Building Bayesian Networks

COMPSCI 276, Spring 2017
Set 4: Rina Dechter

(Reading: Darwiche chapter 5)
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« Bayesian networks and gueries
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» Special representations of CPTs



The construction of a Bayesian network involves three major steps:

@ ldentify relevant variables and their possible values.
@ Build the network structure by connecting variables into DAG.

@ Define the CPT for each network variable.

Two issues:

@ The potentially large size of CPTs.

@ The significance of the specific numbers used to populate
them.

We present techniques for dealing with these issues.

Queries: Different queries may be relevant for different scenarios



[ Samlam: Sensitivity Analysis, Modeling, Inference and More

Reasoning with Bayesian Networks
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The network Asia will
be used as a running
example. Screenshot
from Samlam.

Samlam available at http://reasoning.cs.ucla.edu/samiam/.

For other tools see class page


http://reasoning.cs.ucla.edu/samiam

Query: Probability of Evidence

Probability of some variable instantiation e, Pr(e). |
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Probability that the patient has
a positive X-ray, but no
dyspnoea, Pr(X =yes, D =no),
about 3.96%. Computed by
Samlam.

The variables E = {X, D} are called evidence variables. The query
Pr(e) is known as a probability-of-evidence.

Other type of evidence: We may want to know the probability that the patient has either a
positive X-ray or dyspnoea, X =yes or D=yes.



Query: Probability of Evidence

Auxiliary-node method

Bayesian network tools do not usually provide direct support for
computing the probability of arbitrary pieces of evidence, but such
probabilities can be computed indirectly.

We can add an auxiliary node E, declare nodes X and D as the
parents of E, and use the following CPT for E:

X D E |Pr(elx,d)
yes yes vyes |1

yes no vyes |1
no vyes vyes |1
no no vyes |0

Event E =vyes is then equivalent to X =yes V D =yes.



Query: Prior and Posterior Marginals

Prior Marginals

Given a joint probability distribution Pr(xi, ..., x,), the marginal
distribution Pr(xy,...,xm), m < n, is defined as follows:
Pr(xi, ..., Xm) = Z Pr(x, ..., Xp)
Xm+1s---3Xn

o




Prior Marginals in the Asia Network
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Query: Posterior Marginals in the Asia Network
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Soft Evidence using Virtual Evidence (Noisy Sensor)

Soft evidence of

Positive x-ray or Dyspnoea
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Query: Most Probable Explanation (MPE)

Let Xi,..., X, be all network variables, and e be evidence. ldentify
an instantiation xi...., X, that maximizes the probability
Pr(xi,...,xn|e). Instantiation xi, ..., X, is called a most probable
explanation given evidence e.

MPE cannot be obtained directly from posterior marginals.

If X1....,X, Is an instantiation obtained by choosing each value x;
so as to maximize the probability Pr(x;|e), then xq, ..., x, is not
necessarily an MPE.

MPE is also called MAP



Query: Most Probable Explanation (MPE)
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Query: Most Probable Explanation (MPE)
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Choosing values with maximal probability, we get:
a: A=no, S=vyes, T =no, C=no, B=no, P=no, X =vyes, D=no.
Probability ~ 20.03% given evidence e: X =yes. D =no.



Query: Maximum a Posteriori Hypothesis (MAP)
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MAP has probability of &~ 50.74% given the evidence.

MAP is also called Marginal Map (MMAP)



Query: Maximum a Posteriori Hypothesis (MAP)

A common method for approximating MAP is to compute an MPE
and then return the values it assigns to MAP variables. We say in
this case that we are projecting the MPE on MAP variables.




Query: Maximum a Posteriori Hypothesis (MAP)

A common method for approximating MAP is to compute an MPE
and then return the values it assigns to MAP variables. We say in
this case that we are projecting the MPE on MAP variables.

o

MPE given evidence X =yes, D =no:

A=no, S=no, T =no, C=no, B=no, P=no, X=yes, D=no
Projecting this MPE on MAP variables M = {A, S}, we get:
A=no, S=no,

with probability ~ 48.09% given the evidence.

MAP is A=no, S=yes with a probability of about 50.74%.



Modeling with Bayesian Networks

Bayesian networks will be constructed in three consecutive steps.

Define the network variables and their values. \

@ A query variable is one which we need to ask questions about, such
as compute its posterior marginal.

@ An evidence variable is one which we may need to assert evidence
about.

@ An intermediary variable is neither query nor evidence and is meant
to aid the modeling process by detailing the relationship between
evidence and query variables.

The distinction between query, evidence and intermediary variables
is not a property of the Bayesian network, but of the task at hand.



Modeling with Bayesian Networks

Bayesian networks will be constructed in three consecutive steps.

Define the network structure (edges).

We will be guided by a causal interpretation of network structure.

The determination of network structure will be reduced to
answering the following question about each network variable X:
what set of variables we regard as the direct causes of X7?

What about the boundary strata?



Constructing a Bayesian Network for
any Distribution P (a reminder)

COROLLARY 3: Given a probability distribution P(x, x4,...,x,) and
any ordering d of the variables, the DAG created by designating as
parents of X; any minimal set [Ty of predecessors satisfying

Plxlng )=P(x; lxq,..,x;,_1), My < (X, X,5,...X;1} (3.27)

is a Bayesian network of P.

