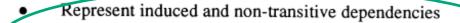


Bayesian Networks: Capturing Independence by Directed Graphs

COMPSCI 276, Spring 2017

Set 3: Rina Dechter

BAYESIAN NETWORKS



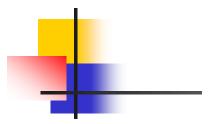
- Employ meaningful parameters
- d-separation: paths that traverse converging arrows are blocked until the consequence variable (or any of its descendents) is instantiated.

$$coin 1 \rightarrow bell \leftarrow coin 2$$

- d-separation is the usual cutset criterion whenever the arrows are diverging (height ← age → reading ability) or cascaded (weather → wheat crop → wheat price).
 - 1. Given a probability distribution P, can we construct an edge-minimal DAG D that is an I-map of P?
 - Given a pair (P, D) can we test whether D is a (minimal) I-map of P?
 - 3. Given a DAG D, can we construct a probability distribution P such that D is a perfect map of P?

- To test whether X and Y are d-separated by Z in dag G, we need to consider every path between a node in X and a node in Y, and then ensure that the path is blocked by Z.
- A path is blocked by Z if at least one valve (node) on the path is 'closed' given Z.
- A divergent valve or a sequential valve is closed if it is in Z
- A convergent valve is closed if it is not on **Z** nor any of its descendants are in **Z**.

DEPENDENCE SEMANTICS FOR BAYESIAN NETWORKS



DEFINITION: If X, Y, and Z are three disjoint subsets of nodes in a DAG D, then Z is said to d-separate X from Y, denoted $\langle X \mid Z \mid Y \rangle_D$, if there is no path between a node in X and a node in Y along which the following two conditions hold: (1) every node with converging arrows is in Z or has a descendent in Z and (2) every other node is outside Z.

 If a path satisfies the condition above, it is said to be active; otherwise, it is said to be blocked by Z.

$$<2|1|3>_D$$
, $\neg<2|15|3>_D$

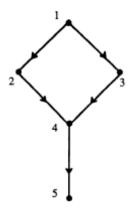


Figure 3.10. A DAG depicting *d-separation*; node 1 blocks the path 2-1-3, while node 5 activates the path 2-4-3.

No path
Is active =
Every path is
blocked

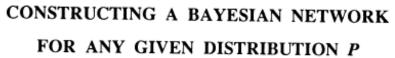
BAYESIAN NETWORKS AS I-MAPS

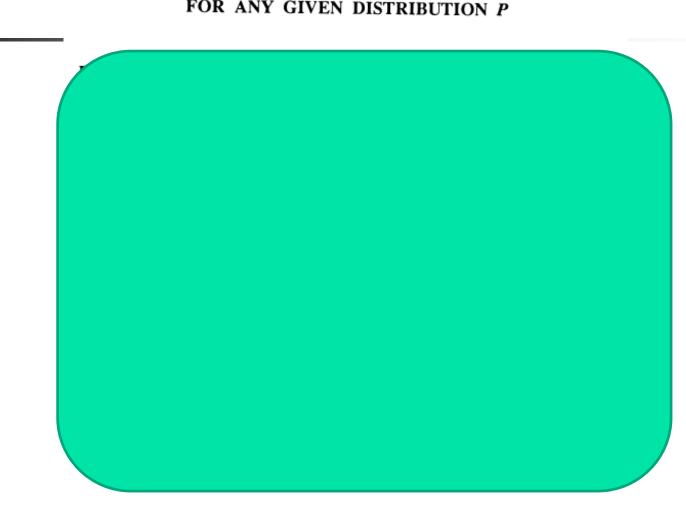
DEFINITION: A DAG D is said to be an I-map of a dependency model M if every d-separation condition displayed in D corresponds to a valid conditional independence relationship in M, i.e., if for every three disjoint sets of vertices X, Y, and Z we have

$$\langle X | Z | Y \rangle_D \Rightarrow I(X, Z, Y)_M$$
.

 A DAG is a minimal I-map of M if none of its arrows can be deleted without destroying its I-mapness.

