Exact Inference Algorithms for
Probabilistic Reasoning;
BTE and CTE

., SR

COMPSCI 276, Spring 2017
Set 6: Rina Dechter

(Reading: Primary: Dechter chapter 5
Secondary: , Darwiche chapters 7,8)

Bucket elimination E@

Algorithm BE-be/ (Dechter 1996)

ﬁNE—O)—a ZP(A)-P(B|A)-P(C|A)-P(D|A,B)-P(E|B,C)

-0.DCB

ZH<— Elimination operator

_ b A —
bucket B: P(bla) P(d|b,a) P(e|b,c)
/
bucket C: P(cla) ;LB(a,d,c,e)
\/ AN v
bucket D: A (a,d,e)

bucket E: e=0 A°(a,e)

\ / W*=4

_ E “induced width”
o //P@j%’% @ (maxique size)
=) —
P(a|e=0)_P(a’e 0)

P(e=0)

P(ale=0)

Finding MPE = max P(X)

Algorithm BE-mpe (Dechter 1996)
i Y isreplaced by max :

MPE = max P(a)P(c|a)P(b|a)P(d |a,b)P(e|b,c)
max m Elimination operator

b~
bucket B: P(bla) P(d|b,a) P(e|b,c)
J\“//
bucket C: P(cla) h®(a,d,c,e)

\/ Y
bucket D: h®(a,d,e)
bucket E: e=0 h"(ae)
| \“E/ W4
bucket A: P@\“h/ (@) induced width’

MPE (max clique size)

‘L Generating the MPE-tuple

5. b'=arg max P(b|a')x
xP(d'|b,a")xP(e'|b,c")

4. c'=argmax P(c|a')x
xh®(@' ,d"',c,e)

3. d'=arg max h(a' ,d,e')

2.e' =0

1. a' =arg max P(a)-h(a)

A

B: P(bla) P(dlb,a) P(e|b,c)

C: P(cla) h°(ad.c,e)
D: h®(a,d,e)

E: e=0 h°(ae)

A: P(a) ht(@

Return (a',b',c' ,d',e')

i Probabilistic Inference Tasks

= Belief updating:
BEL(X,) =P(X, =X, | evidence)

= Finding most probable explanation (MPE)
xX* =argmax P(X,e)
* Finding maximum a-posteriory hypothesis
Ac X:

(@,....a) =arg max Z/:P(Y’ €) hypothesis variables
X/IA

* Finding maximum-expected-utility (MEU) decision

« « _ . D c X: decisionvariables
(dy,....d,) = argmax %P(X’ (X)) U (x): utility function

class3 huiji

‘L Markov Networks

Definition 2.23 Markov networks. A Markov network is a graphical model M = {
X.D,H,[]) where H = {y,.... VUm} is a set of potential functions where each potential v
is a non-negative real-valued function defined over a scope of variables S = {Sy, ... S;z}. S;. The
Markov network represents a global joint distribution over the variables X given by:

1 m

Pu=—|lvi . z=) [[w

i=1 X i=1

where the normalizing constant Z is called the partition function.

Everything is applicable to Markov networks as well

Dechter, chapter 2

General Graphical Models

Definition 2.2 Graphical model. A graphical model M is a 4-tuple, M = (X.D.F.Q),
where:

1. X =1{X,,..., X} is a finite set of variables;
2.D={Dy,..., D, } is the set of their respective finite domains of values;

3. F={f1...., fr} is a set of positive real-valued discrete functions, defined over scopes of
variables S = {Sy, ..., S;}, where S; C X. They are called /oca/ functions.

4. Q) is a combination operator (e.g., @) € {[[. D_. <} (product, sum, join)). The combination
operator can also be defined axiomatically as in [Shenoy, 1992], but for the sake of our
discussion we can define it explicitly, by enumeration.

The graphical model represents a global function whose scope is X which is the combination of all
its functions: @;_, fi.

General Bucket Elimination

Algorithm General bucket elimination (GBE)

Input: M = (X.D,F.®) . F ={fi...., fa} an ordering of the variables, d = X,..., X;;
Y cX.

Output: A new compiled set of functions from which the query |y ®7_, fi can be derived
in linear time.

1. Initialize: Generate an ordered partition of the functions into bucket,, ..., bucket,, where
bucket; contains all the functions whose highest variable in their scope is X;. An input func-
tion in each bucket ¥, ¥ = ®7_, fi.

2. Backward: For p < n downto 1, do

for all the functions ¥r,, A, A5, ...,A; in bucket,, do

» If (observed variable) X, = x,, appears in bucket,, assign X, = x, in ¥, and to each
A; and put each resulting function in appropriate bucket.

* else, (combine and marginalize)
Ap <s, ¥, ® (®/_,A;) and add A, to the largest-index variable in scope(A,).

3. Return: all the functions in each bucket.

Theorem 4.23 Correctness and complexity. Algorithm GBE is sound and complete for its task. Its
time and space complexities is exponential in the w*(d) + 1 and w* (d), respectively, along the order
of processing d.