. If P is strictly positive, then all of the parent sets are unique (see
Theorem 4) and the Bayesian network is unique (given d ).

COROLLARY 4: Given a DAG D and a probability distribution P, a
necessary and sufficient condition for D to be a Bayesian network of P
is that each variable X be conditionally independent of all its non-
descendants, given its parents Ily, and that no proper subset of Iy
satisfy this condition.



Constructing a Bayesian Network for
any Distribution P

COROLLARY 3: Given a probability distribution P (x 1» X250 X, ) and
any ordering d of the variables, the DAG created by designating as
parents of X; any minimal set [Ty of predecessors satisfying

F(Ii II'IX‘_)IF(I; III!"'FIJ'—I] , r.[x'_ - {XI‘XE'"'! X‘_I} (3.27)

is a Bayesian network of P.

. If P is strictly positive, then all of the parent sets are unique (see
Theorem 4) and the Bayesian network is unique (given d ).

COROLLARY 4: Given a DAG D and a probability distribution P, a
necessary and sufficient condition for D to be a Bayesian network of P
is that each variable X be conditionally independent of all its non-
descendants, given its parents Ily, and that no proper subset of Iy
satisfy this condition.

Intuition: The causes of X can serve as the parents



Modeling with Bayesian Networks

Define the network CPTs. \

@ CPTs can sometimes be determined completely from the
problem statement by objective considerations.

@ CPTs can be a reflection of subjective beliefs.

@ CPTs can be estimated from data.



Diagnosis |: Model from Expert

The flu is an acute disease characterized by fever, body aches and
pains, and can be associated with chilling and a sore throat. The

cold is a bodily disorder popularly associated with chilling and can
cause a sore throat. Tonsillitis is inflammation of the tonsils which

leads to a sore throat and can be associated with fever.

Our goal here is to develop a Bayesian network to capture this
knowledge and then use it to diagnose the condition of a patient
suffering from some of the symptoms mentioned above.

Variables? Arcs? Try it.



Diagnosis |: Model from Expert

A naive Bayes structure
What about?  has the following edges C -> AL, . . ., C -> Am, where C is called
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P the class variable and Al; : : : ;Am are called the attributes.
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Variables are binary: values are either true or false. More refined
information may suggest different degrees of body ache. J




Diagnosis |: Model from Expert

The naive Bayes structure commits to the single-fault assumption. )
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Suppose the patient is known to have a cold.

Naive Bayes structure

Fever and sore throat become independent as they are d-separated
by “Condition”.

Original structure

Fever may increase our belief in tonsillitis, which could then
increase our belief in a sore throat.




Diagnosis |: Model from Expert
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If the only evidence we have is we expect the

probability of flu to go up in both networks.

Naive Bayes structure

This leads to dropping the probability of cold or tonsillitis.

Original structure

These probabilities remain the same since both cold and tonsillitis
are d-separated from body ache.




CPTs can be obtained from medical experts, who supply this
information based on known medical statistics or subjective beliefs

gained through practical experience.

CPTs can also be estimated from medical records of previous patients

Case Cold?  Flu? Tonsillitis? Chilling?  Bodyache?  Sorethroat?  Fever?

1 true false 1 true false false false
2 false true false true true false true
3 7 7 true false 7 true false

? indicates the unavailability of corresponding data for that patient.



Diagnosis |:

@ lools for Bayesian network inference can generate a network
parameterization ©, which tries to maximize the probability of
seeing the given cases.

@ If each case is represented by event d;, such tools will
generate a parametrization © which leads to a probability
distribution Pr that attempts to maximize:

N
] Pr(dy).
i=1

@ Term Pr(d;) represents the probability of seeing the case /.

@ [he product represents the probability of seeing all N cases
(assuming the cases are independent).




Diagnosis |l: Model from Expert

A few weeks after inseminating a cow, we have three possible tests to confirm
pregnancy. The first is a scanning test which has a false positive of 1% and a
false negative of 10%. The second is a blood test, which detects progesterone
with a false positive of 10% and a false negative of 30%. The third test is a
urine test, which also detects progesterone with a false positive of 10% and a
false negative of 20%. The probability of a detectable progesterone level is 90%
given pregnancy, and 1% given no pregnancy. The probability that insemination
will impregnate a cow is 87%.

Our task here is to build a Bayesian network and use it to compute
the probability of pregnancy given the results of some of these
pregnancy tests.

Try it: Variables and values? Structure? CPTs?



Diagnosis |I: Model from Expert
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Diagnosis |I: Model from Expert

We inseminate a cow, wait for a few weeks, and then perform the
three tests which all come out negative:

e: S=-—ve, B=—ve, U=—ve.

Posterior marginal for pregnancy given this evidence:

P Pr(Ple)
yes 10.21%
no 89.79%

Probability of pregnancy is reduced from 87% to 10.21%, but still
relatively high given that all three tests came out negative.



Sensitivity Analysis
 Bemple .

