][x] [o]fz][o][1][o]x]|o]|{1] [e][x]o]] [o][z] o] EEEEEEE ol[z][o][1][e][2][o][2] [el[z][o][z] [0 1 oj[1

AND/OR vs. OR

0
OR (&) (&) AND/OR

OR

orR (B () (®) ©. (®) ©, (®) ©,
o @ [o @ [o @ [o @ [

OR O ® @@ 6@ ©®© 6® & ® @ 0 @ 6 @ 6 &
DI EEDdE Uil dolodl DO EOE O iEOE 6O

AND/OR size: exp(4), OR size exp(6)

No-goods
(A=1,B=1)

AND/OR vs. OR

OR

OR

(e) AND/OR

OR

(&) O, G, ©,
o @/@ o @ [

@D ®O\® ®l & & ® @
O D D\ IO EO\O B0 E O & 6@

OR

A 0] [1]

5 OR
E 1]

C [1] 0] [1]
D [lo [\ [of [af/lo] [&)lol [[o [o] [of [[of [[ol [[[o [af\ [of [af [l [a]\lo] [&l| ol [2] [of [s] [0 [a] [1]

[
\

[o][2] o]} (olf] [o] fxl{ol] [o] =] ol] [o1] [o][2] ol] [o][] o1] ol [ol] fol i [l o] [0l [o] 2] [ol ol f [ol] fol] ol {ol 2] (0] izl ol 2] [0l fxlfelf] folf] [off] [olfx

(A=1,B=1)
(B=0,C=0)

O

Y]

OR

OR

OR

D o] [1] ol [d [of [[of Q] [of [o [o] [a]

F [o][1][o][1] [01 1] o1 i [o] <] (oI [o]] IOl] [Pl I o 276 [ol[x] [olfad

o] [1]

[o][1][o][1]

OR

16

i OR Space vs. AND/OR Space

OR space AND/OR space
width | height

time(sec.) nodes backtracks time(sec.) AND nodes OR nodes
5 10 3.154 2,097,150 1,048,575 0.03 10,494 5,247
4 9 3.135 2,097,150 1,048,575 0.01 5,102 2,551
5 10 3.124 2,097,150 | 1,048,575 0.03 8,926 4,463
4 10 3.125 2,097,150 1,048,575 0.02 7,806 3,903
5 13 3.104 2,097,150 1,048,575 0.1 36,510 18,255
5 10 3.125 2,097,150 1,048,575 0.02 8,254 4,127
6 9 3.124 2,097,150 1,048,575 0.02 6,318 3,159
) 10 3.125 2,097,150 1,048,575 0.02 7,134 3,567
5 13 3.114 2,097,150 1,048,575 0.121 37,374 18,687
5 10 3.114 2,097,150 | 1,048,575 0.02 7,326 3,663

CS 276

17

AND/OR Search Tree for Graphical Models

e search tree of a GM relative to a spanning-tree, T, has:
= Successor function:

= Alternating levels of: OR nodes (variables) and AND nodes (values)
(A)
= The successors of OR nodes X are all its consistent values along its path I‘G‘G

= The successors of AND <X,v> are all X child variables in T BY,

/

= A solution is a consistent subtree
= Task: compute the value of the root node

OR (A)
0
OR () (®)
0 o]
orR (& O, () () ® (2 ® O,
o] o] o] o] o] o] o] o]

R @6 0® @O0 O @6 06 @@ & 6
O 0 IO UEE O DN ECE O H0DEEDE P DR E L E - A

18

i Agenda

= Loop-cutset conditioning

= AND/OR search Trees for graphical models
= Pseudo-trees
= Arc weights

= AND/OR search graphs for graphical models
= Generating good pseudo-trees

= AND/OR search for optimization: the AND/OR branch and bound
scheme

= Back to AND/OR cutset-conditioning

19

From DFS Trees to Pseudo-Trees
(Freuder 85, Bayardo 95)

4) (1) 6
O—2 ©O—~0O
(a) Graph
(1) ©
N E I
(3) (8 @ @ v ©
O (8
(b) DFS tree (c) pseudo- tree

depth=3 depth=2

CS 276

(d) Chain
depth=6

20

i PseudoTree Definition

Given undirected graph G = (V, E), a directed rooted tree T = (V, E’) defined
on all its nodes is a pseudo tree if any arc of G which is not included in E” is
a back-arc in T, namely it connects a node in T to an ancestor in T . The
arcs in E’ may not all be included in E.

Given a pseudo tree T of G, the extended graph of G relative to T includes
also the arcs in E’ that are not in E: as GT = (V, EU E’).

