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Bucket elimination 
Algorithm BE-bel  (Dechter 1996)
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Finding
Algorithm BE-mpe (Dechter 1996)
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Generating the MPE-tuple
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Probabilistic Inference Tasks
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Markov Networks

Dechter, chapter 2

Everything is applicable to Markov networks as well



General Graphical Models

7



General Bucket Elimination
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1998 roadmap



Agenda

 From bucket-elimination (BE) to bucket-tree elimination (BTE)

 From BTE to CTE, Acyclic networks, the join-tree algorithm

 Generating join-trees, the treewidth

 Examples of CTE for Bayesian network

 Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks

 Conditioning with elimination (Dechter, 7.1, 7.2)
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A Bayesian Network
Processed by BE

11Complexity exponential in 𝑤∗ 𝑑

Two orderings for BE



From Bucket Elimination to Bucket-Tree 
Elimination

D

G
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B C
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Observation 1: BE is  a message propagation down a bucket-tree



From Bucket Elimination to Bucket-Tree 
Elimination
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From Bucket Elimination to Bucket-
Tree Elimination (BTE)

D

G

A

B C

FWhat if we want the marginal on D?
Imagine combining B and A, D
d = ({A,D,B},C,F,G)



Idea of BTE

This example generalize: We can compute the belief in each variable by a
second message-passing along the bucket-tree.



Idea of BTE
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BTE: Allows Messages Both Ways

D

G

A

B C

F
Initial buckets
+ messages



BTE: Allows Messages Both Ways
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A Bucket-Tree of a Bayesian Network

 The bucket-tree: 

 Nodes are the buckets. Each has functions (assigned 
initially) and variables: itself+ induced-parents

 There is an arc from 𝐵𝑖 to 𝐵𝑗 iff the function 

created at bucket 𝐵𝑖 is placed at bucket 𝐵𝑗

 We have a separator and eliminator between two 
adjacent buckets



Bucket-Tree Construction From the Graph

1. Pick a (good) variable ordering, d.

2. Generate the induced ordered graph

3. From top to bottom, each bucket of X is 
mapped to (variables,functions) pairs

4. The variables are the clique of X, the 
functions are those placed in the bucket

5. Connect the bucket of X to earlier bucket of 
Y if Y is the closest node connected to X



BTE

Theorem: When BTE 
terminates The product of 
functions in each bucket is the 
beliefs of the variables joint 
with the evidence.



Query Answering

28



Explicit functions
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Asynchronous BTE:
Bucket-tree Propagation (BTP)



Properties of BTE

 Theorem (correctness) 6.1.4 Algorithm BTE when applied to a Bayesian 
or Markov network is sound. Namely, in each bucket we can exactly 
compute the exact joint function of every subset of variables and the 
evidence.

 (follows from imapness of trees)

31

•Theorem 6.1.5 (complexity of BTE) Let w*(d) be the induced width 
of G along ordering d, r be the number of functions and k the 
maximum domain size. BTE is O(r ·deg ·𝑘(𝑤∗(𝑑)+1)) 𝑡𝑖𝑚𝑒, where deg is 

the maximum degree in the bucket-tree. BTE is O(n  𝑘𝑤
∗(𝑑).)  space

5.5

5.6



Complexity of BTE/BTP on Trees

This will be extended to acyclic graphical models shortly



Agenda

 From bucket-elimination (BE) to bucket-tree elimination (BTE)

 From BTE to CTE, Acyclic networks, the join-tree algorithm

 Generating join-trees, the treewidth

 Examples of CTE for Bayesian network

 Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks

 Conditioning with elimination (Dechter, 7.1, 7.2)
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From Buckets to Clusters

34

F

B,C A,B

A,B

G,F

A,B,C

D,B,A

B,A

A

F,B,C

(A)

F

G,F

A,B,C,D,F

(C)

D

G

A

B C

F

F

B,C

G,F

A,B,C

D,B,AF,B,C

(B) Allows time and 
space tradeoff



From a Bucket-Tree to a Cluster-Tree

 Merge none-maximal buckets into maximal clusters.