Example

A farmer is not too happy with this and would like three negative tests to drop
the probability of pregnancy to no more than 5%. The farmer is willing to
replace the test kits for this purpose, but needs to know the false positive and
negative rates of the new tests, which would ensure the above constraint.

This is a problem of sensitivity analysis in which we try to
understand the relationship between the parameters of a Bayesian
network and the conclusions drawn based on the network.

Read in the book.
We will not cover this.



Diagnosis |ll: Model from Design

A B
. Problem statement

X LYy ) Given some values for the circuit primary
P N inputs and output (test vector), decide if the
C— ‘ J — D circuit is behaving normally. If not, find the
N most likely health states of its components.
\\\HZH“/ o
|E

Try it: Variables? Values? Structure?



Diagnosis |ll: Model from Design

A B
__ﬂ Problem statement

X Ly Given some values for the circuit primary
Q \‘“-[-"/ inputs and output (test vector), decide if the
C— L J — D circuit is behaving normally. If not, find the
N most likely health states of its components.
'x\.. Z -a/;.-' r
|E

Evidence variables
Primary inputs and output of the circuit, A, B and E.




Diagnosis |ll: Model from Design

A B
__ﬂ Problem statement

X Ly ) Given some values for the circuit primary
Q \“-[-""/ inputs and output (test vector), decide if the
C— ‘ l —D circuit is behaving normally. If not, find the
N most likely health states of its components.
'\\. Z /;_.- .
|E

Evidence variables
Primary inputs and output of the circuit, A, B and E.

Health of components X, Y and Z.




Diagnosis |1l: Model from Design

A B
. Problem statement

X Ly ) Given some values for the circuit primary
Q \““-[ g inputs and output (test vector), decide if the
C— ‘ J — D circuit is behaving normally. If not, find the
\ 1 most likely health states of its components.
\\..Z;/,r
|E

Evidence variables
Primary inputs and output of the circuit, A, B and E.

Query variables
Health of components X, Y and Z.

Intermediary variables

Internal wires, C and D.




Diagnosis |ll: Model from Design

Values of
circuit wires:

" ' (z) low or high
\ l/ 4 \ ] /
I'._‘ i JII,-'I ; - -"\{

Health states: ok or faulty

faulty is too vague as a component may fail in a number of modes.

@ stuck-at-zero fault: low output regardless of gate inputs.
@ stuck-at-one fault: high output regardless of gate inputs.

@ input-output-short fault: inverter shorts input to its output.

Fault modes demand more when specifying the CPTs.



Diagnosis |ll: Model from Design

Three classes of CPTs

@ primary inputs (A, B)
@ gate outputs (C, D, E)
@ component health (X, Y, 2)

CPTs for health variables depend on their values

X 9. X 6,
ok .99

ok .99

Eault 01 stuckatO | .005

Aty |- stuckatl | .005

Need to know the probabilities of various fault modes.



Diagnosis |ll: Model from Design

CPTs for component outputs determined from functionality. J
A X C Oc)ax
high ok high | 0
low ok high | 1
CPT for inverter X. high  stuckat0  high | 0
low stuckat0  high | 0
high  stuckatl  high 1
low stuckatl  high | 1




Diagnosis Ill: Model from Design

CPTs for component outputs determined from functionality. J
A X C Oc)ax
high ok high | 0
low ok high 1
CPT for inverter X. high  stuckat0  high | 0
low stuckat0  high | 0
high  stuckatl  high 1
low stuckatl  high 1

>
If we do not represent health states:

A X C 0

high ok high 0
low ok high 1
high  faulty  high 7
low faulty  high 7

cla,x

Commeon to use a probability of .50 in this case.




A Diagnosis Example

Given test vector e: A=high, B=high, E =low, compute MAP
over health variables X, Y and Z.




A Diagnosis Example

Given test vector e: A=high, B=high, E=low, compute MAP
over health variables X, Y and Z.

Network with fault modes gives two MAP instantiations:
MAP givene | X Y VA4

ok stuckat0 ok each probability ~ 49.4%
ok ok stuckatO




A Diagnosis Example

Given test vector e: A=high, B=high, E =low, compute MAP
over health variables X, Y and Z.

Network with fault modes gives two MAP instantiations:

MAP givene | X Y /
ok stuckat0 ok each probability ~ 49.4%
ok ok stuckatO

Network with no fault modes gives two MAP instantiations:

MAP givene | X Y /

ok faulty ok each probability ~ 49.4%
ok ok faulty




Integrating Time

Suppose we have two test vectors instead of only one. )




Integrating Time

Suppose we have two test vectors instead of only one. )

Additional evidence variables

A’ B" and E’




Integrating Time

Suppose we have two test vectors instead of only one. |

Additional evidence variables
A, B" and E’

Additional intermediary variables

C' and D’




Integrating Time

Suppose we have two test vectors instead of only one. |

Additional evidence variables

A B and E’

Additional intermediary variables

C' and D'

Additional health variables on whether we allow intermittent faults

If health of a component can change from one test to another, we
need additional health variables X', Y/, and Z’. Otherwise, the
original health variables are sufficient.

Variables? Values? Structure?



Integrating Time: No Intermittent Faults

Two test vectors

e : A=high, B=high, E=low

e': A=low, B=Ilow, E =low.




