Exact Inference Algorithms

| Bucket-elimination

COMPSCI 276, Spring 2017
Class 5: Rina Dechter

(Reading: Dechter chapters 4 , Darwiche chapter 6, Dechter Section 3.4) 1

* Belief Updating

P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

A Bayesian Network

-

L@
f,,: L"T.q]rinlrcl\e1'?.'\\I
B
—
.
S

A

true
true
false
false

C

true
false
true
false

a s
/Wet Grass?™,

. (D) B f,,r" /Sllppe

O¢la

O = by

o

S

,r’f Eain? \.

'KR_ (Cj ,/I

.-"'Fl""'.

-

-

-

-

..\'i-

\

4

ry Road? ™

A

. B
E C D e D|BC
true true true .05
true true false .05
true false true .9
true false false 1
false true true .8
false true false 2
false false true 0
false false false 1

A

true
true
false
false

true
true
false
false

B

true
false
true
false

true
false
true
false

.8
.75
.25

Ok |c

[T

Queries
|

1. Posterior marginals, or belief updating. For every X; not in E the belief is defined by
bel(X;) = Pg(Xjle).

P(Xile) = Z]'[P(xj-mpaj.e}

X—X; J
2. The probability of evidence is Pg(E = ¢). Formally,

Ps(E =e) =Y []P(X|Xpa;.€)
;

X

3. The most probable explanation (mpe) is an assignment x? = (x?,, ..., x?,) satistying

x? = argmaxxPs = argmaxx]_[P(X;|Xpa;.€).
;

The mpe value is Pg(x”), sometime also called MAP.

4. Maximum a posteriori hypothesis (marginal map). Given a set of hypothesized variables
A=1{A,.....A;}, A CX, the map task is to find an assignment a% = (a?,.....a%) such
that

a’ = argmaxy Z PiX|e) =argmaxy Z 1_[P(Xi|Xpa;.e€)
X—A X-A

i Belief Updating is NP-hard

= Each SAT formula can be mapped into a
belief updating query in a Bayesian network

= Example (GUV-Wvy)A(Uv-vvw)

‘L A Simple Network

= How can we compute P(D)?, P(D|A=0)? P(A|D=0)?
= Brute force O(k*)
= Maybe O(4k?)

Elimination as a Basis for Inference

r/ N\ 7N J \,l
@/’ \{3_'/ CC/

A
A S true
true .6 true
false .4 false
false

To compute the prior marginal on variable C, Pr(C)

B

true
false
true
false

©OpB|a
.9

1
2
8

B

true
true
false
false

we first eliminate variable A and then variable B

C

true
false
true
false

Elimination as a Basis for Inference

@ There are two factors that mention variable A, ©4 and ©g|4

@ We multiply these factors first and then sum out variable A
from the resulting factor.

e Multiplying ©4 and Opga:

A B ©a0Opga
true true | .54
true false | .06
false true | .08
false false | .32

@ Summing out variable A:
B 3,0940p4
true .62 = .54 + .08
false .38 = .06 + .32

Elimination as a Basis for Inference

e We now have two factors,) , ©4©Op|a and O¢ g, and we
want to eliminate variable B

@ Since B appears in both factors, we must multiply them first

and then sum out B from the result.
o Multiplying:
B C ©qs> 04084
true true .186
true false .434

false true .190
false false .190

@ Summing out:
C >.59ciBY 4 ©aCpa
true | .376
false | .624

iBelief Updating: P(X|evidence)=?

P(ale=0) P(ae=0)=

Z P(a)PH(bE)P(Cla)P(dlb a)P(elb c)—

- T~

Moral” graph P(a)ZLZP(cla)ZP(bIa)P(dIb a)P(elb,c)
'\‘&\/\ ~ 4

Variable Elimination h®(a,d,c,e)

11

22

Z H <— Elimination operator

b A

bucket B: P(bla) P(db,a) P(e[b,c)
/
bucket C: P(cla) h®(a,d, c e)
\/ Y
bucket D: a,d, e)
bucket E: e=0 °(a,e)
\/ W*=4 l
bucket A: P(a) " (a) "induced ;vidth”
\ ./) (max clique size)
12

\gorithm BE-bel (Dechter 1996)

*Bucket Elimination

P(ale

\)Seasm
Sprinkler O\\ b Rain

A Bayesian Network =@ @
Orderlng: A,C,B,E,D,G @Slippew

(a) Directed acyclic graph

Pla,g=1) = Z Pla.b,c.d. e, g) P(g|f)P(f|b.c)P(d|a,b)P(c|la)P(b|a)

cbedg=1 cb, fd.g=1

Pla,g=1)=P(a)_ Plela)y_ P(la) Y P(flb.c) > P(dlb.a) " Plglf). (4.1
c b f d g=1
P(a,g=1)=P(a)Y_P(cla)d_ P(bla) Y P(flb.c)Aa(f) D P(d|b.a). (4.2)
o i) f d
Pla,g=1) = P(a) Y _P(cla)) " P(bla)Ap(a,b) Y P(f[b,c)ra(f) (4.3)
e b f

Pla.g=1)= ZP‘ cla) ZP(3?| JAp(a,b)Ap(b, c) (4.4)

P(a,g = 1) = P(a) Z P(cla)Ag(a, c) (4.5)

(b) Moral graph

P(a).