CS 276 21

‘L Extended Graphs

Definition 6.11 Pseudo tree, extended graph. Given an undirected graph G = (V. E), a di-
rected rooted tree 7 = (V, E’) defined on all its nodes is a pseudo tree if any arc in E which is
not in £’ is a back-arc in 7, namely, it connects a node in 7 to an ancestor in 7. The arcs in
E’ may not all be included in E. Given a pseudo tree T of G, the extended graph of G relative

to 7 includes also the arcs in E’ that are not in E. That is, the extended graph is defined as
GT =(V.EUE').

Theorem 6.14 Size of AND/OR search tree. Given a graphical model M, with domains size
bounded by k, having a pseudo tree T whose height is h and having | leaves, the size of its AND/OR

searchtree ST(M) is O(l - k") and therefore also O(n k™Y and O((bk)") when b bounds the branching

degree of T andn bounds the number of nodes. The size of its OR search tree along any ordering is O (k™)
and these bounds are tight. (See Appendix for proof.)

Question: given, n,k,w,h,b develop and expression that study the size of the AND/OR search tree
As a function of these parameters, which are not independent of each other

CS 276 22

From DFS to Pseudo Trees

65\. ‘7;4
() (b)

(©
OR (1) 237 AND nodes
AND [a] [b] lc]
OR © @ © (7) © O,
AND [b] dl bj dl B c] B | al [bj al [b]
or 3 G OO ONC) OO O OO
AND [a] [d [a] [b] [a [d [a [[o] [d [a] [bl d [[
rR WOGWLODOOOE WWWW (& (& (&
AND [bl [[b] [blld [d [bl[d [b] [b]ld [d I[alld [a] [I[alld] al [b] [b] [a][b]

OR

AND a] ' 108 AND nodes
oR © © (5) 3 (5

w SRR ABR T A RN RR AR R KR E

OR o‘eozxoaomao‘eoaoaomeoa'o‘e~eoaoaoa-o‘e@a'eoaonoa-o‘?aoaoaoa-?‘c‘a

AND |b|c[b]d|[¢] [¢] [b] [b] [bc]blc|[d [c] [b] [b] [d [c [allc]lalc] [a] [a] [d [d [alld]allc|[a] [a] [b] [b] [a] [a] [a]blalb][b] [b] [a] [a] [a]b]albl

i Finding min-depth Pseudo-trees

= Finding min depth DFS, or pseudo tree is NP-
complete, but:

= Given a tree-decomposition whose treewidth is
w*, there exists a pseudo -tree T of G whose

depth, satisfies h <= w* log n,

CS 276 25

AND/OR Search-tree properties

(k = domain size, /1 = pseudo-tree height. 7 = number of variables)

Theorem: Any AND/OR search tree based on a pseudo-
tree is sound and complete (expresses all and only
solutions)

Theorem: Size of AND/OR search tree is O(n k")
Size of OR search tree is O(k")

Theorem: Size of AND/OR search tree can be bounded
by O(exp(w* log n))

When the pseudo-tree is a chain we get an OR space

CS 276 26

i Tasks and Value of Nodes

= V(n)is the value of the tree T(n) for the task:

= Counting: v(n) is number of solutions in T(n)

= Consistency: ts0- ' ' y ise.
ptimization: v(n) is the optimal solution in T(n)

« Belief updating: v(n), probability of evidence in T(n).

« Partition function: v(n) is the total probability in T(n).

= Goal: compute the value of the root node recursively using
dfs search of the AND/OR tree.

= Theorem: Complexity of AO dfs search is
= Space: O(n)
= Time: O(nkh)
« Time: O(exp(w* log n))

CS 276 27

i Agenda

= Loop-cutset conditioning

= AND/OR search Trees for graphical models
= Pseudo-trees
= Arc weights

= AND/OR search graphs for graphical models
= Generating good pseudo-trees

= AND/OR search for optimization: the AND/OR branch and bound
scheme

= Back to AND/OR cutset-conditioning

28

Weights on AND/OT Tree:
Belief-Updating on Example

A Bayesian Network

7 Winter?
(inter? A o4
h '*-\._,(‘4),,- < true B
o T false 4
/":A T
R s
."/ S|.uinkk=.r'?\I (Rain? \:
. B/ ‘\\ (C}// A B ©g|a
T \.-»"' a true true .2
~ N true false .8
e \ false true .75
/Wet Grass?, . false false .25
(D) _/’ /" Slippery Road?\\‘
S (£) e
B C D | ©p|8C
true true true .95
A ¢ 9C|A true true false | .05 ¢ E e.E| c
true true .8 true false true .9 true true T
true false .2 true false false .1 true false]
false true .1 false true true .8 false true 0
false false .9 false true false 2 false false 1
false false true 0
false false false 1

CS 276

29

A Bayesian Network

Weights on AND/OT Tree: Buckets relative to a pseudo-tree:
. Belief-Updating on Example BT (Xi) = {f € F |Xi € scope(f), scope(f) < pathT (Xi)}

|)
’/\\R' @ ..»{: true .6
T T false 4

.