Integrating Time: No Intermittent Faults

Two test vectors

e : A=high, B=high, E=low

e: A=low, B=low. E =low.

MAP using second structure

MAP givene.e | X Y Z
‘ok ok faulty

with probability &~ 97.53%




Integrating Time: Intermittent Faults
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Dynamic Bayesian network

(DBN)
) ({5?/@} Two test vectors
K\H !
7

e: A=high, B=high, E=low
e': A=low, B=low, E =low.

ok
faulty
ok
faulty

99
01
001
999

healthy component becomes faulty
faulty component becomes healthy




Channel Coding

Four bits Ui, Uy, U3 and Uy are sent from a source S to a

destination D

over a noisy channel, where there is a 1% chance that a bit will be
inverted before it gets to the destination.




Channel Coding

Four bits Uy, Uy, U3 and Uy are sent from a source S to a

destination D

over a noisy channel, where there is a 1% chance that a bit will be
inverted before it gets to the destination.

To improve the reliability of this process

we will add three redundant bits X7, X> and X3 to the message,
where X7 is the XOR of U; and Us, X5 is the XOR of U and Uy,
and X3 is the XOR of Uy and U;.




Channel Coding

Four bits Uy, Uy, U3z and Uy are sent from a source S to a

destination D

over a noisy channel, where there is a 1% chance that a bit will be
inverted before it gets to the destination.

To improve the reliability of this process

we will add three redundant bits X7, X2 and X3 to the message,
where X7 is the XOR of U; and Uz, X5 is the XOR of U, and Uy,
and X3 is the XOR of U; and Us.

Given that we received a message containing seven bits at

destination D

our goal is to restore the message generated at the source S.

Try it: Variables, values, structure?



Channel Coding
In channel coding terminology

Ui, ..., Uy are known as information bits;

X1,...,X3 are known as redundant bits;

Ui,..., Us, Xq...., X3 is known as the code word or channel input;
Y1,..., Y7 is known as the channel output.




Channel Coding
In channel coding terminology

Ui, ..., Uy are known as information bits;

Xi,...,X3 are known as redundant bits;

Ui, ..., Uy, X1,..., X3 is known as the code word or channel input;
Y1,..., Y7 is known as the channel output.

Goal to restore the channel input given some channel output. J




Channel Coding
In channel coding terminology

Up. ..., Us are known as information bits;

Xi,..., X3 are known as redundant bits;

Ui,..., U, X1,..., X3 is known as the code word or channel input;
Y1,..., Y7 is known as the channel output.

Goal to restore the channel input given some channel output. ]

Evidence variables are

Yi,....Y7: bits received at destination D




Channel Coding
In channel coding terminology

Up. ..., Us are known as information bits;

X1,....X3 are known as redundant bits;

Ui,..., Us. Xq1,..., X3 is known as the code word or channel input;
Y1i,.... Y7 is known as the channel output.

Goal to restore the channel input given some channel output. |

Evidence variables are

Yi,....Y7: bits received at destination D

Query variables are

Ui, ..., Us: bits originating at source S




Channel Coding
In channel coding terminology

Ui, ..., Uy are known as information bits;

Xi,...,X3 are known as redundant bits;

Ui, ..., U4, Xq1,..., X3 is known as the code word or channel input;
Y1i,..., Y7 is known as the channel output.

Goal to restore the channel input given some channel output. |

Evidence variables are
Yi...., Y7: bits received at destination D

Query variables are

Ui, ..., Us: bits originating at source S

Bits Xi,.... X3 either query variables or intermediary variables.



Channel Coding

There are three CPT types in
the problem. }
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Channel Coding

There are three CPT types in
X,) the problem. }

Ui Us X1 0

1|ug.u3

1 1 1 0
CPT for each redundant bit,say Xi: 1 0 1 1
0 1 1 1
0 0 1 0

Pr(xi|ui, u3) = 1 iff xy = ug % u3z (% is the XOR function) J




Channel Coding

There are three CPT types in
the problem. }

TN SN SN SN SN SN SN
'\..}f],/'l I"x}fz_.f' NI, "\.E/'I
Ul Gul
CPT for information bits, such as U;: 1 5
0 5

Captures the distribution of messages sent out from the source S |

What queries should we use here?



MAP or Posterior-Marginal (PM) Decoders?

To restore the channel input given channel output

O Compute a MAP for the channel input Uy, ..., Us, X1,...,X3

given channel output Yi.....Y7.
@ Compute the PM for each bit U;/X; in the channel input,
given channel output Y7,..., Y7, and then select the value of

Ui/ Xi which is most probable.




MAP or Posterior-Marginal (PM) Decoders?

To restore the channel input given channel output

@ Compute a MAP for the channel input Uj.....Us. X1, ..., X3

given channel output Y7,..., Y7.
@ Compute the PM for each bit U;/X; in the channel input,
given channel output Yi,.... Y7, and then select the value of

Ui/ Xi which is most probable.

The choice between MAP and PM decoders is a matter of the }

performance measure one is interested in optimizing.

WER (word error rate), BER (bit error rate)

MAP (MPE) minimizes WER, PM minimize BER...
What do you think?