DEFINITION: Given a probability distribution P on a set of variables U, a DAG $D = (U, \overrightarrow{E})$ is called a *Bayesian network* of P iff D is a minimal I-map of P.





CONSTRUCTING A BAYESIAN NETWORK FOR ANY GIVEN DISTRIBUTION P

DEFINITION: Let M be a dependency model defined on a set $U = \{X_1, X_2, ..., X_n\}$ of elements, and let d be an ordering $(X_1, X_2, ..., X_i, ...)$ of the elements of U.



CONSTRUCTING A BAYESIAN NETWORK FOR ANY GIVEN DISTRIBUTION P

DEFINITION: Let M be a dependency model defined on a set $U = \{X_1, X_2, ..., X_n\}$ of elements, and let d be an ordering $(X_1, X_2, ..., X_i, ...)$ of the elements of U.

- The **boundary strata** of M relative to d is an ordered set of subsets of U, $(B_1, B_2, ..., B_i, ...)$, such that each B_i is a Markov boundary of X_i with respect to the set $U_{(i)} = \{X_1, X_2, ..., X_{i-1}\}$, i.e., B_i is a minimal set satisfying $B_i \subseteq U_{(i)}$ and $I(X_i, B_i, U_{(i)} B_i)$.
- The DAG created by designating each B_i as parents of vertex X_i is called a boundary DAG of M relative to d.

CONSTRUCTING A BAYESIAN NETWORK FOR ANY GIVEN DISTRIBUTION P

DEFINITION: Let M be a dependency model defined on a set $U = \{X_1, X_2, ..., X_n\}$ of elements, and let d be an ordering $(X_1, X_2, ..., X_i, ...)$ of the elements of U.

- The **boundary strata** of M relative to d is an ordered set of subsets of U, $(B_1, B_2, ..., B_i, ...)$, such that each B_i is a Markov boundary of X_i with respect to the set $U_{(i)} = \{X_1, X_2, ..., X_{i-1}\}$, i.e., B_i is a minimal set satisfying $B_i \subseteq U_{(i)}$ and $I(X_i, B_i, U_{(i)} B_i)$.
- The DAG created by designating each B_i as parents of vertex X_i is called a *boundary DAG* of M relative to d.

THEOREM 9: [Verma 1986]: Let M be any semi-graphoid (i.e., any dependency model satisfying the axioms of Eqs. (3.6a) through (3.6d)). If D is a boundary DAG of M relative to any ordering d, then D is a minimal I-map of M.

Constructing a Bayesian Network for any Distribution P

COROLLARY 3: Given a probability distribution $P(x_1, x_2,..., x_n)$ and any ordering d of the variables, the DAG created by designating as parents of X_i any minimal set Π_{X_i} of predecessors satisfying

$$P(x_i \mid n_{X_i}) = P(x_i \mid x_1, ..., x_{i-1}), \ \Pi_{X_i} \subseteq \{X_1, X_2, ..., X_{i-1}\}$$
(3.27)

is a Bayesian network of P.

• If P is strictly positive, then all of the parent sets are unique (see Theorem 4) and the Bayesian network is unique (given d).

COROLLARY 4: Given a DAG D and a probability distribution P, a necessary and sufficient condition for D to be a Bayesian network of P is that each variable X be conditionally independent of all its non-descendants, given its parents Π_X , and that no proper subset of Π_X satisfy this condition.

Capturing Independence Graphically

These examples of independence are all implied by a formal interpretation of each DAG as a set of conditional independence statements.

Given a variable V in a DAG G:

Parents(V) are the parents of V in DAG G, that is, the set of variables N with an edge from N to V.

 $\operatorname{Descendants}(V)$ are the descendants of V in DAG G, that is, the set of variables N with a directed path from V to N (we also say that V is an ancestor of N in this case).

Non_Descendants(V) are all variables in DAG G other than V, Parents(V) and Descendants(V). We will call these variables the non-descendants of V in DAG G.