1998 roadmap

Outline; Road Map

: olving

Tasks . . MPE, | qp 2
) , Optimi- Belief MAP | [linear
_ CSP SAT - - MEU |dqualities
Method: zation updating ithequalities
iv directional ic || join-free. |join-tree. | | -
adaptive | SIECHOTAL | dynamic || JOIITee. 1] Gaussian/
liminati consistency ocram-| YE - SPL | alim- :
elimination | ©OT program : elim-mpe | gourier
Jom-tree ming elim-bel | elim-map dlimination
backtracki | branch- branch-
.. . |backtracking “ac<tacKE and- and-
conditioning] ~ caarch | (Davis- bound. bound.
Putnam) | best-first best-first
search search
alimination | ¢vecle-cutset| DCDR, loop-
forward BDR-DP cutset
P . <
conditioning] checking
approximate| 1-consistency bounded mini- mini- mini-
minati directional) buckets || buckets | buckets
elimination (
resolution
ApDroXimate greedylocal gradient| stochastic] gradient
ippl-" ' segl‘ch‘ GSAT descent | simulation descent
conditioning] (GSAT)
approximate| GSAT +
(elimination § ,artig] 1P ath-
1. | consistency
conditioning J

i Agenda

From bucket-elimination (BE) to bucket-tree elimination (BTE)
From BTE to CTE, Acyclic networks, the join-tree algorithm
Generating join-trees, the treewidth

Examples of CTE for Bayesian network

Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

Conditioning with elimination (Dechter, 7.1, 7.2)

10

\)\Seasm

Sprinkler Q« b Fain

A Bayesian Network — T
rocessed by BE & sooon

(a) Directed acyclic graph (b) Moral graph
Two orderings for BE
211 211
—" ~ "

Bucket G: Pr(iHF) =17 Bucket G: P(GIF) G=1 ——__

o \ ﬁ)
Bucket ID: Priy R A Pk P{th{:}rym; / N

|
“f %
. 18 |
Bucket F: P(FIB,C)™. AG(F) Bucket G Q) #HADCH) |' C\‘

Bucket I): AS(ADLF)

Bucket B: PE/A) APMB.A) A B.C)

|]
Bucket F: ADAF) AG(EF) | ‘ o

Bucket C: I’(CJ/L}\E.’(A,C?J/ l / '.\ N F
\ ,/ Bucket A: P(A) AF(A) I
Bucket A: P(A) AC(A) l / A/
i / P(G=1)

P{G=1) (a) (b)

Figure 4.2: Bucket elimination along ordering d; = A, C, B, F, D,G. -3: The bucket’s output when processing along dy = A, F, D.C, B,

Complexity exponential in w*(d) 11

From Bucket Elimination to Bucket-Tree
Elimination o

©)

Bucket G: P(G|F)

\

Bucket F: P(F|B.C) “Ag_, ()

Bucket D: P(D|A4,B)

Bucket C: P(C|A)\ Ao (B,C)

Bucket B:f(BlA) ADEBM,B\MB(A, B)
Bucket A: P(A4) A _,ﬁ \

Observation 1: BE is a message propagation down a bucket-tree

From Bucket Elimination to Bucket-Tree
o>

Elimination
What If we want the marginal on B? © g
Bucket G: P(G|F) G
Bucket F: P('FlB,(\?)'\,\G_}F(F) A V[P(GUE))
F
Bucket D: P(D|A,B) [P(’F|B, C)) D
- — fee®o (pPm)aB))
Bucket C: P(C|A4) Ao (B, C) C Noon(A, B)
N T [P(ClA) L\ B
Bucket B: P(B|4) \p_ (A, B)Ao_g(A, B) Aeon(A B ——
o NS G
Bucket A: P(A4) A _a(A) Qs a(A)
_ Ta,
s (@) = P(A), Aor

P(B) =) P(B|A)P(A)A _.5(B,C)p (A B)

From Bucket Elimination to Bucket-
Tree Elimination (BTE)

What if we want the marginal on D?
Imagine combining Band A, D

d = ({A,D,B},C,F,G)
Bucket G: P(G|F) G

Bucket F: P(F|h’,\g_m(p) Aoor(F P(G|F)
F

Bucket D: P(D|4,B) P(F|B.C) D
hrc(8,C) | P(D|4,B)
Bucket C: P(Cl|4) Aro(B,0)

T Ap—z(A, B)
B

Bucket B: P(B|4)) A B)Mc_p(A,B (A4,
p~5(4,B) A A /(P(B4)

Bucket A: P(4) Ag_,4(A) P(4) Ap-4(A)

>
i

k"‘--._./

Ta-pla) = P(A),
e pla,b) = p(bla) - ma_p(a) - Ae—5(b)

bel(d) = a) ~ P(d|a,b) - mp_,p(a,b).

Idea of BTE

This example generalize: We can compute the belief in each variable by a
second message-passing along the bucket-tree.

in Bayesian networks. Given an ordering of the variables d the first step generates the
bucket-tree by partitioning the functions into buckets and connecting the buckets into
a tree. The subsequent top-down phase is 1dentical to general bucket-elimination. The
bottom-up messages are defined as follows. The messages sent from the root up to the
leaves will be denoted by w. The message from B, to a child B; is generated by combining
(e.g., multiplying) all the functions currently in B; including the 7 messages from its
parent bucket and all the A messages from its other child buckets and marginalizing (e.g.,
summing) over the eliminator from B; to B;. By construction, downward messages are
generated by eliminating a single variable. Upward messages, on the other hand, may be

generated by eliminating zero, one or more variables.

Idea of BTE

This example generalize: We can compute the belief in each variable by a
second message-passing along the bucket-tree.