Noise Models and Soft Evidence

A more realistic and common noise model

Transmitting our code bits x; through a channel that adds
Gaussian noise, with mean x; and standard deviation o.

Channel output Y; is a continuous variable governed by

conditional density function f(y;|x;) = —= o—(vi—xi)? /202

Do




Noise Models and Soft Evidence

A more realistic and common noise model

Transmitting our code bits x; through a channel that adds
Gaussian noise, with mean x; and standard deviation o.

Channel output Y; is a continuous variable governed by

1

conditional density function f(y;|x;) = e—(vi—xi)?/20°

2o

Can be implemented by interpreting

channel output y; as soft evidence on the channel input X; =0 with
. 2
a Bayes factor k = e(1=2vi)/20

Notice:

Odds: o(x) = P(x)\P(bar(x))

K =Bayes factor = o’(x)\o(x) ... the posterior odds after observing divided by prior odds
For Gausian X: evidence on Y=y can be emulated with soft evidence on x with

K =f(y|x) \f(y|bar(x)) = the expression above.



Convolutional Codes

Convolutional and turbo codes
correspond to different methods for generating redundant bits.




Convolutional Codes

Convolutional and turbo codes
correspond to different methods for generating redundant bits.

Convolutional and turbo codes

provide examples of modeling systems with feedback loops using
dynamic Bayesian networks.




Convolutional Codes

J'b b b
”«k__l_ O*Dl 1”_D2 2

Xok+1

Xok

>

An example convolutional encoder

Each node denoted with a “+" represents a binary addition, and
each box D; represents a delay where the output of D; is the input
of D; from the previous encoder state.




Convolutional Codes

Dynamic Bayesian network for
a convolutional code.

A sequence of replicated slices

where slice k is responsible for generating the codeword bits xo
and xok 41 for the information bit uy.




Convolutional Codes

Dynamic Bayesian network for
a convolutional code.

A sequence of replicated slices

where slice k is responsible for generating the codeword bits xo
and xok41 for the information bit wy.

Each slice has a variable S, representing the state of the encoder

This state is determined by the previous state variable S,_1 and
the information bit Uy.




Turbo Codes

Given four information bits ug, ..., us.



Turbo Codes

Given four information bits ug, ..., us.

In a convolutional code
we generate 4 redundant bits leading to an 8-bit codeword.




Turbo Codes

Given four information bits ug, . ... us.

In a convolutional code

we generate 4 redundant bits leading to an 8-bit codeword.

In a turbo code we apply a convolutional code twice

once on the original bit sequence ug, uy, uz, uz, and another on
some permutation, say, ui, u3, U, ug. This leads to 8 redundant
bits and a 12-bit codeword.




Turbo Codes
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Lower network represents a convolutional code

for the bit sequence wug,....us.

Upper network represents a convolutional code

for the bit sequence uy, ... . us.




Turbo Codes

Edges that cross between the networks

are meant to establish the bit sequence uy, ..., u; (upper network)
as a permutation of the bit sequence ug, ..., u3 (lower network).




Commonsense reasoning

When SamBot goes home at night, he wants to know if his family
is home before he tries the doors.

Often when SamBot's wife leaves the house she turns on an outdoor light. However,
she sometimes turns on this light if she is expecting a guest.

Also, SamBot's family has a dog. When nobody is home, the dog is in the back yard.
The same is true if the dog has bowel trouble.

If the dog is in the back yard, SamBot will probablyhear her barking, but sometimes
he can be confused by other dogs barking.

SamBot is equipped with two sensors: a light-sensor for detecting outdoor lights and
a sound-sensor for detecting the barking

of dogs. Both of these sensors are not completely reliable and can

break. Moreover, they both require SamBot's battery to be in good

condition.



Commonsense Knowledge
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Parameters based on a combination of sources

@ Statistical information such as reliabilities of sensors and battery.

@ Subjective beliefs relating to how often the wife goes out, guests are
expected, the dog has bowel trouble, etc.

@ Objective beliefs regarding the functionality of sensors.




Genetic Linkage Analysis

G (AA) /Imj\ John | G (@a)
G,:(BB) \| ) G,: (b,b)
G, (Aa) | " / \ G, (a,a)
G, (Bb) | - \>*) G, (bb)
Variables, values,
?
structure G, (A,a) l{;f\l IN \l G,: (Aa)
Gy (bb) \ Y Gy (Bb)

A pedigree involving six individuals

Squares represent males, circles represent females. Horizontal
edges connect spouses, while vertical edges connect couples to
their children. For example, Jack and Sue are a couple with two
daughters, Lydia and Nancy.




Genetic Linkage Analysis

The ABO gene

is responsible for determining blood type. This gene has three
alleles: A, B and O. Since each individual must have two alleles
for this gene, we have six possible genotypes in this case.

There are only four different blood types

Genotype Phenotype
A/A Blood type A
A/B Blood type AB
A/O Blood type A
B/B Blood type B
B/O Blood type B
0/0 Blood type O

If someone has the blood type A, they could have the pair of
alleles A/A or the pair A/ O for their genotype.