Capturing Independence Graphically

We will formally interpret each DAG G as a compact representation of the following independence statements (Markovian assumptions):

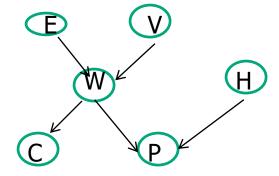
$$I(V, Parents(V), Non_Descendants(V)),$$

for all variables V in DAG G.

- If we view the DAG as a causal structure, then Parents(V)
 denotes the direct causes of V and Descendants(V) denotes
 the effects of V.
- Given the direct causes of a variable, our beliefs in that variable will no longer be influenced by any other variable except possibly by its effects.

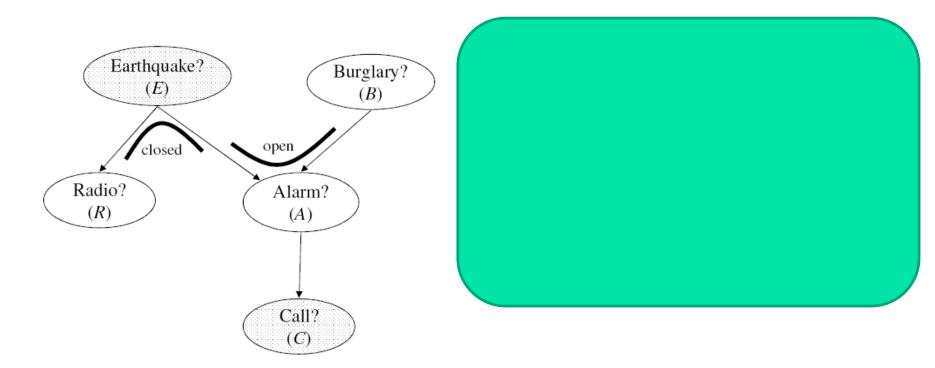
Bayesian Networks as i-maps

- E: Employment
- V: Investment
- H: Health
- W: Wealth
- C: Charitable contributions
- P: Happiness



Are C and V d-separated give E and P? Are C and H d-separated?

Idsep(R,EC,B)?



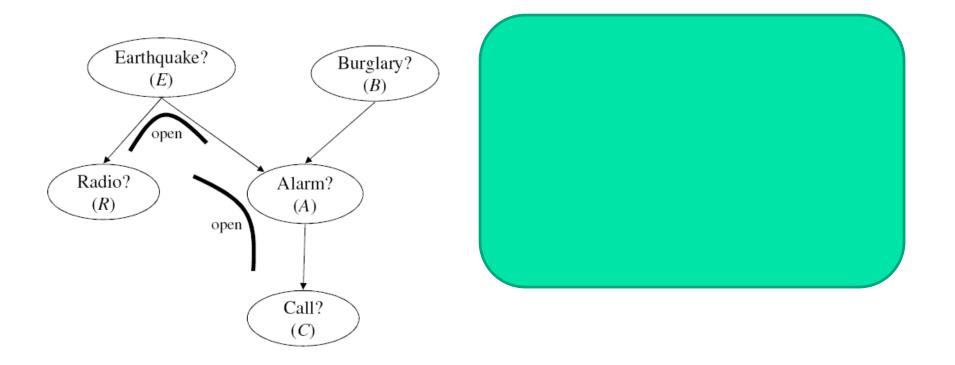
Idsep(R,EC,B)?



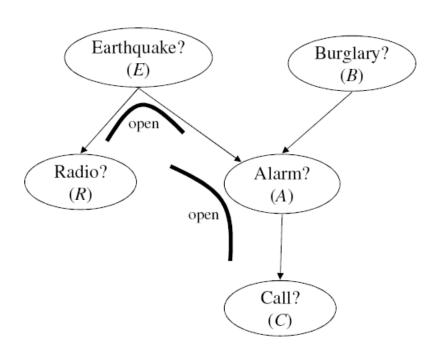
Example

R and B are d-separated by E and C. The closure of only one valve is sufficient to block the path, therefore, establishing d-separation.

 $I_{dsep}(R,\emptyset,C)$?