13

\)Seasm
Sprinkler O\\ b Rain

A Bayesian Network =@ @
Orderlng: A,C,B,E,D,G @Slippew

(a) Directed acyclic graph

Pla,g=1) = Z Pla.b,c.d. e, g) P(g|f)P(f|b.c)P(d|a,b)P(c|la)P(b|a)

cbedg=1 cb, fd.g=1

Pla,g=1)=P(a)_ Plela)y_ P(la) Y P(flb.c) > P(dlb.a) " Plglf). (4.1
c b f d g=1
P(a,g=1)=P(a)Y_P(cla)d_ P(bla) Y P(flb.c)Aa(f) D P(d|b.a). (4.2)
o i) f d
Pla,g=1) = P(a) Y _P(cla)) " P(bla)Ap(a,b) Y P(f[b,c)ra(f) (4.3)
e b f

Pla.g=1)= ZP‘ cla) ZP(3?| JAp(a,b)Ap(b, c) (4.4)

P(a,g = 1) = P(a) Z P(cla)Ag(a, c) (4.5)

(b) Moral graph

P(a).

14

A Bayesian Network
rdering: A,C,B,F,D,G

/_Z/:L QSeasm
Bucket G: P(GIF) G=1 _— O\ \O -
Bucket D: P(DIB.A Watering | D 6 6 Wetness
@ Slippery
Bucket F: P(FIB,C)_ A(F) () Directed acyclic graph (b) Moral graph

Bucket B: P(BIA) A,(BA) A/(B,C)
Bucket C: P(CIA) A4 AC)

Bucket A: P(A) AAA)

P(G=1)

15

A

ifferent Ordering

©

(b) Moral graph

(a) Directed acyclic graph

I-E

(a,g=1)=Pla) > ;> 42 . Plcla) >, P(bla) P(d|a,b)P(f|b,c) >, P(g|f)
a)d s Ac(f) 2q2.. Plela) X2y P(bla) P(d|a,b)P(flb.c)
ﬂ) Z_f *}"G‘(f} Ed Zc P{CM)J‘B[QJ d'- c, f}

Py
Py
P
P
Py

a) Z; Ag(f) 2 qAcla,d, f)
a)dAc(f)Apla, f)
a)Ap(a)

>0

Bucket G: P(GIF) G=1

Bucket B: P(FIB.C) P(DIBA) P(BIA)
Bucket C: P(CIA) AMAD.CF)
BucketD: AS(AD.F)
Bucket F: AP(AF) AS(F)

Bucket A: P(A) AT(A)

P(G=1)
(a)

Figure 4.3: The bucket’s output when processing along dy = A, F. D, C. B, G 16

QSeason

s;.m.e,o\ bm
ADifferent Ordering =~

(a) Directed acyclic graph (b) Moral graph

Pla,g=1)=Pla)>_;>.42.. Plcla) 3., P(bla) P(d|a,b)P(f|b,c) >_,_, Plg|f)
= Pla))_;Ac(f) 22q2 . Plcla) 2, P(bla) P(d|a,b)P(f|b,c)
= Pla)2_p Ac(f) 2q2_. Plcla)Ap(a,d.c, f)

= Pla))>_; A(f) 2ogAc(a.d. f)

= P(a) 3> ; Ac(f)Anla, f) =t

= P(a)A

(:l Bucket G: P(GIF)_G=1—__

— G’)
Bucket B: P(FIB,.C) P(DIB.A) D /K_
| / (B)
|'|l \
Bucket C: P(CIA) A%(AD,C.F) f
N
‘ C N
. \.Ja' \
Voo
| o

)

Bucket D: AS(ADF)

T D
W - / .
Bucket F: ANALF) AS(F) | .f 1 W
l.— \ N
Bucket A: P(A) A7 mj P
l / A
A
P(G=1)
(a) (b)

Figure 4.3: The bucket’s output when processing along dy = A, F. D, C. B, G 17

A Bayesian Network
rocessed Along 2 Orderings

ZH

Bucket G: P(GfF) G 1
Bucket D: PIDIB A

Bucket F- P(FIB.C) H,G(_F)
Bucket B: P(BIA) D(BA)
Bucket C: P(CIA) AglAC)

A4

Bucket A F(A) AAJA)

e

F(G=1I)

d1=A,G,BLD,G

IHB.C)

\)\Seasm

Sprinkler Q« b Fain

Watering (D 6 (:‘) Welness
@ Slippery

(a) Directed acyclic graph

> 11
M

P
Bucket G: P{GIF) G=1 —__

Bucket B: F{FIB,C) FP{INBA) P(BIA) \

N

Bucket C: P(CIA) A AD.C.F) /
BucketD: A (ADF) /

Bucket F: Ap(AF) AolF)

=
-'-.-
-'-—----
'

Bucket A: P(A)} A A)

e

P(G=1)
(a)

(b) Moral graph

(b)

Figure 4.4: The bucket’s output when processing along d> = 4, F, D.C. B, G.