Genetic Linkage Analysis

The phenotype is not always determined precisely by the genotype. |




Genetic Linkage Analysis

The phenotype is not always determined precisely by the genotype. |

A disease gene with two alleles H and D

Genotype | Phenotype
H/H healthy
H/D healthy
D/D ill with probability .9




Genetic Linkage Analysis

The phenotype is not always determined precisely by the genotype. |

A disease gene with two alleles H and D

Genotype | Phenotype
H/H healthy
H/D healthy
D/D ill with probability .9

Penetrance

The conditional probability of observing a phenotype (e.g., healthy,
ill) given the genotype (e.g., H/H, H/D, D/D).




Genetic Linkage Analysis

The phenotype is not always determined precisely by the genotype. |

A disease gene with two alleles H and D

Genotype | Phenotype
H/H healthy
H/D healthy
D/D ill with probability .9

Penetrance

The conditional probability of observing a phenotype (e.g., healthy,
ill) given the genotype (e.g., H/H, H/D, D/D).

Penetrance is always 0 or 1 for the ABO gene.
Penetrance is .9 for the phenotype ill given the genotype D /D.




Recombination Events

Haplotype

The alleles received by an individual from one parent. Each
individual has two haplotypes, one paternal and another maternal.

G (AA) /7 G,: (a,a)
G.: (BB) @T/ o |+ fﬁ.ﬁ;
Gp:(Aa) || (o) O (9 Gene Gy has alleles A and a.
G, (B.b) U Gy (bb)
Gene Gy has alleles B and b.
G,:(Aa) /7 TN G (Aal
! | Lydia | | Nancy | !
Gy (bb) \7) ") Gy (Bb)



Recombination Events

@ Mary can pass only one

G (AA) /7

Giofa,al .
Gy (BB) M) pohn | haplotype to her child
Jack: AB.
Gy (Aa) 7N Gy (aa)
G (BB | ™ %) e oy @ John can pass only one
haplotype to Jack: ab.
| @ Jack can pass one of four
haplotypes to his children:
G, (Aa) /N 7N G (Aal
G;: (bb) MY NG c;;_- (B,b) AB Ab aB._ ab.



Genetic Linkage and Gene Maps

If two genes are inherited independently

the probability of a recombination is expected to be 1/2.

Genetic linkage

Two alleles which were passed in the haplotype from a grandparent
to a parent tend to be passed again in the same haplotype from
the parent to a child.

Goal of genetic linkage analysis
Is to estimate the extent to which two genes are linked.




Genetic Linkage and Gene Maps

The extent to which genes G; and Gy are linked

Is measured by a recombination fraction or frequency, 8, which is
the probability that a recombination between G; and Gy will occur.

Genes that are inherited independently

are characterized by a recombination frequency 6 = 1/2 and are
said to be unlinked. Linked genes on the other hand are
characterized by a recombination frequency 6 < 1/2.




Genetic Linkage and Gene Maps

Gemel Linkage between genes

i >“81 . . .
 Gene2- s related to their locations on

S 0, a chromosome within the cell
nucleus. These locations are
typically referred to as loci
(singular: locus).

For genes that are closely located on a chromosome

linkage is inversely proportional to distance between their locations.

The recombination frequency can provide direct evidence

on the distance between genes on a chromosome.




From Pedigrees to Bayesian Networks
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From Pedigrees to Bayesian Networks

Selector variables

—5P;: determines how
individual 7 inherits alleles of
gene j from his father
—SM;: determines how
individual 7 inherits alleles of
gene j from his mother




From Pedigrees to Bayesian Networks
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If SP;; = p then individual / will inherit the allele of gene j

that his father obtained from the grandfather.

If SPjj = m then individual / will inherit the allele of gene j

that his father obtained from the grandmother.




From Pedigrees to Bayesian Networks

(1, if spj = p and gpjj = gp;
1, if spjj = m and gp;; = gmy;;
0, otherwise.

O2p;lepig.amig.spy =

If SP;; = p then the allele GPj; for individual / and gene j

will be inherited from the paternal haplotype of his father k, GPj;

It SP;; = m then the allele GPj; for individual / and gene j

will be inherited from the maternal haplotype of his father k, GM|;




From Pedigrees to Bayesian Networks
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Selectors of second gene SP35 and SM3; have CPTs

that are a function of recombination frequency 12

Selectors of third gene SP33 and SM33 have CPTs

that are a function of recombination frequency 623




From Pedigrees to Bayesian Networks

@P’D |@u: (rGPZI:: \GHD
\ \ ra P / !
Eﬁ\\f‘—-——ﬂa Child: 3 ,_,;-,:--——-‘*"’f“"'#}lij .
Gy (@ L @) | @@ CPT for selector variable SP3
WA ) @ T T "
S N R N P e encodes the recombination
KP_":! (d__::x W ,.»,-—-’_"\ .\_“._,/J f 9
rai T Pl -~ M ) /’_-M\-‘ o
@@ (T e [ requency 012
— I | \3;»3;_ IR j‘,/j
\F1s AT - L \Fs
Father: 1 "i_s_P i3 \,;\"“\,‘ /’f '-ff*_‘@ Mother: 2
|GP "GM\"”*
& '?f/
Py