A Pl
./Splink]er?\‘ { Rain? \:
NG NS A B Ggp
— :;:-w___"’ true true 2
~ L \ true false .8
. — 7..__‘./’ N false true .75
Wet Grass™, o false false .25

N2 /“S:]Vi-ppew RUT{E?\I
I "__ (E) _1_/’

B C D | p|sc

true true true .85
A c Oc|a true true false | .05 c E O¢|c
true true .8 true false true .9 true true 7
true false 2 true false false .1 true false =
false true .1 false true true .8 false true 0
false false .9 false true false .2 false false 1

false false true 0

false false false 1 @
(A=0)

P(B=0|A=0) P(B=1|A=0)
[o]
® O, ® O,

P(E=0}A=0,8=0) AP(EZW\ P(E=0}A=0B=1) AP(E:WV\

5 0 b
© © © ©

P(D=0|B=0,C=0)x P(D=0|B=0,C=1)x P(D=1|B=0,C=0)x P(D=1|B=0,C=1)x P(D=0|B=1,C=0)x P(D=0|B=1,C=1)x P(D=1|B=1,C=0)x P(D=1|B=1,C=1)x
P(C=0|A=0) P(C=1|A=0) P(C=0|A=0) P(C=1|A=0) P(C=0|A=0) P(C=1|A=0) P(C=0|A=0) P(C=1|A=0)

o [b [ol [o [

CS 276 30

Weights on AND/OR Trees

P(B=11A=0}

[1]

E
P(E=01A=0,B=1) P(E=11A=0,B=1)

(a)

Figure 6.4: Arc weights for probabilistic networks.

CS 276

31

‘L A weight of a Solution Tree

Definition 7.1.9 (weight of a solution subtree) Given a weighted AND/OR tree ST(M),
of a graphical model M, and given a solution subtree t. the weight of t is w(t) =

Recares(t) W(€), where arcs(t) is the set of arcs in subtree t.

32

AND/OR Tree DFS Algorithm (Belief
Updating)

P(E|AB) P(B|A) P(C|A) P(A)
A[B[E=0[E=1] [A]B=0][B=1] [AJc=0]c=1] [A]P(A)
olol .4] 6 ol 41 6 ol 2 [8 ol 6
0 5 | .5 1] 1] 9 1] 7 | 3 1| 4
o] 7 1 3
111) 2 | 8 Result: P(D=1,E=0)
Evidence: E=0 ¥
OR .24408 (»)
.6 4
.3028 [o] .1559
OR .3028 (B) .1559 (B)
4 6 1 9
.352 [o] .623 [0] .104
OR .4 7(E) .89 (©) 2(E) 52 (0
A N8 7 1 .9 2 1 9
o] [1 .8 [0] 1] .9 .5 o] [.8 [o] 1] .9 o] [1] .7 [o] 1] .5
OR 8(® (.9 7Q. 8(® (© 2 70 (@5
9 7 5
[o] l o] [l 1] [o] [a] [o] l [o] l [o] [o]
P(D|B,C)
_g ﬁ 930 % OR node: Marginalization by summation
I AND node: product
11 5] 5

Evidence: D=1 Value of node = upgated belief for sub-problem below

i Complexity of AND/OR Tree Search

[Freuder & Quinn85], [Collin, Dechter & Katz91],
[Bayardo & Miranker95], [Darwiche01]

AND/OR tree OR tree
Space O(n) O(n)
O(n kh)
Time | O(n kv loan) o0

k = domain size
h = height of pseudo-tree
n = number of variables
w*= treewidth

CS 276

36

i Agenda

= Loop-cutset conditioning

= AND/OR search Trees for graphical models
= Pseudo-trees
= Arc weights

= AND/OR search graphs for graphical models
= Generating good pseudo-trees

= AND/OR search for optimization: the AND/OR branch and bound
scheme

= Back to AND/OR cutset-conditioning

37

i From Search Trees to Search Graphs

= Any two nodes that root identical subtrees
(subgraphs) can be merged

CS 276 38

i From Search Trees to Search Graphs

= Any two nodes that root identical subtrees
(subgraphs) can be merged

CS 276 39

AND/OR Tree

=+

OR

40

CS 276

An AND/OR

graph

+

OR

OR

41

CS 276

Merging Based on Context

One way of recognizing nodes that can be merged:

context (X) = ancestors of X in pseudo tree that are connected
to X, or to descendants of X (OR context)

pseudo tree

CS 276 42

Context-Based Minimal AND/OR Search Graph

Definition 7.2.13 (context minimal AND/OR search graph) The AND/OR search
graph of M guided by a pseudo-tree T that is closed under context-based merge operator, is
called the context minimal AND/OR search graph and is denoted by Cr(R).