18

Factors: Sum-Out Operation

The sum-out operation is

No need to specify the order in which variables are summed out.)

If a factor f is defined over disjoint variables X and Y

then)y f is said to marginalize variables X

If a factor f is defined over disjoint variables X and Y

then >y f is called the result of projecting f on variables Y

Factors: Multiplication Operation

B C D fi

true true true .95

true true false .05 D E f>
true false true true true 0.448
true false false true false 0.192

9
1

false true true .8 false true 0.112
2 false false 0.248

false true false
false false true O
false false false 1

The result of multiplying the above factors:

B C D E fi(B,C.D)f(D,E)

true true true true | 0.4256 = (.95)(.448)
true true true false | 0.1824 = (.95)(.192)
true true false true | 0.0056 = (.05)(.112)

false false false false | 0.2480 = (1)(.248)

Factors: Multiplication Operation

The result of factors f1(X) and f(Y)

Is another factor over variables Z = X U Y':

(if)(2) = AX)A(Y):

where x and y are compatible with z; thatis, x ~zandy ~ z

Factor multiplication is

It is meaningful to talk about multiplying a number of factors
without specifying the order of this multiplication process.

AvrcoriTuMm BE-BEL

Input: A belief network B = (X, D, Pg. ||}, an orderingd = (X,..... X,) ; evidence ¢
output: The beliet P(X;|e) and probability of evidence F(e)
1. Partition the input functions (CPIs) into bucket,, ..., bucket, as follows:
tor i < n downto 1, put in bucket; all unplaced functions mentioning X;.
Put each observed variable in its bucket. Denote by ¥; the product of input
functions in bucket;.

2. backward: for p < n downto 1 do
3. forall the functions ¥g5,.Ag,...., As; in bucket, do

It (observed variable) X, = x, appears in bucketp,
assign Xp = xp to each function in bucket, and then
put each resulting function in the bucket of the closest variable in its scope.
else,
dp = L, VoIl ds,
place Ap in bucket of the latest variable in scope(dp),
6. return (as a result of processing bucket;):
Ple)=a =3y, V1| Lichucken 4
P(X,le) = %‘f"l -] [J.Ebndcfn A

Figure 4.5: BE-bel: a sum-product bucket-elimination algorithm.

24

i Student Network example

« PO

EBucket Elimination and
Induced vwwidth

Orderimng: a, b, c, d, e

bucket() — Ple|lb,c), e = O

bucket (1) = FPd|la, B)

bucket () = Plcla) || P(e = O|b, <)
bucket(B) — P{b|la) || Ap(a,b), Aa(b, o)

bucket(A) FPla) || As(a)

Ordering: a, e, d, c, b E%g

bucket(B) — Plelb, o). P(d|la,. b)Y, P(bla)
bucket () — Plcla)y || Ap(a,c,d,e)
buclket (1) = [] Ao, e, =)

bucket(F) — e —= 0 || Ao(a, <)

buclket (A) Pla) || Asla)

The Induced-Width

W (D)=3 W (D)=2

E—— &

W (d)=3 W (d)=2

= Width is the max number of parents in the ordered graph

= Induced-width is the width of the induced orderedgraph: recursively connecting
parents going from last node to first.

= Induced-width w*(d) is the max induced-width over all nodes in ordering d
= Induced-width of a graph, w* is the min w*(d) over all orderings d

) 27

Complexity of Elimination

i (w*(d)

wo(d) - the induced widthof moralgraph along ordering d

The effect of the ordering:

s

“Moral” graph w (d,)=4 W (d,)=2

30

‘L Complexity of BE-bel

Theorem 4.6 Complexity of BE-bel. Given a Byaesian nefwork whose moral graph is G, let
w*(d) be its induced width of G along ordering d, k the maximum domain size, and r be the num-

ber of input CPTs. The time complexity of BE-bel is O(r kWYY and ifs space complexity is
O(n - kv @) (see Appendix for a proof).

More accurately: O(r exp(w*(d)) where r is the number of cpts.
For Bayesian networks r=n. For Markov networks?

31

Handling Observations

O bserving H — 1
Ordering: a, e, d, ¢, b

bucket(B) — Ple|lb,). P(d|la. b)), P(bla). b = 1
bucket () = Pl{c|la)y, || FP(e|b 1.,)

bucket (D) = I| P{(d|a,b = 1)

bucket() — e =0 || Ao(e,a)

1|a) Aop(a). As(e, a)

bucket (A) Pla), || (b

Ordering: a, b, c, d, e

bucket() = Ple|lb,), e = O

bucket () — Pld|la, b)

bucket (7)) = Plc|la) || Ag(H,c)

bucket(B) — P(bla). b= 1 || Ap(a.b). AXo(a.,b)
bucket(A) — FP(a) || Asp(a)

A~
A0
o
Sprinkler @\1\ C) Rain
/
N
Watering CDj CF‘) Weiness

© sipery

(a)} Directed acyclic graph (b) Moral graph

The impact of observations

(a) (b) (c)

Figure 4.9: Adjusted induced graph relative to observing B.