 Connect  clusters into a tree: each cluster to one with 
which it shares a largest subset of variables.

 Separators are the intersection of variables on the 
arcs of the tree.

 The cluster-tree is an i-map.
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Examples
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Cluster Tree propagation (CTP)
= BTP on any cluster-tree.



The General Message Passing
On a General Tree-Decomposition (CTP)
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Agenda

 From bucket-elimination (BE) to bucket-tree elimination (BTE)

 From BTE to CTE, Acyclic networks, the join-tree algorithm

 Generating join-trees, the treewidth

 Examples of CTE for Bayesian network

 Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks

 Conditioning with elimination (Dechter, 7.1, 7.2)
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Acyclic Networks 

 Dual network: Each scope of a CPT is a node and each arc is 
denoted by intersection.

 Acylic network: when the dual graph is a tree or has a join-
tree

 Acyclic network (alternative characteristic): A network is 
acyclic if it has a tree-decomposition where each node has a 
single original CPT.

 Tree-clustering converts a network into an acyclic one.
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Acyclic Networks
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Connectedness and Join-trees

41

Definition: A graphical model whose dual graph has a join-tree is acyclic

Theorem: BTE is time and space linear on acyclic graphical models

Tree-decomposition: If we transform a general model into an acyclic one 
it can then be solved by a BTE/BTP scheme. Alsp knon as tree-clustering

Also called the running intersection property
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A Dual Graph Having a Join-Tree is Acyclic

A join-graph

A join-tree



Tree-decompositions
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Generating Tree-Decomposition
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A bucket-tree of a graphical model is a tree-decomposition of the model



Examples of Tree-Decompositions
or Cluster-Trees
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Cluster-Tree Elimination
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Agenda

 From bucket-elimination (BE) to bucket-tree elimination (BTE)

 From BTE to CTE, Acyclic networks, the join-tree algorithm

 Generating join-trees, the treewidth

 Examples of CTE for Bayesian network

 Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks

 Conditioning with elimination (Dechter, 7.1, 7.2)
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Chordal Graphs and Join-Trees

 A graph is chordal if every cycle of length at least 4 has a chord

 Finding w* of chordal graph is easy using the max-cardinality 
ordering

 A graph along a max-cardinality order has no fill-in edges iff it is 
chordal. 

 Theorem: The maximal cliques of a chordal have a join-tree. 
Namely, there is a tree connecting the maximal cliques such 
that connectedness is obeyed.







Join-Tree Clustering

53



Examples of Generating Join-Trees



Examples of Generating Join-Trees



Tree-clustering and message-passing

56

Two join-trees

Message-passing by CTE on
The tree in (b)



Properties of CTE

 Correctness and completeness: Algorithm CTE is correct, i.e. it 
computes the exact joint probability of a single variable and the 
evidence.

 Time complexity: 
 O ( deg  (n+N)  d w*+1 )

 Space complexity: O ( N  d sep)
where deg = the maximum degree of a node

n = number of variables (= number of CPTs)
N = number of nodes in the tree decomposition
d = the maximum domain size of a variable
w* = the induced width, treewidth
sep = the separator size



Agenda

 From bucket-elimination (BE) to bucket-tree elimination (BTE)

 From BTE to CTE, Acyclic networks, the join-tree algorithm

 Generating join-trees, the treewidth

 Examples of CTE for Bayesian network

 Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks

 Conditioning with elimination (Dechter, 7.1, 7.2)
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CTE: Cluster Tree Elimination
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Example
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Example

64



Example
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Agenda

 From bucket-elimination (BE) to bucket-tree elimination (BTE)

 From BTE to CTE, Acyclic networks, the join-tree algorithm

 Generating join-trees, the treewidth

 Examples of CTE for Bayesian network

 Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks

 Conditioning with elimination (Dechter, 7.1, 7.2)
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Polytrees and Acyclic Networks 

 Polytree: a BN whose undirected skeleton is a tree

 Acyclic network: A network is acyclic if it has a tree-
decomposition where each node has a single original CPT.