KK

F 1thu 1

From Pedigrees to Bayesian Networks

CPT for selector variable SP35

encodes the recombination
frequency 61-

recombination between genes 1 and 2
recombination between genes 1 and 2
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Two Loci Inheritance

A A a |a

BB [ @bb
Al a a |a
B/ b |3 @bb

Recombinant /




Bayesian Network for Recombination

Locus 1

Locus 2

1-0 6
P(S,s | Sya, 0) = wheret € {m,f}
23t 13t 0 1_0

96
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Outline

« Bayesian networks and gueries

* Building Bayesian Networks

» Special representations of CPTs

Causal Independence (e.g., Noisy OR)
Context Specific Independence
Determinism

Mixed Networks



Dealing with Large CPTs

The size of a CPT

for binary variable E with binary parents Cy...., C,
Number of Parents: n | Parameter Count: 2"
2 4
3 3
6 64
10 1024
20 1,048,576
30 1,073,741.824




Micro Model

Think about headache and 10 different conditions that may cause it.

r'/-_\- Cl Ql CE QZ C.FI Qn
o C
/L1

A noisy-or circuit

A micro model

details the relationship between a variable E and its parents

Ci,..., Cph.

We wish to specify cpt with less parameters



Binary OR

()
(X

00 1 0
01 0 1
110 0 1
111 0 1

Causal Indepedence 101



Noisy-or Model

Cl Ql Cz Qz C Q
L] |
|"\ .__,,f'| |‘~..___,,f' R
_
L
e
E!

@ Cause (; is capable of establishing effect E, except under some
unusual circumstances summarized by suppressor Q;.

@ When suppressor Q; is active, C; is no longer able to establish E.

@ The leak variable L represents all other causes of E which were not
modeled explicitly.

@ When none of the causes (; are active, the effect E may still be
established by the leak variable L.



Noisy—or Model

!
k_J | | The noisy-or model requires }

n + 1 parameters.




Noisy—or Model

| ] . .
NN J N/ The noisy-or model requires
n + 1 parameters. }

To model the relationship between headache and ten different
conditions

@ 0, = Pr(Q;=active): probability that suppressor of C; is active.

@ 6 = Pr(L=active): probability that leak is active.




Noisy-or Model

@ Let /, be the indices of causes that are active in «.



Noisy-or Model

@ Let /|, be the indices of causes that are active in a.

o If
«: (1 =active, (» = active, (3 =passive, (4 = passive, (5 = active,

then I, = {1,2,5}.



Noisy-or Model

@ Let /, be the indices of causes that are active in «.

o If
«v: (1 =active, (o =active, (3 =passive, (4 =passive, (5 = active.

then [, = {1,2,5}.
@ We then have
Pr(E =passive|ar) = (1 —46)) H O,

icla
Pr(E =active|a) = 1 — Pr(E=passive|a).



Noisy-or Model

@ Let /, be the indices of causes that are active in .

o If
«: (1 =active, (o = active, (3 =passive, (4 = passive, Cg = active,

then [, = {1,2,5}.
@ We then have
Pr(E =passive|la) = (1-—6)) H O,

icly
Pr(E =active|or) = 1 — Pr(E =passive|q).

The full CPT for variable E, with its 2" parameters, can be
induced from the n + 1 parameters of the noisy-or model.



Noisy-or Model

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis (T).




Noisy-or Model

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis (T).

If we assume that S is related to its causes by a noisy-or model

we can then specify the CPT for S by the following four probabilities:

@ [ he suppressor probability for cold, say .15
@ [ he suppressor probability for flu, say, .01

@ [he suppressor probability for tonsillitis, say .05

@ [he leak probability, say .02




Noisy-or Model

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis (T).




Noisy-or Model

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis (T).

The CPT for sore throat is then determined completely as follows:

C F T S Osic.f.t

true true true true 0.9999265 | 1 — (1 —.02)(.15)(.01)(.05)
true true false true 0.99853 1 —(1—.02)(.15)(.01)

true false true true 0.99265 1 —(1—.02)(.15)(.05)
false false false true .02 1—(1-.02)




Noisy/OR CPDs

Figure 11:
906 links.

|lnmwil,-«.\:\ :
- -u(uvrit A
ATV ARE

- 'nmvww

R 7 9 1A

B, 74| 'mm fi
u'um"J

1
mmmmw 'mw

t'mmwmﬂ [
0 g A

e
N TR
B ’m :ﬂ—:
AR T A,
L*‘_T“Tz)vz_t
el :

L VR
g !&%"%‘"&?

7

] MW’V’%/ WM@ s
” -

the cpoe

s network for diagnosis of internal discases.

Tule wh\wmam =

The network contains 448 nodes.



Independence of Causal Influence

PR I LetAbe arandom variable
() \g\ ) ) () with k parents X,,...,X..
SO The CPT P(Y|Xy,...X,)
W/ exhibits independence of
I L Independence of causal indlaenee Causal I nfluence (ICI) If it

IS described via a network
fragment of the structure
shown in on the left where
CPT of Z is a deterministic
functions f.