Ordered graph ~ Induced graph Ordered conditioned graph 34

9

"Moral” Irrelevant buckets for

graph

BE-BEL

Buckets that sum to 1 are irrelevant.
Identification: Nno evidence, Nno new fTunctions.

Recursive recognition { bel(ale))

bucket(/) — P(e|lb,), e = O

buccket(1) — P(d|la,b),...skipable bucket
bucket{ ')y — P{c|a)

bucket{ B) — P(bla)

bucket(.A) — P ()

Complexity: Use induced width in moral graph
without irrelevant nodes, then update Tor ewvi-

dence arcs.

Use the ancestral graph only

Given a Bayesian network N and query (Q, e)

one can remove any leaf node (with its CPT) from the network as
long as it does not belong to variables Q U E, yet not affect the
ability of the network to answer the query correctly.

If N' = pruneNodes(N, Q U E)

then Pr(Q, e) = Pr'(Q, e), where Pr and Pr’ are the probability
distributions induced by networks N and N’, respectively.

Pruning Nodes: Example

Example of pruning irrelevant subnetworks

TN P TN
(A) (A (A)
-}"-— 'J:}I }"\-\._.-'{ l}n . ..f'
o & W, A
f.r" '\.\K f
f ™,
| I. | | : : i
N B S C.{'I N B x%C Y I'x_B J
- il - - Y e
"_\ x_,."" H\\\ \x.\
, ¢ “ \
™, -
e
| | f | | ;
Ny I"x.E_/"I I‘ME-J

network structure jointon B, E joint on B

Pruning Edges: Example

Example of pruning edges due to evidence or conditioning

A B Op|a A C Ocla
true true 2 true true .8
true false .8 P true false .2
/ Winter? \
false true .75 @) false true .1
false false .25 e . false false .9
I.»’%prinkler%'.\x { Kain?)
B N
(D /7 Slippery Road? ™,
(=false
B D 2oc lE"'.l::r| BC e
A | O4 true true .9 E doc e'E|{?Ee
true | .6 true false .1 true | 0
false | .4 false true O false | 1

false false 1

Evidence e : C =false

Pruning Nodes and Edges: Example

/ Atrue ! e
B ©p =2 1954 C O =Y, 08,
true 2 (w]::jﬁ \ e o
S A
false | .8 — false | .2
g SPTI FIJ—'LI.c::r‘?'\‘« :-"f .-Rain 7 ..\‘-.:
B @
o
1‘_‘__ ':.D] _J____--'II
/ — C=false
5 = DB — Zc eD|BC
A Oa true true .9
true 6 true false .1
false | .4 false true O

false false 1

Query Q = {D} and e: A=true, C =false

Probabilistic Inference Tasks

¥

= Belief updating:
BEL(X)= P(X

=X Jevidence)

= Finding most probable explanation (MPE)
X*=argmaxP(Xx,e)
= Finding maximum a-posteriory hypothesis

Ac X:

(a;,....a;) = argm ax Z/: P(X.€) hypothesis variables
X /A

42

+

Finding M PE = max P(X) @
Algorithm BE-mpe X

Y isreplaced by max :
MPE = max P(a)P(c|a)P(b|a)P(d |a,b)P(e|b,c)

43

Finding

X
Algorithm elim-mpe (Dechter 1996)

MPE =max P(Xx)

+

Y isreplaced by max :
MPE = max P(a)P(c|a)P(b|a)P(d |a,b)P(e|b,c)

bucket B:
bucket C:
bucket D:

bucket E:
bucket A:

max H<— Elimination operator
5(bj\‘ P(d|b a) P(e|b,c)

P(C|a)hB a,d,c,e)

\

\/ Y
(a,d,e)
/

e:O h®(a,e)
‘/ W*=4

E _
P@\A (@) wnduced width”

I\/IPE (max clique size)
44

Finding

X
Algorithm elim-mpe (Dechter 1996)

MPE =max P(Xx)

+

Y isreplaced by max :
MPE = max P(a)P(c|a)P(b|a)P(d |a,b)P(e|b,c)

bucket B:
bucket C:
bucket D:

bucket E:
bucket A:

max H<— Elimination operator
5(bj\‘ P(d|b a) P(e|b,c)

P(C|a)hB a,d,c,e)

\

\/ Y
(a,d,e)
/

e:O h®(a,e)
‘/ W*=4

E _
P@\A (@) wnduced width”

I\/IPE (max clique size)
45

‘L Generating the MPE-tuple

5. b'=arg max P(b|a')x
xP(d'|b,a")xP(e'|b,c")

4. c'=argmax P(c|a')x
xh®(@' ,d"',c,e)

3. d'=arg max h(a' ,d,e')

2.e' =0

1. a' =arg max P(a)-h(a)

A

B: P(bla) P(dlb,a) P(e|b,c)

C: P(cla) h°(ad.c,e)
D: h®(a,d,e)

E: e=0 h°(ae)

A: P(a) ht(@

Return (a',b',c' ,d',e')

Ijcai 2011

Algorithm BE-mpe

Input: A belief network B =< X, D.G.P =. where P = {P,.... P,}; an
ordering of the variables, d = Xy, ..., X;; observations e.