CS 276

43

Context

A E F|Ruer

w
@
<

nd

L

om

<

B C D[Rgep

A B C[Rusc

Constraint Satisfaction — Counting Solutions

AND/OR Search Graph

+

44

context Egig;glal graph

AND/OR Tree DFS Algorithm (Belief Updating)

P(E|AB) P(B|A) P(C|A) P(A) context
A[B|E=0]E=1 A[B=0|B=1 A[c=0]C=1 A[P(A)
olol .4 [6 ol 4 [6 ol .2 [.8 o] 6
0 5 1.5 1] 1] 9 1] 7 1 3 1| 4
yol 7] 3
1]1) 2 | 8 Result: P(D=1,E=0)
Evidence: E=0 ¥
.24408 (n)
.6 4
.3028 [0] .1559
.3028 (B) .1559 (B)
4 .6 1 9
.352 [o] .27 .623 [0] .104
4 G .88(¢c) 5(E) 54(c) 7(®) .89 (©) 2(e) 52 (c)
2 . .5 2 .8 7 1 9 2 1 9
0] [1] .8 [o] 1] .9 o] [1] .7 [o] [1] .5 0] [2] .8 [0] [1] .9 o] [1] .7 [0] [1] .5
8(p) (0).9 7 Q () 5 8(D) (o) 9 .7 (0) (p).5
9 7 .5
[o] l [o] [a] [o] l [0] l [o] l [o] l [o] [o]
P(D|B,C)
B|C|D=0[D=1
olo|] 2 | 8
of1f .1 [.9 OR node: Marginalization operator (summation)
: (1’ g ; . AND node: Combination operator (product)
Evidence: D=1 Value of node igpﬁi%ed belief for sub-problem below 45

AND/OR Graph DFS Algorithm (Belief Updating)

P(E|AB) P(B|A) P(C|A) P(A)
A[B|E=0]|E=1 A[B=0|B=1 A[c=0]/C=1 A[P(A)
olol .4 | 6 ol 4| 6 ol 2 [.8 o] .6
0 5] .5 1 1] .9 1| 7] 3 1| 4
ol 7 | .3
(11| 2 | 8

vidence: E=0

[lolo|m
2l (=12](=1(e]
=[N0 oo

Cache table for D

Result: {P(D= 1,E=0)

Context

B[C[D=0[D=1]
0/0] .2 8
0|1] .1 .9
1(o0] 3 | .7
(1131 .5 5

Evidence: Dﬁ%

+

Finding Good Pseudo-Trees

CS 276

47

i Finding Min-Height Pseudo-trees

= Finding min height DFS, or pseudo tree is NP-
complete, but:

= Given a tree-decomposition whose tree-width is
w*, there exists a pseudo -tree T of G whose

depth, satisfies h <= w* log n,

CS 276 48

Generating Pseudo-Trees from Bucket Trees

Note: we plot order from top to bottom here

® (a)
=4

(AC) (BC) ©)
(AE) (BE) G4
(D) (DE) (p)

(AF) (EF) G

%ot

d: ABCEDF Bucket-tree based on d Induced graph Bucket-tree
OR @
o i
OR O, O,
o o
oR © O, ©, O, © O, ©, (e
o o ol o o o o o

OR @D O ® O @6 ®@® 0 ® @& 6® @ ®
of [0l G BB E O HEEEREEE B A E R B R EEHE E

Bucket-tree used as AND/OR search tree

pseudo-tree
CS 276 49

‘L Generating Pseudo-Trees...

Proposition 7.3.1 Given a graphical model M =< X, D, F, Q) > and an ordering d,

1. The bucket-tree derived from the induced ordered graph along d of M T = (X, F)
with E' = {(X;, X;)|(Bx,, Bx,) € bucket — tree}, is a pseudo tree of M.

2. The dfs tree generated by Algorithm Generate-Pseudo-tree 7.12 is a pseudo-tree.

3. Given an induced-graph of G, its bucket-tree and its dfs-bassed spanning tree scheme

yield identical pseudo-trees of G.

onstructing Pseudo Trees

= Min-Fill (Kjaerulff, 1990)
= Depth-first traversal of the induced graph obtained along the min-
fill elimination order, or generate the bucket-tree
= Variables ordered according to the smallest “fill-set”

= Hypergraph Partitioning (Karypis and Kumar, 2000)

= Functions are vertices in the hypergraph and variables are
hyperedges

= Recursive decomposition of the hypergraph while minimizing the
separator size at each step

= Using state-of-the-art software package hMeTiS

Definition 6.34 Hypergraph separators. Given a dual hypergraph H = (V. E) of a graphical
model, a hypergraph separator decomposition of size k by nodes S is obtained if removing S yields
a hypergaph having k disconnected components. S is called a separator.