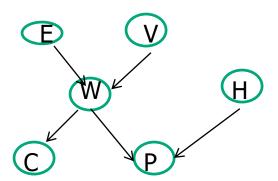
 $\neg I_{dsep}(R,\emptyset,C)$?



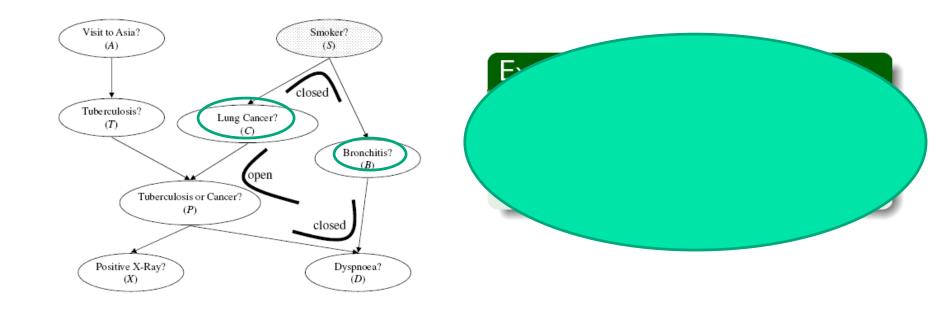
Example

R and C are not d-separated since both valves are open. Hence, the path is not blocked and d-separation does not hold.

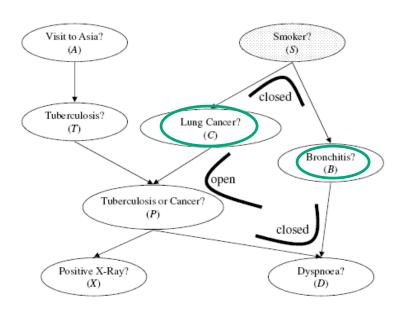
- X is d-separated from Y given Z (<X,Z,Y>d) iff:
 - Take the ancestral graph that contains **X,Y,Z** and their ancestral subsets.
 - Moralized the obtained subgraph
 - Apply regular undirected graph separation
 - Check: (E,{},V),(E,P,H),(C,EW,P),(C,E,HP)?



$$I_{dsep}(C,S,B)=?$$

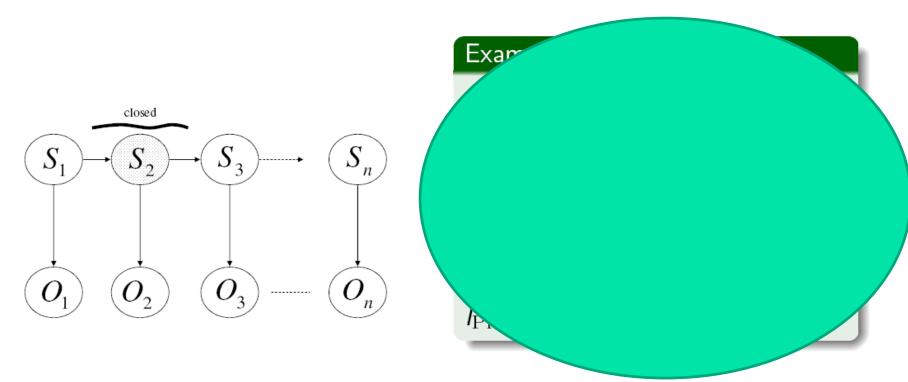


$I_{dsep}(C,S,B)$

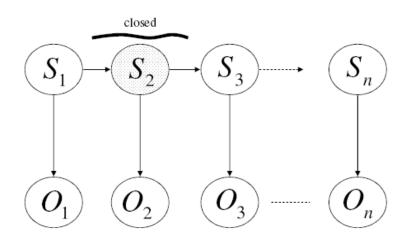


Example

C and B are d-separated by S since both paths between them are blocked by S.



 $I_{Pr}(S_1, S_2, \{S_3, S_4\})$ for any probability distribution Pr which is induced by the DAG.