Output: The most probable assignment given the evidence.

1. Initialize: Generate an ordered partition of the conditional probability
function, bucket;. ..., bucket,, where bucket; contains all functions whose
highest variable 18 X;. Put each observed vamable i its bucket. Let i be the

mput function in a bucket and let h; be the messages in the bucket.

'2./ Backward: For p + n downto 1, do
for all the functions hy, ho, ..., h; in bucket,, do

o If (observed variable) bucket, contains X, = x,, assign X, = z, to each

function and put each in appropnate bucket.

e else, S, « Ule scope(h;) U scope(iy,) — {X,}. Generate functions h, <
\ maxy, Up - l_['leh.i Add h, to the bucket of the largest-index variable in S,,.
ey

(K Forward: N

e Generate the mpe cost by maximizing over Xy, the product in bucket;.

e (generate an mpe tuple)
For i = 1 to n along d do: Given T;_; = (xy.....7;_;) Choose z; =

argmarx, vy - H{hje bucke:,—}hj (Ti-1)

48

Try to compute MPE when E=0

Winter?

A B4
) 2
false 4
Sprinkler?
true true 2
true false 8
false true 75
Wet Grass? false false 25
(D) Slippery Road?
(E)
E C D E‘D| BC
true true true .05
A C ec|A true true false .05 C E EIE| C
true true .8 true false true .9 true true T
true false 2 true false false 1 true false 3
false true 1 false true true .8 false true 0
false false .9 false true false 2 false false 1
false false true 0
false false false 1

Finding MAP

iAlgorithm BE-map
Z and max :

MPE = max P(2)P(c|a)}’, , P(b|a)P(d |a,b)P(e|b,c)

51

Finding the MAP
(AN optimization task)

(’t}

Moralize ("marry parents'™)

(bla) .~ j\\> (ela) /;Aﬁ{
P a m.?'f : P{Ccla _ j
@i/ e r;%
e a

'-L{I WE P(elb.c) l_,f—-—fii_: E

/

/

l"]|/

\

P(d b-ﬂ)

“YWariables A and B are the hyvpothesis variables.
Ordering: a, b, c. d, e

mar, plP(a,b,e = 0) — mMax, p, 2 ~de—0o L (a.b,c, d. e)
= maxgu P(n) max, P(bla) > _ . P(cla) > 3 P(d|b, a)
ZE‘ZD P{E’If}._. C)

Ordering: a., e, o, ., b ... illegal ordering
max, , Pla,e,e — 0) — max, ;> pla. b, c,d, e)
maxg, p FPla,.b.e = 0) — maxa P{a) masxg P(b|n) S d -

M as< - P(ﬁ|a}}:‘(d’|a LYP (e = 0O|b,)

Algorithm BE-map

Variable ordering:
Restricted: Max buckets should
Be processed after sum buckets

Algorithm BE-map

Input: A Bayesian network B = (X.D.Pg.[]), P = {Pi. ..., Py}; a subset of hypothesis vari-
ables A = {A;, ..., Ay }; an ordering of the variables, d, in which the A’s are first in the ordering;
observations e. 1/; is the product of input function in the bucket of X;.

Output: A most probable assignment 4 = a.

1. Initialize: Generate an ordered partition of the conditional probability functions, bucket,,
..., buckety, where bucket; contains all functions whose highest variable is X;.

2. Backwards For p < n downto 1, do

for all the message functions B, Ba. ..., B; in bucket, and for ¥, do

« If (observed variable) bucket, contains the observation X, = x,, assign X, = x,, to each
Bi and ¥, and put each in appropriate bucket.

* else, If X, is not in A, then f, < ZX,, Yp - Hj-‘i:]ﬁ;;
else, (X, € A), B, < maxy, ¥, - [, Bi
Place B, in the bucket of the largest-index variable in scope(B,).

3. Forward: Assign values, in the ordering d = A;...., A, using the information recorded in
each bucket in a similar way to the forward pass in BE-mpe.
4. Output: Map and the corresponding configuration over A.

Theorem 4.16 Algorithm BE-map is complete for the map task for orderings started by the hypothesis
variables. Its time and space complexity are O(r - ke and On - kVE@), respectively, where
n is the number of variables in graph, k bounds the domain size and Wwg (d) is the conditioned induced
width of its moral graph along d, relative to evidence variables E. (Prove as an exercise.) L]

54

BE for Markov networks queries

o AL B o i BT T
AH— HpF—
I.\"\._q_.-"l IIH"- _-"'l 'q"'\-!:'l/ll

el AN (8, |E) b (CYF)
o W DL E) o A (B, F) =,
I'h.%:'.-"l !'xgl.-'j ='x.'F:|.-"I D E vel D E :I
i ol K JH | . 0 20.2
ws(L) ek [H) tno(FLT) 0 1 19
-, P Pt 1 0 23.4
ffr_‘,f | — H] —+ I — -
S ay (G, B ga(H]~ 1 1 11.7
(b)

(a)

Complexity of bucket
eclimination

T heorem

Given a belief network hawving 7 wvariables, ob-
servations e, thhe complexity of elim-mpe, elirm-
bel, elim-map along Jd, is time and space

where w+ (d) is the induced width of the moral
graph whose edges connecting evidence to ear-
lier Nnodes, were deleted.