 A polytree is an acyclic model.
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PolyTrees and Acyclic-Networks:

P(E)
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BTE = Belief Propagation is Easy on 
Polytrees: Pearl’s  Belief Propagation
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Running BTE = running Pearl’s BP over the dual graph

BP is Time and space linear 



Pearl’s Belief Propagation
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From Exact to Approximate:
Iterative Belief Propagation

 Belief propagation is exact for poly-trees

 IBP - applying BP iteratively to cyclic networks

 No guarantees for convergence

 Works well for many coding networks

72
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Iterative Belief Propagation



Agenda

 From bucket-elimination (BE) to bucket-tree elimination (BTE)

 From BTE to CTE, Acyclic networks, the join-tree algorithm

 Generating join-trees, the treewidth

 Examples of CTE for Bayesian network

 Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks

 Conditioning with elimination (Dechter, 7.1, 7.2)
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The idea of cutset-conditioning

77



78

The impact of observations

Induced graphOrdered graph Ordered conditioned graph



The Idea of Cutset-Conditioning

79

We observed  that when variables are assigned, connectivity reduces.
The magnitude of saving is reflected through the “conditioned-induced graph”

• Cutset-conditioning exploit this in a systematic way: 
• Select a subset of variables, assign them values, and 
• Solve the conditioned problem by BE. 
• Repeat for all assignments to the cutset.

Algorithm VEC



Conditioning+Elimination
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Loop-Cutset Conditioning

 You condition until you get a polytree

84
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Loop-cutset method is time exp in loop-cutset size
and linear space. For each cutset we can do BP



Cycle-Cutset Conditioning
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q-Cutset, Minimal
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Loop-Cutset, q-Cutset, cycle-
cutset

 A loop-cutset is a subset of nodes of a 
directed graph that when removed the 
remaining graph is a poly-tree

 A q-cutset is a subset of nodes of an 
undirected graph that when removed 
the remaining graph is has an induced-
width of q or less.

 A cycle-cutset is a q-cutset such that 
q=1. 87



Search Over the Cutset (cont)
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• Condition on some of the variables
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2-cutset = {A,B}, size =2



VEC: Variable Elimination with Conditioning;
or, q-cutset lgorithms

 VEC-bel:

 Identify a q-cutset, C,  of the network

 For each assignment to C=c solve by CTE or 
BE  the conditioned sub-problem.

 Accumulate probability.

 Time complexity: 𝑛𝑘𝑐+𝑞+1

 Space complexity: 𝑛𝑘𝑞
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Algorithm VEC (Variable-elimination with conditioning)
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VEC and ALT-VEC:
Alternate conditioning and Elimination

 VEC (q-cutset-conditioining) can also 
alternate search and elimination, 
yielding ALT-VEC.

 A time-space tradeoff

92



Search Basic Step: 
Conditioning

93
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Search Basic Step: 
Conditioning

94

X1

X3

X5X4

X2
• Select a variable



Search Basic Step: 
Conditioning
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Search Basic Step: 
Variable Branching by Conditioning
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General principle:

Condition until tractable

Then solve sub-problems

efficiently



Search Basic Step: 
Variable Branching by Conditioning
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Example: solve subproblem 

by inference, BE(i=2)



The Cycle-Cutset Scheme:
Condition Until Treeness
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• Cycle-cutset

• i-cutset

• C(i)-size of i-cutset

Space: exp(i), Time: O(exp(i+c(i))



Eliminate First
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Eliminate First
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Eliminate First
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Solve the rest of the problem

by any means



Hybrids Variants

 Condition, condition, condition … and then 
only eliminate (w-cutset, cycle-cutset)

 Eliminate, eliminate, eliminate … and then 
only search

 Interleave conditioning and elimination (elim-
cond(i), VE+C)
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Interleaving Conditioning and Elimination
(Larrosa & Dechter, CP’02)
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination
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...

...



What hybrid should we use?

 q=1? (loop-cutset?)

 q=0? (Full search?)

 q=w* (Full inference)?

 q in between?

 depends… on the graph

 What is relation between cycle-cutset
and the induced-width?
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Properties of 
Conditioning+Elimination
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Tradeoff between w* and q-cutstes
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