BTE: Allows Messages Both Ways

i

Initial buckets

+ messages

G
il T%;@
’ ©

fl’:(FfBCJ el ®
uﬁ”@
A B »"rrf—sc.‘(A%[PB!A)] o
z
(@) i

m4—pg(a) = Pla)
mg—clc,a) = P{f}|ﬂ)iﬂ_}3(a.b):m_}3{a)
ng—pla,b) = P(bla)Ac—pla,b)ms_pla.b)
mc—Flc, b) Y . Plcla)mp—cl(a,b)
mr—6(f) =2 pe P(flb ¢)nc—rlc,b)

BTE: Allows Messages Both Ways

+ messages F

> r
P(FIB,C) | ™~<®)
Aroe(B,C) .
v N P(DIAB))

C Ap_ (A, B}J,

- T e
Aop(A,B) T ol)

A e a D @J
Output buckets M @

N < S
Initial buckets
&7
b} ©

T:;;_L.A[[A}
(a)
G
P(GIF), 7rc(F))
P F
—r(F)
P(FIB,C), Wﬁ T(B.C) D
S
C (P(DIAB). 75 .0(A, B)
Ap_o(B,C
[P(G’A) T5 5(&1’3 B
Ac (A, B)
A P(B;A),A;;wg.a,ﬂa
TpalAd)

(P(A), Ap—a(4)

i A Bucket-Tree of a Bayesian Network

= | he bucket-tree:

= Nodes are the buckets. Each has functions (assigned
initially) and variables: itself+ induced-parents

= There is an arc from B; to B; iff the function
created at bucket B; is placed at bucket B;

= We have a separator and eliminator between two
adjacent buckets

i Bucket-Tree Construction From the Graph

1.

2.

3.

Pick a (good) variable ordering, d.
Generate the induced ordered graph

From top to bottom, each bucket of X is
mapped to (variables,functions) pairs

The variables are the clique of X, the
functions are those placed in the bucket

Connect the bucket of X to earlier bucket of
Y if Y is the closest node connected to X

i BTE

Theorem: When BTE
terminates The product of
functions in each bucket is the
beliefs of the variables joint
with the evidence.

ALGORITHM BUCKET-TREE ELIMINATION (BTE)
Input: A problem M = (X, D.F.[]). ordering d. X ={Xy,.... X,,} and F = {fy,.... f,'}

Evidence E = e.

Output: Augmented buckets {B’;}, containing the original functions and all the 7 and A

functions received from neighbors in the bucket-tree.

1.

Pre-processing: Partition functions to the ordered buckets as usual
and generate the bucket-tree.
Top-down phase: A messages (BE) do
for i = n to 1, in reverse order of d process bucket B;:
The message A\;—,; from B; to its parent Bj, 1s:
Aisyj = Zelim(z’,j) (0 HkEchild[i)) Ak—i
endfor
bottom-up phase: ™ messages
for j =1 to n, process bucket B; do:
B; takes mp_; received from its parent By, and computes a message m;_; for
each child bucket B; by
Tj—i <= Zelim(j.i) Th—j ﬁ."j) Hr#i)\”'—*.f
endfor
Output: and answering singleton queries (e.g., deriving beliefs).
Output augmented buckets By, B, where each B, contains the original bucket functions

and the A\ and 7 messages 1t received.

‘L Query Answering

COMPUTING MARGINAL BELIEFS

Input: a bucket tree processed by BTE with augmented buckets: Bry..... Br,

output: beliefs of each vanable, bucket, and probability of evidence.

bel(B;) <= a - llsep. f
bel(X;) <= a-Yp._(xyHien, f
Plevidence) <= Y g [iep. f

Figure 5.4: Query answering.

28

‘L Explicit functions

Definition 5.4 Explicit function and explicit sub-model. Given a graphical model M =
(X,D.F,[]), and reasoning tasks defined by marginalization) and given a subset of variables
Y, Y c X, we define My, the explicit function of M over ¥:

My=)]+ (5.4)

We denote by Fy any set of functions whose scopes are subsumed in ¥ over the same domains
and ranges as the functions in F. We say that (¥, Fy) is an explicit submodel of M iff

[17=My 5.5)

feFy

29

Asynchronous BTE:
‘L Bucket-tree Propagation (BTP)

Bucker-TrEE ProracaTiON (BTP)

Input: A problem M = (X.D.F,[].)]), ordering d. X = {X,..... X, } and
F={fi.... /r}, E=e. Anordering d and a corresponding bucket-tree structure,

in which for each node X, its bucket B; and its neighboring buckets are well defined.
Output: Explicit buckets. Assume functions assigned with the evidence.

1. for bucket B; do:
2. for each neighbor bucket B; do,

once all messages from all other neighbors were received, do

compute and send to RJ; the message
[Aisj € 2 etim.py Vi~ Ut Aesi)]

3. Output: augmented buckets By, ..., B’;,, where each B’; contains the

original bucket functions and the A messages it received.

i Properties of BTE

= Theorem (correctness)| 5.5 | Algorithm BTE when applied to a Bayesian
or Markov network is sound. Namely, in each bucket we can exactly
compute the exact joint function of every subset of variables and the
evidence.