More accurately: O(r exp(w*(d)) where r is the number of cpts.
For Bayesian networks r=n. For Markov networks?

+

Finding Small Induced-Width

(Dechter 3.4-3.5)

= NP-complete
s A tree has induced-width of ?

= Greedy algorithms:
« Min width
= Min induced-width
= Max-cardinality and chordal graphs
= Fill-in (thought as the best)
= See anytime min-width (Gogate and Dechter)

58

ABC AEF CDE

(e)

ACE

(c) (d)

Figure 5.1: (a)Hyper, (b)Primal, (¢)Dual and (d)Join-tree of a graphical model having

scopes ABC, AEF, CDE and ACE. (e) the factor graph

59

‘L The induced width

Definition 5.2.1 (width) Given an undirected graph G = (V, FE), an ordered graph s
a pair (G, d), where V.= {uvy,...,v,} is the set of nodes, E is a set of arcs over V, and
d = (vq,...,v,) ts an ordering of the nodes. The nodes adjacent to v that precede it in the
ordering are called its parents. The width of a node in an ordered graph is its number
of parents. The width of an ordering d of G, denoted wy(G) (or wg for short) is the
mazimum width over all nodes. The width of a graph is the minimum width over all the

orderings of the graph.

Definition 5.2.3 (induced width) The induced width of an ordered graph (G, d), de-
noted w*;), is the width of the induced ordered graph along d obtained as follows: nodes
are processed from last to first; when node v is processed, all its parents are connected.
The induced width of a graph, denoted by w*, is the minimal induced width over all its

orderings. Formally

w(G)= min wy(G
(T) deorderings d(T)

60

i Different Induced-graphs

(c)

61

* Min-Width Ordering

MIN-WIDTH (MW)

input: a graph G = (V,E), V ={v,...,v,}

output: A min-width ordering of the nodes d = (vy, ..., v,).
1. for j=nto1lby-1do

2. r < a node in GG with smallest degree.
3. put 7 in position 7 and G «— G — 7.

(Delete from V' node r and from F all its adjacent edges)
4. endfor

Proposition: (Freuder 1982) algorithm min-width finds a min-width
ordering of a graph. Complexity O(|E|)

62

Ll Greedy Orderings Heuristics

MIN-INDUCED-WIDTH (MIW)

input: a graph G = (V. E), V = {v(, ..., v, } Theorem: A graph IS a
output: An ordering of the nodes d = (vy. ..., v,). tree iff it has both width

for j =nto1lby-1do

r < a node in V with smallest degree.

1.
2
3. put 7 In position j.
4

[ua

Complexity?

O(n3)

connect r's neighbors: E + E U {(v;,v;)|(vi,7) € E, (v;,7r) € E},

remove 7 from the resulting graph: V « V — {r}.

and induced-width of 1.

MIN-FILL (MIN-FILL)

input: a graph G = (V. E), V = {v,...,vn}

output: An ordering of the nodes d = (v, ..., v,).

1. for j=ntolby-1do

2 r +— a node in V with smallest fill edges for his parents.

3. put 7 1n position j.

4 connect r’s neighbors: E « E U {(v;,v;)|(vi,7) € B, (v;,7) € E},

5. remove r from the resulting graph: V « V — {r}.

63

i Different Induced-Graphs

(c) (d)

64

Induced-width for chordal graphs

Definition: A graph is chordal if every cycle of length at least 4
has a chord

Finding w* over chordal graph is easy using the max-
cardinality ordering: order vertices from 1 to n, always
assigning the next number to the node connected to a largest
set of previously numbered nodes. Lets d be such an ordering

A graph along max-cardinality order has no fill-in edges iff it is
chordal.

On chordal graphs width=induced-width.

65

i Max-cardinality ordering

MAX-CARDINALITY (MC)

input: a graph G= (V. E), V ={vy,....u,
output: An ordering of the nodes d = (vq, ..., v,).
1. Place an arbitrary node in position 0.

2. for j=1tondo

3. r + a node in G that is connected to a largest subset of nodes
in positions 1 to 7 — 1, breaking ties arbitrarily.
4. endfor

Proposition 5.3.3 [56] Given a graph G = (V. E) the complerity of maz-cardinality

search is O(n +m) when |V| =n and |E| = m.