‘ Quality of the Pseudo Trees

1_Network hypergraph min-fill Network | hypergraph min-fill

i width | depth | width | depth width ' depth | width @ depth
barley 7 13 7 23 spot5 47 152 39 204
diabetes 7 16 4 77 spot28 108 138 79 199
link 21 40 15 53 spot29 16 23 14 42
mildew 5 9 4 13 spot42 36 48 33 87
muninl 12 17 12 29 spot54 12 16 11 33
munin2 9 16 9 32 spot404 19 26 19 42
munin3 9 15 9 30 spot408 47 52 35 97
munin4 9 18 9 30 spot503 11 20 9 39
water 11 16 10 15 spot505 29 42 23 74
pigs 11 20 11 26 spot507 /0 122 59 160

Bayesian Networks Repository SPOT5 Benchmarks

AND/OR Context Minimal Graph
[]

— =)

] [EQ EQ]

[010101010101 ol 11 [of [1 0] |1] ([of |12] |of (] 1[of |2] (O] (2] 19| (1] |O] |1 [Of |1

0 © © © © © © © © © O O © ©O O QO
ojajofajojrfojaf|ojajofl1jojLioj1]|0j1jof|1]oj{LO]1| [ofi1]fof1]Ojf1[Of1

p P ® B ® e e E ol (2] |of |12] (o] [1] (o] (1] |of (& |of |2] |9] (2] |o] |1 o [1f [of |1

(©) 11

o|[2][o][2] [o] [2][o][2] [o][z][o][2] [0][2][o] [z p N
[C] NQ 00 OO OO0 OO OO OO O g © G G
> >
(O] [[[o[ol Td [of [[olTal [of [d [ol Tl ‘Oi‘()i‘oi‘()i
(A) [cH \
(8) rcHal

(©) [ckiny (B) [cHag) o
©) 1A

1

(CKHABEJLNODPMEFG) CS 276 54

‘L How Big Is the Context?

Theorem: 7he maximum context size
for a pseudo tree is equal to the
treewidth of the graph along the
pseudo tree. i

max context size = treewidth

(CKHABE JOM®DPMF G) 25

Generating Pseudo-Trees from Bucket Trees

(A)

Note: we plot order from top to bottom here

The context can be extracted from the

(®) (®)
O te
D—@ (o) ®o o) G)
G" ()| e B 34
oG (®) (o)[o)) (p)
G (AF) (EF) G
d: ABCEDF Bucket-tree based on d Induced graph Bucket-tree
OR @
o
OR O, O,
o o
oR © O, ©, O, © O, ©, (e
o o ol o o o o o
OR @O ® O 6® OO O ® O6® 0 6® ©® & ®

Bucket-tree used as
pseudo-tree

Y Y Y Y/ Y A Y I R 1 W N Y R Y

AND/OR search tree
CS 276 56

The impact of the pseudo-tree

NH0{ 02060 006 00 TH oW o o N \.‘i‘;.;:i"‘q:%vj:,"!;
gOOd ‘ L GQG
pseudo-tree? duddG
How to find

a good one?

[AF] G [ABCDJ] Q [ABCJ]

(CDKBAOMLNPJHEFG)

Treewidth vs. Pathwidth

TREE

’\ treewidth = 3
FHK

= (max cluster size) - 1

< CHAIN

\ pathwidth = 4
@ = (max cluster size) - 1

CS 276 58

Tasks and value of nodes

= V(n)is the value of the tree T(n) for the task:
o Countlng v(n) is number of solutlons in T(n)

m Partiti

= Theorem: Compléxi
= Space: O(n)
= Time: O(n k")
= Time: O(exp(w* log n))

= Theorem: Complexity of AO dfs search tree is
= Space: O(n kv")
= Time: O(n kw™)

= We can have hybrids trading space for time

i Complexity of AND/OR Graph Search

AND/OR graph OR graph
Space O(n kw*) O(n kpw™)
Time O(n k") O(n kPw*)

k = domain size

n = number of variables w* < pW* < W¥* Iog N
w*= treewidth

pw*= pathwidth CS 276 60

i Searching AND/OR Graphs

= AO(i): searches depth-first, cache i-context

= | = the max size of a cache table (i.e.
number of variables in a context)

i=0 i i=w*
b
Space: O(n) \ Space: O(exp w*)
Time: O(exp(w* log n)) Time: O(exp w¥*)

Space: O(exp(i))
Time: O(exp(m_i+i)

m_i is related to the size of the i-cutset.