Example

Any path between S_1 and $\{S_3, S_4\}$ must have the valve $S_1 \rightarrow S_2 \rightarrow S_3$ on it, which is closed given S_2 . Hence, every path from S_1 to $\{S_3, S_4\}$ is blocked by S_2 , and we have $\mathrm{dsep}_G(S_1, S_2, \{S_3, S_4\})$, which leads to $I_{\mathrm{Pr}}(S_1, S_2, \{S_3, S_4\})$.

 $I_{Pr}(S_1, S_2, \{S_3, S_4\})$ for any probability distribution Pr which is induced by the DAG.

Soundness of d-separation

We already showed that:

The d-separation test is sound in the following sense.

Theorem

If \Pr is a probability distribution induced by a Bayesian network (G,Θ) , then

$$\operatorname{dsep}_{\mathcal{G}}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$$
 only if $I_{\operatorname{Pr}}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$.

The proof of soundness is constructive, showing that every independence claimed by d-separation can indeed be derived using the graphoid axioms.

Completeness of d-separation

It is not a d-map

d-separation is not complete in the following sense:

- Consider a network with three binary variables $X \rightarrow Y \rightarrow Z$.
- \bullet Z is not d-separated from X.
- Z can be independent of X in a probability distribution induced by this network.

Example

Choose the CPT for variable Y so that $\theta_{y|x} = \theta_{y|\bar{x}}$.

Y independent of X since

- $\Pr(y) = \Pr(y|x) = \Pr(y|\bar{x})$ and
- $\Pr(\bar{y}) = \Pr(\bar{y}|x) = \Pr(\bar{y}|\bar{x}).$

Z is also independent of X.

- Theorem 10 [Geiger and Pearl 1988]: For any dag D there exists a P such that D is a perfect map of P relative to d-separation.
- Corollary 7: d-separation identifies any implied independency that follows logically from the set of independencies characterized by its dag.

GENERALIZATION OF CELEBRATED MARKOV CHAIN PROPERTY

• If in a sequence of n trials $X_1, X_2, ..., X_n$ the outcome of any trial X_k (where $2 \le k \le n$) depends only on the outcome of the directly preceding trial X_{k-1} , then, given the entire sequence, the outcome of X_k depends only on its predecessor and successor, X_{k-1} and X_{k+1} .

$$I(X_k, X_{k-1}, X_1 \cdots X_{k-2}) \implies I(X_k, X_{k-1}, X_{k+1}, X_1 \cdots X_{k-2}, X_{k+2} \cdots X_n)$$

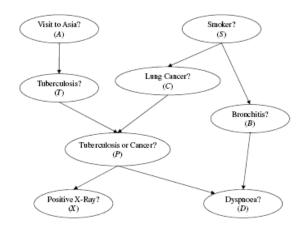
 Theorem 9 generalizes the Markov chain property to nonprobabilistic dependencies and to structures that are not chains.

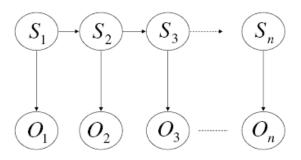
COROLLARY 6: In any Bayesian network, the union of the following three types of neighbors is sufficient for forming a Markov blanket of a node X: the direct parents of X, the direct successors of X, and all direct parents of X's direct successors.

The ancestral undirected graph G of a directed graph D is An i-map of D. Is it a Markov network of D?

Blanket Examples

If \Pr is induced by DAG G, then a Markov blanket for variable X with respect to \Pr can be constructed using its parents, children, and spouses in DAG G. Here, variable Y is a spouse of X if the two variables have a common child in DAG G.

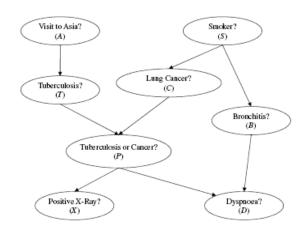




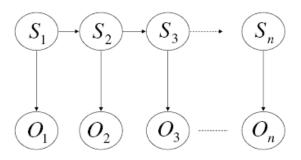
 $\{S_{t-1}, S_{t+1}, O_t\}$ is a Markov blanket for every variable S_t , where t > 1

Blanket Examples

If \Pr is induced by DAG G, then a Markov blanket for variable X with respect to \Pr can be constructed using its parents, children, and spouses in DAG G. Here, variable Y is a spouse of X if the two variables have a common child in DAG G.