= (follows from imapness of trees)

‘Theorem [[5.6 Jcomplexity of BTE) Let w*(d) be the induced width
of G along ordering d, r be the number of functions and k the
maximum domain size. BTE is O(r ‘deg k™W* @D+ time, where deg is
the maximum degree in the bucket-tree. BTE is O(n kY (D,) space

31

i Complexity of BTE/BTP on Trees

Theorem 5.6 Complexity of BTE. Ler w*(d) be the induced width of (G*.d) where G is the
primal graph of M = (X.D.F, [1.20), r be the number of functions in ¥ and k be the maximum
domain size. The time complexity of BT E is O(r - deg - k" ANy wwheredeg is the maximum degree
of a node in the bucket tree. The space complexity of BTE is O(n - ew @)y,

Proposition 5.8 BTE on trees For tree graphical models, algorithms BT'E and BTP are time and

space O(nk?) and O(nk), respectively, when k bound the domain size and n bounds the number of
variables.

This will be extended to acyclic graphical models shortly

i Agenda

From bucket-elimination (BE) to bucket-tree elimination (BTE)
From BTE to CTE, Acyclic networks, the join-tree algorithm
Generating join-trees, the treewidth

Examples of CTE for Bayesian network

Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

Conditioning with elimination (Dechter, 7.1, 7.2)

33

‘_L From Buckets to Clusters

® ﬁ)@j‘/@ ® g ©
([GF) © (GF) [GF |

©
F F F
F,BE D,B.A
B.C A,B
ABC 2B BA
b

34

i From a Bucket-Tree to a Cluster-Tree

Merge none-maximal buckets into maximal clusters.

Connect clusters into a tree: each cluster to one with
which it shares a largest subset of variables.

Separators are the intersection of variables on the
arcs of the tree.

The cluster-tree is an i-map.

35

Cluster Tree propagation (CTP)
= BTP on any cluster-tree. 36

The General Message Passing
On a General Tree-Decomposition (CTP)

(e
-

S

cluster(u) =y (u) u{h(x;,u),h(x,,u),....h(x_,u),h(v,u)}

For max-product

Just replace); :
With s Compute the message :

h,_, new notation h(U,V) - Zelim(u,v)ercluster(u)—{h(v,u)} f
for h(u,v)

elim(u,v) = cluster(u)-sep(u,v)

i Agenda

From bucket-elimination (BE) to bucket-tree elimination (BTE)
From BTE to CTE, Acyclic networks, the join-tree algorithm
Generating join-trees, the treewidth

Examples of CTE for Bayesian network

Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

Conditioning with elimination (Dechter, 7.1, 7.2)

38

i Acyclic Networks

= Dual network: Each scope of a CPT is a hode and each arc is
denoted by intersection.

= Acylic network: when the dual graph is a tree or has a join-
tree

= Acyclic network (alternative characteristic): A network is
acyclic if it has a tree-decomposition where each node has a
single original CPT.

= Tree-clustering converts a network into an acyclic one.

39

Sometime the dual graph seems to not be a tree, but it is in fact, a tree. This is because some
of its arcs are redundant and can be removed while not violating the original independency rela-

tionships that is captured by the graph.

Acyclic Networks

ABC AEF CDE ACE

(e)

(c) (d)

Figure 5.1: (a)Hyper, (b)Primal, (¢)Dual and (d)Join-tree of a graphical model having

scopes ABC, AEF, CDE and ACE. (e) the factor graph
40

i Connectedness and Join-trees

Definition 5.11 Connectedness, join-trees. Given a dual graph of a graphical model M, an

arc subgraph of the dual graph satisfies the connectedness property iff for each two nodes that share
a variable, there is at least one path of labeled arcs of the dual graph such that each contains the

shared variables. An arc subgraph of the dual graph that satisfies the connectedness property is
called a join-graph and if it is a tree, it is called a join-free.

Also called the running intersection property
Definition: A graphical model whose dual graph has a join-tree is acyclic

Theorem: BTE is time and space linear on acyclic graphical models

Tree-decomposition: If we transform a general model into an acyclic one
it can then be solved by a BTE/BTP scheme. Alsp knon as tree-clustering

41

A Dual Graph Having a Join-Tree is Acyclic

A join-graph)

A join-tree

(c) (d)

Figure 5.1: (a)Hyper, (b)Primal, (¢)Dual and (d)Join-tree of a graphical model having

scopes ABC, AEF, CDE and ACE. (e) the factor graph 42

Tree-decompositions

A tree decomposition for a belief network BN =< X,D,G,P >isa
triple<T, y,w >, whereT =(V,E) isa tree and y and y are labeling
functions, associating with each vertex v eV two sets, y(v) — X and
w(v) < P satisfying :
1. For each function p, € P there is exactly one vertex such that
p, € w(v) and scope(p;) < x(v)
2. For each variable X, € X the set{v eV|X, € y(v)}forms a
connected subtree (running intersection property)

Treewidth: maximum number of nodes in a node of Tree-decomposition — 1
Seperator-width: maximum intersection between adjacent nodes
Eliminator: elim(u,v) = x(u) - x(v)

43

‘L Generating Tree-Decomposition

Proposition 6.2.12 IfT is a tree-decomposition, then any tree obtained by merging ad-

jgacent clusters is also a tree-decomposition.