CS 276 61

All four search spaces

+

Xl
|Anﬂ<‘ IM,T
E»E»H_,,_,‘

L
EA m !w. L\‘
« T

< o w O 0O uw

= =]

IA E<H

Context minimal OR search graph

Full OR search tree

OR

OR

OR

O e N B

O~ O~ ~ ~ N~ N~ ~ ~

OR

@OOOOOOO@O®OE®O®®

Context minimal AND/OR search grapf?

CS 276

Full AND/OR search tree

All four search spaces

+

Xl
|Anﬂ<‘ IM,T
E»E»H_,,_,‘

< o w O 0O uw

= =]

IA E<H

L
EA m !w. L\‘
« T

Context minimal OR search graph

Full OR search tree

Time-
spac

OR

OR

OR

n 1 81 8 8 B 1 1%
clelelelolelolelclolclolclolole

[

OR

Context minimal AND/OR search grapf3

CS 276

Full AND/OR search tree

The Recursive Value Rule

v(n) = @ echitdrenin) VM) if n = (X,x) is an AND node,
v(n) =lnechitdren(n) (Wnnn @ v(n')), ifn = X is an OR node.

CS 276

64

‘L Dead Caches

Definition 8.1.9 (dead cache) If X isthe parent of Y in pseudo-tree T, and context(X) C

context(Y'), then context(Y) represents a dead cache.

Example 8.1.10 Consider the graphical models and the pseudo-tree in Figure 7.13. The
context in the left branch (C, CK, CKL, CKLN) are all dead-caches. The only one
which 1s not 1s C KO of P. As you can see, there are converging arcs into PP only along this
branch. Indeed if we describe the clusters of the corresponding bucket-tree. we would
have just two maximal clusters: CKLNO and PCKQO whose separator 1s C KO, the
context of P. O

AND/OR vs Variable EI|m nation
AND/OR Search [I

[® ® ® ®

o —

| | | |

0 0 0 ®] ® @ ® ®
o] 1] o] 1] o] 1] 0 1] 0] 1] [0 1] [0 1] E 1]
I | | | | | | | I I I I I I |
i B SRS B e B B B B
of |1 o |1} |0 (1| (of (1 |Of 1] |O] (1 0101\01 ol 11| (ol (1| (o] (1] lol |2 |oOl (1] [O] |1)
AN ANE AN S

oooooooooooo oooo(EE E)YE). (ELEN (EXENENE \ ®) VB \(E) (E
0101 1010 EEEE 10101000101\01 o [1NoNx| o1k [oN1]\[o] [1], fo] [1] [o] [4] |

/ ONSIN N AN

QQQQQQ (@G (0)0) 00 B.E)ENGGNL)G) 6)()
ONG][] (0]l 011 /0]] [0l [l [1] [0l [[0l] o [[l o @ [o WNoa Yol [1k [ola] \[o] [x

() cH

0/(1]|0]|1]|0]|1]|0f|1]|0f|1]|O](1]| [0|(1]|0]|1

M M M (@ © © ©)
OR:
o] [1][0] [1][o][1][0][x [0][a][ol[1][0][a][0][a] |

Variable Elimination

(CKHABEJLNODPMFG)

Algorithm 2: AO-COUNTING / AO-BELIEF-UPDATING

A cor
at X

istraint network M = (X, D, T}, or a belief network P = (X, D, P}; a pseudo tree T rooted

: parents pa; (OR-context) for every variable X;; caching set to true or false. The number

of solutions, or the updated belief, v(X).
if caching == frue then // Initialize cache tables
1 L Initialize cache tables with entries of *—17
2 v(X;) + 0; OPEN « {X,} // Initialize the stack OPEN
3 while OPEN # ¢ do
4 n + top(0PEN): remove n from OPEN
5 if caching == true and n is OR, labeled X; and Cache(asgn(m,)[pa;]) # —1 then // In
cache
6 v(n) « Cache(asgn(m.)[pai]) // Retrieve value
T SUCCEsSoTs(n) — @ // No need to expand below
8 else // EXPAND
0 if n is an OR node labeled X; then // OR-expand
10 successors(n) + { (X z;) | (X;,x;) is consistent with =, }
11 v((X;,x;)) + 1, for all (X;, z;) € successors(n}
v({(X, zi))+— T1 flasgn(ma)[pas]), for all (X; ;) € successors(n) // AD-BU
12 B feBy (X))
13 if n is an AND node labeled {(X;,x;) then // AND-expand
14 successors(n) + childreny(X;)
15 v(X;) + 0 for all X; € successors(n)
16 Add suecessors(n) to top of OPEN
17 while successors(n) == ¢ do // PROPAGATE
18 if n is an OR node labeled X; then
19 if X; == X, then // Search is complete
20 L return v(n)
21 if caching == true then
22 L Cache(asgn(w,) [pa;:]) + v(n) // Save in cache
23 v(p) + v(p) *v(c)
24 it v(p} == 0 then // Check if p is dead-end
25 remove successors(p) from OPEN
26 successors(p) < @
27 if n is an AND node labeled {X;, ;) then
28 let p be the parent of n
20 L v(p) + v(p) + v(n);
30 remove o from successors(p)
@Ritla DeEl}ch‘ 199