What is the complexity of min-fill? Min-induced-width? 0(n?) 66

‘L K-trees

Definition 5.3.4 (k-trees) A subclass of chordal graphs are k-trees. A k-tree is a chordal
graph whose maximal cliques are of size k+1, and it can be defined recursively as follows:
(1) A complete graph with k vertices is a k-tree. (2) A k-tree with r vertices can be
extended to r + 1 vertices by connecting the new vertex to all the vertices in any clique of

size k. A partial k-tree is a k-tree having some of its arcs removed. Namely it will clique

of size smaller than k.

67

i Which greedy algorithm is best?

. MinFill, prefers a node who add the least number of fill-in arcs.

= Empirically, fill-in is the best among the greedy algorithms
(MW,MIW,MF,MC)

= Complexity of greedy orderings?
= MW is 0(n?)...maybe O(nlogn +m)?
= MIW: O(0(n3),
= MF (0(n3),
= MCis O(m+n), m edges.

68

Recent work in my group

= Vibhav Gogate and Rina Dechter. "A Complete Anytime
Algorithm for Treewidth". In UAI 2004.

= Andrew E. Gelfand, Kalev Kask, and Rina Dechter.

"Stopping Rules for Randomized Greedy Triangulation Schemes"
in Proceedings of AAAI 2011.

= Kask, Gelfand and Dechter, BEEM: Bucket Elimination with
External memory, AAAI 2011 or UAI 2011

= Potential project

69

http://www.ics.uci.edu/~csp/r112.pdf
http://www.ics.uci.edu/~csp/r180.pdf

Mixed Networks

¥

= Augmenting Probabilistic networks with
constraints because:

= Some information in the world is
deterministic and undirected (X #Y).

= Some queries are complex or evidence are
complex (cnf formulas)

= Queries are probabilistic queries

i Mixed Beliefs and Constraints

@ =(GvD)A(—-DvB)
» If the constraint is a cnf formula P(p) =?

= Queries over hybrid network:
= Complex evidence structure P(X|p)="?

P(x, |@)="?

= All reduce to cnf queries over a Belief network:

= CPE (CNF probability evaluation): Given a belief
network, and a cnf formula, find its
probability.

276 Fall 2007 71Changes’05

Party example again

PN CN
P(W)

P(B|W) P(C|W) ® . ©
A—B C-—A

Query:
Is it likely that Chris goes to the
party if Becky does not but the

i ?
Semantics? weather is bad?

Algorithms?
P(C,—B|w=bad,A— B,C > A)

i Bucket Elimination for Mixed networks

The CPE query

Pe(p)=) P(xy)

XgeEMod(p)

Using the belief network product form we get:

Pe) =)] PGilxpa).

XIXgeMod(p)}i=1

P((C > B) and P(A > C))

74

Algorithm 1: BE-cpE

Input: A belief network M = (B,~), B = (X, D, Pg,[]), where B = {Py,.... P, }; a
CNF formula on k propositions ¢ = {«j. ...a,, } defined over k propositions;
an ordering of the variables, d = {X,.... X,}.

Output: The belief P(gp).

1 Place buckets with unit clauses last in the ordering (to be processed first).

// Initialize

Partition B and ¢ into buckety, ..., bucket,, where bucket; contains all the CPTs

and clauses whose highest variable is X;.

Put each observed variable into its appropriate bucket. (We denote probabilistic

functions by As and clauses by as).

2 for p < n downto 1 do // Backward
LetA;,...,A; be the functions and «;, . . ., a, be the clauses in bucket,
Process-bucket,(}_, (A1,.... Aj)(ay,....ap))

3 return P(g) as the result of processing bucket;.

75

Procedure Process-bucket, (3, (4,

ar)).

if bucket, contains evidence X, = x, then
1. Assign X, = x, to each A; and put each resulting function in the bucket of its

latest variable

else

Ap < Z{xple.rﬂEMad{cu] peeesly)} [Ti=; A
Add A, to the bucket of the latest variable in S,, where
| Sy, =scope(Ay....Aj.ay.....ap), Up = scopela,a;).

2. Resolve each a; with the unit clause, put non-tautology resolvents in the buckets
of their latest variable and move any bucket with unit clause to top of processing

®

P
.,
o .

X /
N ™, e
™,
-,
.
©

(a) Directed acyclic graph

(b) Moral graph

‘L Processing Mixed Buckets

LA '\.r\.nl'].l.l.l.n"u L w

In Bucket G:
In Bucketg:
In Bucketp:
In Bucketp:
In Bucketc:
In Buckety:

P(p) = Aa.

re(f.d) = Z{g|gvd=;me} P(g|f)

Ap(b.c.d) = Ef P(f|b,c)Ag(f.d)

Apla,b,c) =} iqi~av—b=truer P(d|a,b)AF (b,c,d)
ABla.c) =Y ippve=rruet P(bla)Ap(a.b,c)AF(b.c)
Acla) =), Plcla)Apla.c)

Ag =), Pla)rcl(a)

For example in bucketg, Ag(f.d = 0) = P(g = 1|f), because if D = 0 g must get the
value “17, while Ag(f.d = 1) = P(g = 0] f) + P(g = 1] f). In summary, we have the follow-

mg.