A bucket-tree of a graphical model is a tree-decomposition of the model

44

Examples of Tree-Decompositions
‘_L or Cluster-Trees

® ﬁ)@j‘/@ ® g ©
([GF) © (GF) [GF |

©
F F F
F,BE D,BA
B,C A,B
ABC 2B BA

45

Cluster-Tree Elimination

cLUSTER-TREE ELIMINATION (CTE)

Input: A tree decomposition < T, y, ¥ > fora problem M =< X, D, F,[[.)_} >,
X ={X,....X,,}, F={fi...., f+}. Evidence E = ¢, ¥, = erwu} f
Output: An augmented tree decomposition whose clusters are all model explicit.
Namely, a decomposition < T, y, ¥ > where u € T, ¥ (u) is model explicit relative to y (u).
1. Initialize. (denote by m,_., the message sent from vertex u to vertex v.)
2. Compute messages:
For every node u in T, once u received messages from all neighbors but v,
Process observed variables:
For each node u € T assign relevant evidence to ()
Compute the message:
My—v <— Z){I{u}—.wpl[n.i.lj wh‘ ! Hreneighborl{uj.r?év Mr—u
endfor
Note: functions whose scopes do not contain any separator variable
do not need to be combined and can be directly passed on to the receiving vertex.
3. Return: The explicit tree < T, y, ¥ >, where

‘f’(v) — w(U) UuEm?ighImr{v} {m;-.f—>::!}
return the explicit function: for each v, My) = [1cj) f

46

i Agenda

From bucket-elimination (BE) to bucket-tree elimination (BTE)
From BTE to CTE, Acyclic networks, the join-tree algorithm
Generating join-trees, the treewidth

Examples of CTE for Bayesian network

Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

Conditioning with elimination (Dechter, 7.1, 7.2)

48

Chordal Graphs and Join-Trees

A graph is chordal if every cycle of length at least 4 has a chord

Finding w* of chordal graph is easy using the max-cardinality
ordering

A graph along a max-cardinality order has no fill-in edges iff it is
chordal.

Theorem: The maximal cliques of a chordal have a join-tree.
Namely, there is a tree connecting the maximal cliques such
that connectedness is obeyed.

49

ASSEMBLING A JOIN TREE

. Use the fill-in algorithm to generate a chordal graph G’ (if G is
chordal, G =G").

2. Identify all cliques in G’. Since any vertex and its parent set
(lower ranked nodes connected to it) form a clique in G’, the
maximum number of cliques is | V1.

3. Order the cliques C,, C»,..., C, by rank of the highest vertex in each
clique.

4. Form the join tree by connecting each C; to a predecessor C i G<i)
sharing the highest number of vertices with C;.

ia) (k) e)

EXAMPLE: Consider the graph in Figure 3.9a. One maximum
cardinality ordering is{A, B, C, D, E).

. Every vertex in this ordering has its preceding neighbors already
connected, hence the graph is chordal and no edges need be added.
e The cliques are ranked €, C;, and C as shown in Figure 3.95.

¢ C;={C, E) shares only vertex C with its predecessors C, and €,
so either one can be chosen as the parent of C;,

e These two choices yield the join trees of Figures 3.95 and 3.9¢.

* Now suppose we wish to assemble a join tree for the same graph
with the edge (8, C) missing.

. The ordering (A, B,C,D,E) is still a maximum cardinality
ordering, but now when we discover that the preceeding neighbors
of node D (i.e., 8 and C) are nonadjacent, we should fill in edge
(&, C).

. This renders the graph chordal, and the rest of the procedure yields
the same join trees as in Figures 3.9b and 3.9¢.

Join-Tree Clustering

Join-TREE cLUsTERING (JTC)

Input: A graphical model M = (X,D.F.[][), X = {X1..... Xp}, F = { fi. ..., f+}.
Its scopes S = Sj..... 8, and its primal graph is G = (X, E).
Output: A join-tree decomposition < T, y. ¥ > for M
1. Select a variable ordering, d = (X1, ..., Xp).
2. Triangulation (create the induced graph along d and call it G*):
for j =nto1lby-1do
E<~EU{i,k))i<j k<j, (i,j)eE, (k.j)e E}
3. Create a join-tree of the induced graph (G*, d) as follows:
a. Identify all maximal cliques in the chordal graph.
Let C = {C;. ..., C;} be all such cliques, where C; is the cluster of bucket i.
b. Create a tree T' of cliques:
Connect each C; toa C; (j < i) with whom it shares largest subset of variables.
4. Create v;: Partition input function in cluster-node whose variables contain its scope.
5. Return a tree-decomposition < T, y. ¥ >, where T is generated in step 3,
x(i) = C; and ¥ (7) is determined in step 4.

Figure 5.12: Join-tree clustering.

Examples of Generating Join-Trees

Examples of Generating Join-Trees

e o3 0) by

Tree-clustering and message-passing

A
Wi for} G.F)
W{fAB'fAC‘fBD}
yf{fBF"fCF} B C
DG BC‘[D WiSap-Suct QB.C AN
i D) FJ
W{fFG} Wifar-Jrc-Sunt
Vi fan-fin) G)
Two join-trees -~
(a) (b) J

‘(;11 w2 (F) =2 plfar) .
7 g (F) = S p (e - for -mass) Message-passing by CTE on

The tree in (b)

ma3(B,C) = > pgeolfor - for -misz)
w2 (B,C) = > peolfan - fac mass)

‘/ (A B)=3,5(fas - fac-maa)

ma3(A, B) =3 4g(fep - fap)

56

Properties of CTE

= Correctness and completeness: Algorithm CTE is correct, i.e. it
co_rgputes the exact joint probability of a single variable and the
evidence.