i Available code

= http://graphmod.ics.uci.edu/group/Software

CS 276 68

i Agenda

= Loop-cutset conditioning

= AND/OR search Trees for graphical models
= Pseudo-trees
= Arc weights

= AND/OR search graphs for graphical models
= Generating good pseudo-trees

= AND/OR for Mixed networks and for optimization: the AND/OR
branch and bound scheme

= Back to AND/OR cutset-conditioning

69

‘L AND/OR Search for Mixed Networks

Definition 8.2.1 (backtrack-free AND/OR search tree) Given graphical model M
and given an AND/OR search tree St(M), the backtrack-free AND/OR search tree of
M based on T, denoted BF(M), is obtained by pruning from St(M) all inconsistent

subtrees, namely all nodes that root no consistent partial solution.

= No-good and good learning are automatically performed by
AND/OR (backjumping) and by caching.

‘L AND/OR Backtrack-Free

OR
AND
oR
AND
x| 233
R4n pas) o
sn (1) (R) #en AND 1[4
(a) A constraint tree (b) Search tree (c) Backtrack-free search tree

Figure 8.1: AND/OR search tree and backtrack-free tree

CS 276 71

AND/OR CPE (Constraint Probability Evaluation)
I

P((AVC)A(BV1E)A(BvD))= 74204 (a)
- 56— 4

Figure 8.2: Mixed network defined by the query o = (AVC)A (BV -E)A (BV D)
Example 8.2.6 We refer back to the example in Figure 7.4. Consider a constraint net-
work that 1s defined by the CNF formula ¢ = (AV C) A (BV —-E)A (BV D). The
trace of algorithm AND-OR-cPE without caching 1s given in Figure 8.2. Notice that the
clause (A Vv C) is not satisfied if A =0 and C' = 0, therefore the paths that contain this
assignment cannot be part of a solution of the mixed network. The value of each node
1s shown to its left (the leaf nodes assume a dummy value of 1, not shown in the figure).
The value of the root node 1s the probability of . Figure 8.2 is similar to Figure 7.4. In
Figure 7.4 the evidence can be modeled as the CNF formula with unit clauses D A —=FE. O

The Effect of Constraint Propagation
in AND/OR CPE

mains are {1,2,3,4}

CONSTRAINTS ONLY

FORWARD CHECKING

MAINTAINING ARC
CONSISTENCY

i Agenda

= Loop-cutset conditioning

= AND/OR search Trees for graphical models
= Pseudo-trees
= Arc weights

= AND/OR search graphs for graphical models
= Generating good pseudo-trees

= AND/OR for Mixed networks and for optimization: the AND/OR
branch and bound scheme

= Back to AND/OR cutset-conditioning

74

Searching the AND/OR Space for MPE/MAP

) computes a lower bound on the best
extension of xP and can be used to guide a heuristic
search algorithm. We focus on:

1. DF Branch-and-Bound 2. Best-First Search
Use heuristic function f(xP) to Always expand the node with
prune the depth-first search tree the highest heuristic value f(xP)
Linear space Needs lots of memory
Q)
O\Q O/ N
Y\

AND/OR Branch-and-Bound (AOBB)

(Marinescu & Dechter, IJCAI'05)

Maintain
ub = best solution found so far

> g(n) \
J Ib(n) = g(n) + h(n)

» h(n)

estimates the optimal
cost below n

Prune subtree below n if Ib(n) = ub

77

Partial Solution Tree

(A=0, B=0, C=0, D=0) (A=0, B=0, C=0, D=1) (A=0, B=1, C=0, D=0) (A=0, B=1, C=0, D=1)

Extension(T’) — solution trees that extend T’

Exact Evaluation Function

A B Cf,(ABC) |A B F f,(ABF) |B D E fy(BDE)
0loo 2 oloo 3 000 6
00/1] 5 lojo[1] s 001 4
0/1/o0] 3 0/10 1 010 8
0/1/1] 5 011 4 0011 5
100 9 100 6 100 9
101 3 101 5 101 3
110 7 110 6 110 7
1(1]1] 2 111 5 111 4

OR

AND

OR

AND

OR

AND

4 5 i
OR @ (£ V(D,O) tip nodes
AND o [[o [

*(T) = w(A,0) + w(B,1) + w(C,0) + w(D,0) + v(D,0) + v(F)

