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Bayesian Networks:
Capturing Independence by Directed Graphs

COMPSCI 276, Spring 2017

Set 3: Rina Dechter

(Reading: Pearl chapter 3, Darwiche chapter 4)





d-separation

 To test whether X and Y are d-separated by Z in dag G, we 
need to consider every path between a node in X and a node in 
Y, and then ensure that the path is blocked by Z.

 A path is blocked by Z if at least one valve (node) on the path 
is ‘closed’ given Z.

 A divergent valve or a sequential valve is closed if it is in Z

 A convergent valve is closed if it is not on Z nor any of its 
descendants are in Z.
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No path 
Is active =
Every path is
blocked













Constructing a Bayesian Network for 
any Distribution P







Bayesian Networks as i-maps 

 E: Employment

 V: Investment

 H: Health

 W: Wealth

 C: Charitable 
contributions

 P: Happiness
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Are C and V d-separated give E and P?
Are C and H d-separated?



Idsep(R,EC,B)?



Idsep(R,EC,B)?



Idsep(R,∅,C)?



¬Idsep(R,∅,C)?



d-separation using ancestral graph

 X is d-separated from Y given Z (<X,Z,Y>d) iff:

 Take the ancestral graph that contains X,Y,Z and their ancestral subsets.

 Moralized the obtained subgraph

 Apply regular undirected graph separation

 Check:  (E,{},V),(E,P,H),(C,EW,P),(C,E,HP)?
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Idsep(C,S,B)=?



Idsep(C,S,B)







We already showed that: 



It is not a d-map



Perfect Maps for Dags

 Theorem 10 [Geiger and Pearl 1988]: For any dag D 
there exists a P such that D is a perfect map of P 
relative to d-separation.

 Corollary 7: d-separation identifies any implied 
independency that follows logically from the set of 
independencies characterized by its dag.
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The ancestral undirected graph G of a directed graph D is
An i-map of D. Is it a Markov network of D?



Blanket Examples



Blanket Examples



Markov assumptions in G:





Bayesian Networks as 
Knowledge-Bases

 Given any distribution, P, and an ordering we can 
construct a minimal i-map.

 The conditional probabilities of x given its parents is 
all we need.

 In practice we go in the opposite direction: the 
parents must be identified by human expert… they 

can be viewed as direct causes, or direct influences.
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The role of causality
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Back to Markov random fields (if time)



How can we construct a probability
Distribution that will have all these 
independencies?



So, How do we learn
Markov networks From data?

Markov Random Field (MRF)



G is locally markov
If neighbors make every 
Variable independent
From the rest.

Markov Random Field (MRF)



Pearl says: this 
information must 
come from 
measurements or 
from experts.
But what about 
learning?







Product form over Markov trees





Trees are not the only distributions that have product 
meaningful  forms. They can generalize to join-trees
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The running intersection property