= Time complexity:
« O(deg x (n+N) xdw+1)

= Space complexity: O (N xd=*®)
where deg = the maximum degree of a node
n = number of variables (= number of CPTs)
N = number of nodes in the tree decomposition
d = the maximum domain size of a variable
w* = the induced width, treewidth
sep = the separator size

i Agenda

From bucket-elimination (BE) to bucket-tree elimination (BTE)
From BTE to CTE, Acyclic networks, the join-tree algorithm
Generating join-trees, the treewidth

Examples of CTE for Bayesian network

Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

Conditioning with elimination (Dechter, 7.1, 7.2)

58

iTree Decomposition for Belief Updating

p@)

p(c|a,b)

60

Tree Decomposition for belief updating

it

p@)

p(c|a,b)

|

ABC
p(a), p(bla), p(cla,b)

|

BC

BCDF
p(d[b), p(fic,d)

|

BF

BEF
p(elb.f)

EF

EFG
p(gle,f)

61

CTE: Cluster Tree Elimination

1| ABC

| hay®.0)= p(a)-p(bla)- p(cla,b)
BC
h(2,1) (b,c) :Z p(d|b)- p(f |C’d)'h(3,2) (b,)
2| BCDF
h(2,3) (b, f)= Z p(d|b)- p(f |C’d)'h(1,2) (b,c)
BF)
h(3,2) (b, f)= Z p(e|b, f)'h(4,3) (e, f)
3| BEF
hisa (e) :Z p(e|b, f)-h,4 (b,)
EF b

has(e f)=p(G=g.le f)
] 4| EFG
Time: O (exp(w+1))

Space: O (exp(sep)) For each cluster P(X|e) is computed, also P(e) e2

XM =1{4.B.C}
w()=1{p(a).pb|a). p(c|a.b)}

X(2)={B.C.D.F}
w(2)=1p(d|b). p(f |c.d}

X(3)={B.E.F}
w3 ={ple|b./)}

¥#)={E.F.G}
w(®={p(gle.f)}

(®)

Figure 6.12: [Execution of CTE-BU]: a) A belief network; b) A join-tree decomposition;
c)Execution of CTE-BU; no individual functions appear in this case (d) the explicit tree-

decomposition

63

XM =1{4.B.C}
w()=1{p(a).pb|a). p(c|a.b)}

X(2)={B.C.D.F}
w(2)=1p(d|b). p(f |c.d}

X(3)={B.E.F}
w3 ={ple|b./)}

¥#)={E.F.G}
w(®={p(gle.f)}

(®)

1 ABC
hia(b,¢) =) _p(a) - p(bla) - p(cla,b)

ho i = Zp(cﬂb) -p(fle.d) - hasa(b, f)

2 E?DF
ha_a(b, f) = Zp (d|b) - p(fle.d) - hasa(b.c
hasa(b, f) = Zp (elb, f) - hasa(e, f)
3| BEF
hasale. f) = Zp(ew)~ hasa(b, f)

hya(e, f) = p(G‘ gele, f)
4| EFG

Figure 6.12: [Execution of CTE-BU]: a) A belief network; b) A join-tree decomposition;
c)Execution of CTE-BU; no individual functions appear in this case (d) the explicit tree-

decomposition

64

(T) 20=148.0)
L)= (p). p®). plcla.b)}

[2> ¥(2)={B.C.D.F}
W w(2)={p(d|b).p(f |c.d}

,/é X(3)={B.E.F}
\2J w3 ={ple|b./)}

1 X#)={E.F.G}
2 y@={p(gle.N)}

(®)

(Y x(1) = {4, B.C}
1 _ABC \LJ %eep(1) = p(a).p(bla). p(cla.b)}
hisa(b.c) =Y pla) - p(bla) - p(cla.b)

hoss =Zp(dlb)‘p(f|c‘. d)-haso(b.) N o) _(p.cD.F
(2) $e@ = (pldlb), pFle,), s 12 a2
ha_a(b, f) = Zp dJb) - p(fle,d) - hasa(b,c)

hasa(b, f) = Zp elb, f) - hassle, f 7N x(3) = {B,E,F}
Veap(3) = {p(elb. f), hasa, ha 3}

hasa(e, f) =Y plelb, f) - hasa(b, f)

mEI
CiaEtis=tl=
(o

EF b |
hisa(e, f) = p(G = gele, f) (0 xl4) ={E.F,G}
+[EFG &) Yeep(4) = {plle.)

(c) (d)

Figure 6.12: [Execution of CTE-BU]: a) A belief network; b) A join-tree decomposition;
c)Execution of CTE-BU; no individual functions appear in this case (d) the explicit tree-

decomposition

65

i Agenda

From bucket-elimination (BE) to bucket-tree elimination (BTE)
From BTE to CTE, Acyclic networks, the join-tree algorithm
Generating join-trees, the treewidth

Examples of CTE for Bayesian network

Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

Conditioning with elimination (Dechter, 7.1, 7.2)

67

i Polytrees and Acyclic Networks

= Polytree: a BN whose undirected skeleton is a tree

= Acyclic network: A network is acyclic if it has a tree-
decomposition where each node has a single original CPT.

= A polytree is an acyclic model.