Heuristic Evaluation Function

AND

OR

AND

OR

AND

OR

AND

A B C f,(ABC) A B F f,(ABF) B D E f;(BDE)
000 2 000 3 000 6
001 5 10/01 5 001 4
010 3 010 1 010 8
011 5 011 4 011 5
1/00 9 100 6 100 9
101 3 101 5 101 3
110 7 110 6 110 7
111 2 111 5 111 4
h(n) < v(n)
0.
oo
2(0) 4(p) h(F) = 5
275 0750 370
o 1 40 5[4 [0
4 5 tip nodes
G,C’EL% 8 ~5 h(D,O) =4
o 1 [o [

f(T") = w(A,0) + w(B,1) + w(C,0) + w(D,0) + h(D,0) +
h(F) = 12 < f*(T")

AND/OR Branch and Bound Search

$ UB (best solution SO far) »s @
AND 5

OR 5 (B)

f(T") = UB

i °°u

i AND/OR Branch-and-Bound Search (AOBB)

»s Associate each node n with a heuristic lower
bound h(n) on v(n)

= EXPAND (top-down)

« Evaluate f(T") and prune search if f(T") = UB
= Generate successors of the tip node n

= PROPAGATE (bottom-up)

» Update value of the parent p of n
= OR nodes: minimization
=« AND nodes: summation

[Marinescu and Dechter, 2005; 2009]

OR

OR

OR

OR

DFS Algorithm (#CSP Example)

O

&
"' solution

: \

(a) 11

OR node: Marginali#ation operator (summation) 1) 6

(®) 5 (®)6

o] 4 11 AND node: Combiiehtion operator (produdi])2

()2 (©)2 ()1 (©)1 ®)1 (©)a
0] 2 1jo0 o] [1] [o]1 F) [o] » 1] 2

= [o]
= [=]
= [o]
o [=]
= [O]
=[]
o [C]
o [=]
= (o]
O [=]
= [O]
o [=]
o [9]
= [e]
o [o]
O [=]
S
= [e]
= (O]
o [=]
= [o]

1] [o] [1]
110

Value of node = number of solutions below it

® 1

@2 M1 M2 Mo @1 1 @1 o @2 M1 W2 1 @1 1 @1 (A1

o
1

1]
0

o
1

(© 2
1] 1

1] [of [1] [o] [a]
0 0110

84

AND/OR Tree Search for Optimization

ABf/IACfL|/AEf/AFf|/BCf|[BDf|/BEGF|[CDGf||EFT,
002//oo0o3//oooj]/oo0o2]/oo0oo0/|[004/[003]/001]/[001
0101/0101/013//010|011/|012//012//014 /010
101//100//102/ /100 /102|101 |101/|100//100

| 114/|111//110/|112/|114]|110]/|110]|110]|]112
i . 9
Goal :min, " f,(X)
y 5 i=1 |
0 O 0
AND 5 |o] 7 (1]
OR 5(B) 7(8)
2 0 1 4
AND 6 [o] 5[1] 6 [o] 4 (1]
OR 3(© 3 () 4 (© 1(E) 4(o) 2 (B) 4(© 0(®
3 1 3 5 5 4 1 3 0 2 5 2 2 5 3 0

AND 50 201 of] 2 [200 o1l ofo 21 50 20 1[0 o0 [1 20 o[t 1[0 o[

OR 50 20 o 2 20 o® ok 2(50 2@ 1® o 20 o®@® 1(® o

AND o] [1] [o] [1] [o] [1] [o] [a]

2 41 0 3 0 2 2

o] [1] [o] [1] [o] [1]
2

o] [1] [o] [af [o] [a] [o] [a] [0
56 4 2 1 04 2410120

AND node = Combination operator (summation)

OR node = Marginalization operator (minimization)

[1]
4

i Agenda

= Loop-cutset conditioning

= AND/OR search Trees for graphical models
= Pseudo-trees
= Arc weights

= AND/OR search graphs for graphical models
= Generating good pseudo-trees

= AND/OR search for optimization: the AND/OR branch and bound
scheme

= Back to AND/OR cutset-conditioning

87

R w-cutset

> 1o

3-cutset 2-cutset

CS 276

%
-

i AND/OR w-cutset

grahpical model pseudo tree

CS 276

1-cutset tree

89

w-Cutset Trees Over AND/OR Space

s Definition:

= T_Wis a w-cutset tree relative to backbone tree T, iff T_w is
roots T and when removed, yields tree-width w.

s [heorem:

= AO(i) time complexity for pseudo-tree T is time
O(exp(i+m_i)) and space O(i), m_i is the depth of the T_i
tree.

= Better than w-cutset: O(exp(i+c_i)) when c_i is the
number of nodes in T i

CS 276 90