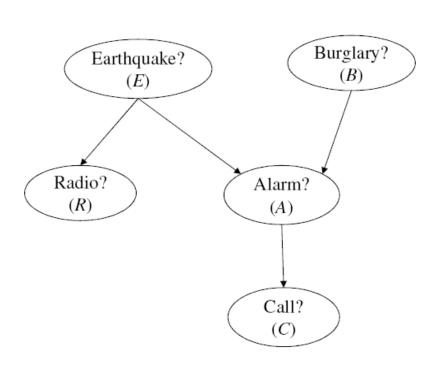


 $\{S, P, T\}$ is a Markov blanket for variable C



 $\{S_{t-1}, S_{t+1}, O_t\}$ is a Markov blanket for every variable S_t , where t > 1

Capturing Independence Graphically



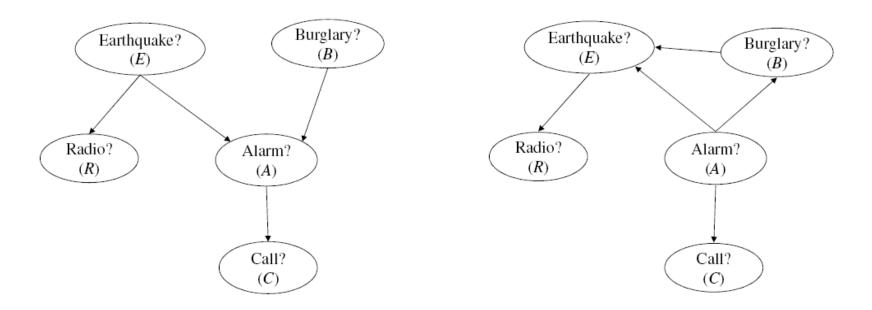
Markov assumptions in G:

$$I(C, A, \{B, E, R\})$$

 $I(R, E, \{A, B, C\})$
 $I(A, \{B, E\}, R)$
 $I(B, \emptyset, \{E, R\})$
 $I(E, \emptyset, B)$

Note that variables B and E have no parents, hence, they are marginally independent of their non-descendants.

Capturing Independence Graphically



Every independence which is declared (or implied) by the second DAG is also declared (or implied) by the first one. Hence, if we accept the first DAG, then we must also accept the second.

- Given any distribution, P, and an ordering we can construct a minimal i-map.
- The conditional probabilities of x given its parents is all we need.
- In practice we go in the opposite direction: the parents must be identified by human expert... they can be viewed as direct causes, or direct influences.

STRUCTURING THE NETWORK

- Given any joint distribution P(x₁,...,x_n) and an ordering d of the variables in U, Corollary 4 prescribes a simple recursive procedure for constructing a Bayesian network.
- Choose X_1 as a root and assign to it the marginal probability $P(x_1)$ dictated by $P(x_1,...,x_n)$.
- If X_2 is dependent on X_1 , a link from X_1 to X_2 is established and quantified by $P(x_2|x_1)$. Otherwise, we leave X_1 and X_2 unconnected and assign the prior probability $P(x_2)$ to node X_2 .
- At the *i*-th stage, we form the node X_i , draw a group of directed links to X_i from a parent set Π_{X_i} defined by Eq. (3.27), and quantify this group of links by the conditional probability $P(x_i \mid \Pi_{X_i})$.
- The result is a directed acyclic graph that represents all the independencies that follow from the definitions of the parent sets.