(a))]

Figure 4.18. (a) A fragment of a polytree and (b) the parents and chil-
dren of a typical node X.

68

PonTrees and Acyclic-Networks:

Two acyclic Bayesian Networks

P(E) \
P(B) P(E) PBIE)
P(A|B,E) P(A|B,E)
P(R|E) P(C|A) P(R|E,A)

P(CIAR)

69

Polytrees: Pearl’s Belief Propagation

| BTE = Belief Propagation is Easy on

A polytree: a tree with 2, (u,) = -
Larger families _— l |,122) l 2z, (U5)
A polytree decomposition T /
) |
Qo

Running BTE = running Pearl’s BP over the dual graph

BP is Time and space linear

70

‘L Pearl’s Belief Propagation

From Exact to Approximate:
[terative Belief Propagation

= Belief propagation is exact for poly-trees
= IBP - applying BP iteratively to cyclic networks

One step :
update

BEL(U,)
PITON

= No guarantees for convergence
= Works well for many coding networks

72

Iterative Belief Propagation

Algorithm IBFP
Imput: An arc-labeled dual join-graph DJ = (V.E.L) for a graphical model A =<

X, D, F] =
Output: An augmented graph whose nodes include the original functions and the messages
received from nelghbors. Denote byv: hf the message from u to v; nelu) the neighbors of u In
Viney(u) = nefu) — {v}; Ly the label of (uw,v) € E; elim{u, v) = scope(u) — scope(v).
¢ One iteration of IBFP
For every node u in [)J in a topological order and back, do:
1. Process observed variables
Assign evidence variables to the each p; and remove them from the labeled ares.
2. Compute and send to v the function:

b= e [B

eldm v {hi dcneo(u)}

Endfor
¢ Compute approximations of P(Fy|e), PiX;|e):
For every X; € X let u be the vertex of family F; in D.J,
PLF:!-"F:I = 'ﬂ'l;l_[h,"-uEﬂe[:!-j- hl‘a‘ “Pus
PiX;le) = Eseope-j-n]—-{.‘:g} P(F;le).

75

i Agenda

From bucket-elimination (BE) to bucket-tree elimination (BTE)
From BTE to CTE, Acyclic networks, the join-tree algorithm
Generating join-trees, the treewidth

Examples of CTE for Bayesian network

Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

Conditioning with elimination (Dechter, 7.1, 7.2)

76

i The idea of cutset-conditioning

Figure 7.1: An instantiated variable cuts its own cycles.

77

A~
A0
o
Sprinkler @\1\ C) Rain
/
N
Watering CDj CF‘) Weiness

© sipery

(a)} Directed acyclic graph (b) Moral graph

The impact of observations

(a) (b) (c)

Figure 4.9: Adjusted induced graph relative to observing B.

Ordered graph Induced graph Ordered conditioned graph 7

i The Idea of Cutset-Conditioning

We observed that when variables are assigned, connectivity reduces.
The magnitude of saving is reflected through the “conditioned-induced graph”

Cutset-conditioning exploit this in a systematic way:
Select a subset of variables, assign them values, and
Solve the conditioned problem by BE.

Repeat for all assignments to the cutset.

Algorithm VEC

79

Conditioning+Elimination

P(a,e=0)=P(a)) P(b|a)> P(cla)d P(d|a,b)D> P(e|b,c)

A B C D E
AN Piblay Pcla) Pidla,b) Pielb,c)

Piae=0 b=0,c=0)

sam Piae=0b=0)
O P
piema) _Pd_______-——-”_# I’{af_:l.'ll b=},c=0)
pl0la Piim) ——
il 1l
S i [) Pia.e=0Mb=1)
E’Mm _______———__________
(e

Idea: conditioning until W™ of a (sub)problem gets small

83

‘L Loop-Cutset Conditioning

= You condition until you get a polytree

iy

P(B|F=0) = P(B, A=0|F=0)+P(B,A=1|F=0)

Loop-cutset method is time exp in loop-cutset size
and linear space. For each cutset we can do BP

84

‘L Cycle-Cutset Conditioning

& ® (W) &) (W O
& ©) () & ©) (]
At e L Bl o
(] (@) = ©) @)
Il adl
Cycle cutset = {A,B,C} ‘B

1-cutset = {A,B,C}, size 3

‘L g-Cutset, Minimal

Definition 7.3 g-cutset, minimal. Given a graph G, a subset of nodes is called a g-cufset for
an integer g iff when removed, the resulting graph has an induced-width less than or equal to g.
A minimal g-cutset of a graph has a smallest size among all g-cutsets of the graph. A cycle-cutset
is a 1-cutset of a graph.

Finding a minimal g-cutset is clearly a hard task [A. Becker and Geiger, 1999; Bar-Yehuda
et al., 1998; Becker ef al., 2000; Bidyuk and Dechter, 2004]. However, like in the special case ofa

cycle-cutset we can settle for a non-minimal g-cutset relative to a given variable ordering. Namely,

Example 7.4 Consider as another example the contsaint graph of a graph coloring problem
given in Figure 7.3a. The search space over a 2-cutset, and the induced-graph of the conditioned
instances are depicted in 7.3b.

Loop-Cutset, g-Cutset, cycle-

i cutset

= A loop-cutset is a subset of nodes of a
directed graph that when removed the
remaining graph is a poly-tree

= A g-cutset is a subset of nodes of an
undirected graph that when removed
the remaining graph is has an induced-
width of g or less.