77

i A Hybrid Belief Network

Bucket G:

P(c:]]a:O):l Bucket F:

Belief network P(g,f,d,c,b,a)
=P(g|f,d)P(f|c,b)P(d|b,a)P(b|a)P(c|a)P(a) 576 Fan 2007

B
ﬁ Bucket D:
Bucket C:

v
@ Bucket B:
\@G =DvF Bucket A:

P(GIFD) -G

P(FIB}‘ l

P(G=0|F,D)

P(DIA.B) “4B,c.D)

4

P(C|A) A° (A B,C)

P(Bm‘ l

A% (A, B)

N

P(A) 1(A)

N S

P(A|-G)

Variable elimination for a
mixed network:

tG: P(GIFD) _g Bucket G: P(G|F,D)<Av G)(—F vG)(F vDv —G),~G
Bucket F: P(F|B}‘pl(6 _0|F,D) BucketF: P(FIB,C) pG=0|F,D) (4/
/ L/
Bucket D: P(D|A,B) ™y .c.D) Bucket D: P(D|A,B) |4 (D) (D)

/

Bucket C: P(C|A) A°(A.B,C) Bucket C: P(C|A)

P(Bm‘ l

(Av C) A7 (B, C)

Bucket B: JB(A,B) Bucket B: P(BlA) A°(A,B), A°(A,B)
Bucket A: P(A) € (A) Bucket A: P(A)\“ 78 (A)/ s
N/ 1
P(A]-G) \‘ P(A|-G)

(a) regular Elim-CPE (b) Elim-CPE-D with clause extraction

Trace of Elim-CPE

Belief network P(g,f,d,c,b,a)

Bucket G:

Bucket D:

Bucket B:

Bucket C:

Bucket F:

Bucket A:

P(G|FD)

(Gv D)

-G

P(D|A,B)

\K

(-~Dv—=B),[A°(F,D) * D

P(BIA)| P(FIB,C)| (BvC)| |4°(A,B) —B
P(C|A) >(F,C) C

A2 (F) A (F)

O IEAC O

=P(g|f,d)P(f|c,b)P(d|b,a)P(bla)P(c|a)P(a) ;76 Fail 2007

e

P(p)

bucket-elimination exampie
for a mixed network

Bucket G:

Bucket F:

Bucket -

Bucket B:

Bucket C:

Bucket A:

PIGIFD) (v I
"
™~

A L
P[FL_E,E} Z,I (F.Dn

P(DIAB) (—=Dv—B) *1.(B.C.D)
.___._- n, -'_,.'

-...._...-....--\ F"

PBIA) (BvC) “A,(AB.C)

o v o
P(CIA) Ag(AC)

Y

P(A) A-(A)

"4
Plg)

Figure 4.15: Execution of BE-CPE.

Bucket G: PIGIF.D) (Gv D) =G

— T,

BucketD: P(DIAB) (—=Dv—B), 4,(F.D) * D

----"'-.__ ----"':-.___ - /-";f :. I'ull
e

Bucket B: P(BIA),P(FIB.C), (BvC)| ™ A°(A.B)| "—B

Bucket C: [PICIA) A,(F.C) /. / s
: e - 81 x’lﬁ ._,*’é;
Bucket F: | 4 (F) An(F) S / g

4 a RA v
Bucker A AW R,

"o &
P(g)

Figure 4.16: Execution of BE-CPE (evi-
dence =G).

81

‘L Markov Networks

Definition 2.23 Markov networks. A Markov network is a graphical model M = (
X.D,H.J]) where H = {v,.... VUm} is a set of potential functions where each potential v
is a non-negative real-valued function defined over a scope of variables S = {Sy, ... S;z}. S;. The
Markov network represents a global joint distribution over the variables X given by:

PM=%1_[% cz=> 11w
i=1

X i=1

where the normalizing constant Z is called the partition function.

Dechter, chapter 2

‘L Complexity

Theorem 4.21 Complexity of BE-cpe. Given a mixed network Mg o, having mixed graph is G,

with w*(d) ifs induced width along ordering d, k the maximum domain size and r be the number of
input functions. The time complexity of BE-cpe is O(r - ke @Yy and its space complexity is O(n -

kw*@)y (Prove as an exercise.)

83

DEFINITION: An undirected graph G = (V, E) is said to be chordal if

every cycle of length four or more has a chord, i.e., an edge joining two
nonconsecutive vertices.

THEOREM 7: Let & be an undirected graph & =(V,E). The
following four conditions are equivalent:

l. & is chordal.

(2. The edges of G can be directed acyclically so that every pair of
converging arrows emanates from two adjacent vertices.

3. All vertices of G can be deleted by arranging them in separate
piles, one for each clique, and then repeatedly applying the
following two operations:

. Delete a vertex that occurs in only one pile.

e Delete a pile if all its vertices appear in another pile.

4. There is a tree T (called a join tree) with the cliques of G as
vertices, such that for every vertex v of &, if we remove from T
all cliques not containing v, the remaining subtree stays connected,
In other words, any two cliques containing v are either adjacent in
T or connected by a path made entirely of cliques that contain v.)

The running intersection property