Context Specific Independence

* When there Is conditional independence In
some specific variable assignment

* Reading:
Darwiche chapter 5
Koller & Freidman Chapter 5

Pearl Chapter 4

115



Decision Trees

Can we use hidden variables?

ci|c2lcica | PrE=1) R
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If-Then Rules

A CPT for variable E can be represented using a set of if-then

rules of the form

If v then Pr(e) = pj, for each value e of variable E, where «; is a
propositional sentence constructed using the parents of variable E.




If-Then Rules

A CPT for variable E can be represented using a set of if-then

rules of the form

If vj then Pr(e) = pj, for each value e of variable E, where «; is a
propositional sentence constructed using the parents of variable E.

f =1 then Pr(E=1)=0.0
If G=0A G =1 then Pr(E=1)=0.9
If G=0AC=0ACs=1 then Pr(E=1)=0.3

|f C1:O/\C2:0/\C3:O/\C4:1 then PI(E:].):O6
|f C]_:O/\ CQIO/\CQ,:O/\C.;;:O then PI‘(E:].):OS



If-Then Rules

A CPT for variable E can be represented using a set of if-then

rules of the form

If aj then Pr(e) = pj, for each value e of variable E, where «; is a
propositional sentence constructed using the parents of variable E.

For the rule-based representation to be complete and consistent

@ The premises «; must be mutually exclusive. That is, a; A «;
Is inconsistent for / #= j. This ensures that the rules will not
conflict with each other.

@ The premises a; must be exhaustive. That is, \/; a; must be
valid. This ensures that every CPT parameter 0, is implied
by the rules.




A student’'s example

Intelligence
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Tree CPD

If the student does not Apply, SAT and L are irrelevant

0.8,0.2) S
| y
(0.1,0.9)
0 o
(0.9,0.1) (0.4,0.6)

Tree-CPD for JOb Causal Indepedence 121



Captures irrelevant variables

C
cl c2

/\
|10 L |11 |20 L2 |21
N o

(09,01) (0307) (0.802)  (0.1,09)

Clettert) | Clefter2
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Multiplexer CPD

A CPD P(Y|A,Z1,Z22,...,ZK) is a multiplexer iff
Val(A)=1,2,.. .k, and

P(Y|A,Z1,...ZK)=Z a

Causal Indepedence 123



Mixture of trees

7=1 z=2 z=3

N

\/
. :T & ,\/ (c
(@) ——) (d (e) (d) )

>, &) \d) \&) &

Figure 1: A mixture of trees over a domain consisting of random variables V' = {a, b, c,d. e},
where 2 is a hidden choice variable. Conditional on the value of z. the depen-
dency structure is a tree. A detailed presentation of the mixture-of-trees model
is provided in Section 3.

Meila and Jordan, 2000



Mixture model with shared structure

Figure 4: A mixture of trees with shared structure (MTSS) represented as a Bayes net (a)
and as a Markov random field (b).

Meila and Jordan, 2000



Deterministic CPTs

A deterministic, or functional CPT

is one in which every probability is either 0 or 1

A deterministic CPT for variable E with values eq, ..., en

can be represented by a set of propositional sentences of the form:
[, <— E—=¢.

where we have one rule for each value ¢ of E, and the premises [;
are mutually exclusive and exhaustive.

_af

The CPT for variable E is then given by

1, if parent instantiation « is consistent with [';
Oeija = i
0, otherwise.




Deterministic CPTs

Can we use hidden variables?

A X C Oc|a,x
high ok high 0O
low ok high 1
high stuckatO high 0
low stuckatO high 0
high stuckatl high 1
low stuckatl high 1

We can represent this CPT as follows

(X =0k AN A=high) vV X =stuckat0 <= C=low
(X=0ok N A=low) V X =stuckatl <= C=high




Generalized linear models

(see Koller 5.4.2)

Let Y be a binary-valued variable with parents the X_i’s that can take a numerical value (discrete).
The CPT P(Y[X_1,...X_n) is a logistic CDT if there are w's such that

P(y|xq, ..., x,)= sigmoid(wy + X5, w;x;)

zZ

sigmoid(z) = T o2



Mixed Networks
(Dechter 2013)

Augmenting Probabilistic networks with
constraints because:

Some Iinformation Iin the world I1s deterministic and
undirected (X not-eq Y)

Some queries are complex or evidence are complex
(cnfs)

Queries are probabilistic queries



Probabilistic Reasoning

Party example: the weather effect

Alex Is- -to-go in bad weather

. . H P(A|W=bad)=.9
Chris rarely-goes in bad weather
H P(C|W=bad)=.1

QD—@ rEW=bad)=5

Becky is indifferent but

Questions: —— —
goo .
Given bad weather, which group of individuals is good | 1 99
most likely to show up at the party? bad | 0 1
What is the probability that Chris goes to the party but bad | 1 9
Becky does not?
P(W,A,C,B) = P(B|W) - P(C|W) - P(A|W) - P(W) J

P(A,C,B|W=bad)=0.9- 0.1 - 0.5
130Changes’05



Party example again

PN CN
)
@ O©
@ ©
Query:
Is it likely that Chris goes to the
_ party if Becky does not but the
Semantics? weather is bad?
Algorithms?

P(C,—B|w=bad,A— B,C > A)