= A cycle-cutset is a g-cutset such that
g=1. -

Search Over the Cutset (cont)

Graph e Inference may require too much memory

Coloring

problem e Condition on some of the variables

2-cutset = {A,B}, size =2

VEC: Variable Elimination with Conditioning;
or, g-cutset Igorithms

+

s VEC-bel:
= Identify a g-cutset, C, of the network

= For each assignment to C=c solve by CTE or
BE the conditioned sub-problem.

= Accumulate probability.
= Time complexity: nkc+a+1
= Space complexity: nk4

89

¢ Algorithm VEC (Variable-elimination with conditioning)

ALGORITHM V EC-EVIDENCE
Input: A belief network B =< AX.D.G.P >, an ordering d =
(x1.....1,) : evidence e over E, a subset C' of conditioned vari-
ables:
output: The probability of evidence P(e)
Initialize: A = 0.
1. For every assignment ' = ¢, do
e \; + The output of BE-bel with ¢ U e as observations.
e \ — A+ Ai. (update the sum).

(R

. Return P(e) = a - A (a is a normalization constant.)

+

VEC and ALT-VEC:
Alternate conditioning and Elimination

= VEC (g-cutset-conditioining) can also
alternate search and elimination,
yielding ALT-VEC.

= A time-space tradeoff

92

Search Basic Step:
‘L Conditioning

beid

93

Search Basic Step:
‘L Conditioning

a variable @ @

94

Search Basic Step:
‘L Conditioning

X« a X« C
X< Db

95

Search Basic Step:
Variable Branching by Conditioning
@ @ General principle:
S Condition until tractable
@ Then solve sub-problems
@ @ efficiently

X« a X« C
X< Db

96

i

Search Basic Step:
Variable Branching by Conditioning

@‘ Example: solve subproblem
@ e by inference, BE(i1=2)

97

The Cycle-Cutset Scheme:
Condition Until Treeness

* Cycle-cutset
* |-cutset

» C(i)-size of i-cutset

(a) (b) (c)

Space: exp(i), Time: O(exp(i+c(i))

98

i Eliminate First

v

99

i Eliminate First

v

100

‘L Eliminate First

Solve the rest of the problem
by any means

101

i Hybrids Variants

= Condition, condition, condition ... and then
only eliminate (w-cutset, cycle-cutset)

= Eliminate, eliminate, eliminate ... and then
only search

= [nterleave conditioning and elimination (elim-
cond(i), VE+C)

102

Interleaving Conditioning and Elimination
(Larrosa & Dechter, CP'02)

103

i Interleaving Conditioning and Elimination

h/

104

i Interleaving Conditioning and Elimination

h/

105

i Interleaving Conditioning and Elimination

h/

106

i Interleaving Conditioning and Elimination

h/

107

i Interleaving Conditioning and Elimination

h/

108

i Interleaving Conditioning and Elimination

S Ar Ahe

109

i What hybrid should we use?

= =17 (loop-cutset?)

= 4=07 (Full search?)

= d=w* (Full inference)?
= g in between?

= depends... on the graph

= What is relation between cycle-cutset
and the induced-width?

111

Properties of
‘L Conditioning+Elimination

Definition 5.6.1 (cycle-cutset.,w-cutset) Given a graph G. a subset of nodes is called
a w-cutset iff when removed from the graph the resulting graph has an induced-width less
than or equal to w. A minimal w-cutset of a graph has a smallest size among all w-cutsets

of the graph. A cycle-cutset is a 1-cutset of a graph.

A cycle-cutset 1s known by the name a feedback vertex set and 1t 18 known that finding
the mimimal such set 18 NP-complete [41]. However, we can always settle for approx-

mmations, provided by greedy schemes. Cutset-decomposition schemes call for a new

optimization task on graphs:

Definition 5.6.2 (finding a minimal w-cutset) Given a graph G = (V. E) and a con-
stant w, find a smallest subset of nodes U, such that when removed, the resulting graph

has induced-width less than or equal w.

112

Tradeoff between w* and g-cutstes

Theorem 7.7 Given graph G, and denoting by ::: tts minimal g-cutset then,

l+eiz24c =2 g+, .. 2w +cg. =w

Proof. Let’s assume that we have a q-cutset of size ¢;. Then if we remove it from the graph the
result is a graph having a tree decomposition whose treewidth is bounded by ¢. Lets T be this
decomposition where each cluter has size g 4 | or less. It we now take the g-cutset variables and
add them back to every cluster of T, we will get a tree decomposition of the whole graph (exercise:
show that) whose treewidth is ¢4 + ¢. Therefore, we showed that for every c4-size g-cutset, there
is a tree decomposition whose treewidth is ¢z 4 ¢. In particular, for an optimal g-cutset of size ¢

we have that w#, the treewidth obeys, w* < ¢7 + ¢. This does not complete the proof because we
only showed that for every ¢, w* < ¢z + g. But, if we remove even a single node from a minimal

g-cutset whose size is ::.‘; , we get a ¢ + 1 cutset by definition, whose size is {‘; — 1. Theretore,

Cq+1 = ¢4 — 1. Adding ¢ to both sides of the last inequality we get that for every 1 = ¢ = w*,

q+r:;:_=~q+l—|—r*

2+1° which completes the proof. O 13