Conversely, the conditional probabilities $P(x_i \mid \pi_{X_i})$ on the links of the DAG contains all the information necessary for reconstructing the original distribution function.

$$P(x_{1}, x_{2},..., x_{n}) = P(x_{n} | x_{n-1},..., x_{1}) P(x_{n-1} | x_{n-2},..., x_{1})$$

$$\cdots P(x_{3} | x_{2}, x_{1}) P(x_{2} | x_{1}) P(x_{1})$$

$$= \prod_{i} P(x_{i} | \pi_{X_{i}}). \tag{3.28}$$

For example, the distribution corresponding to the DAG of Figure 3.11 can be written by inspection:

$$P(x_1, x_2, x_3, x_4, x_5, x_6)$$
 (3.29)

$$= P(x_6|x_5) P(x_5|x_2, x_3) P(x_4|x_1, x_2) \cdot P(x_3|x_1) P(x_2|x_1) P(x_1).$$

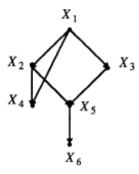
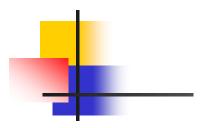
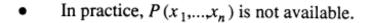


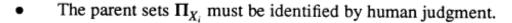
Figure 3.11. A Bayesian network representing the distribution

$$P(x_6|x_5) P(x_5|x_2x_3) P(x_4|x_3x_2)$$

 $P(x_3|x_1) P(x_2|x_1) P(x_1).$







• To specify the strengths of influences, assess the conditional probabilities $P(x_i \mid \pi_{X_i})$ by some functions $F_i(x_i, \pi_{X_i})$ and make sure these assessments satisfy

$$\sum_{X_i} F_i(X_i, \, \mathbf{n}_{X_i}) = 1 \,\,, \tag{3.30}$$

where $0 \le F_i(x_i, \pi_{X_i}) \le 1$

 This specification is complete and consistent because the product form

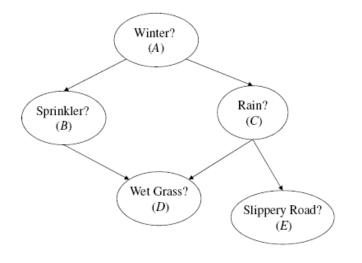
$$P_a(x_1, ..., x_n) = \prod_i F_i(x_i, \pi_{X_i})$$
 (3.31)

constitutes a joint probability distribution that supports the assessed quantities.

$$P_{a}(x_{i} \mid \mathbf{n}_{X_{i}}) = \frac{P_{a}(x_{i}, \mathbf{n}_{X_{i}})}{P_{a}(\mathbf{n}_{X_{i}})} = \frac{\sum_{x_{j} \notin (x_{i} \cup \Pi_{X_{i}})} P_{a}(x_{1}, ..., x_{n})}{\sum_{x_{j} \notin \Pi_{X_{i}}} P_{a}(x_{1}, ..., x_{n})} = F_{i}(x_{i}, \mathbf{n}_{X_{i}}) \times (\mathbf{n}_{X_{i}}) \times (\mathbf{$$

 DAGs constructed by this method will be called Bayesian belief networks or causal networks interchangeably.

Parameterizing the Independence Structure



Α	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

Α	C	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

Α	$\Theta_{\mathcal{A}}$
true	.6
false	.4

В	С	D	$\Theta_{D B,C}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

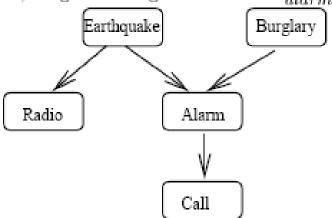
С	Ε	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1
		1

Parameterizing the Independence Structure

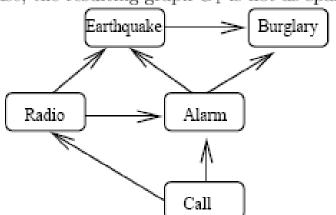
- The CPT $\Theta_{X|\mathbf{U}}$ is exponential in the number of parents \mathbf{U} .
- If every variable can take up to d values, and has at most k parents, the size of any CPT is bounded by $O(d^{k+1})$.
- If we have n network variables, the total number of Bayesian network parameters is bounded by $O(n \cdot d^{k+1})$.
- This number is quite reasonable as long as the number of parents per variable is relatively small.

The role of causality

 $\ell, C.$ In this case, we get our original network $G_{\underline{alarm}};$



 7 , 1 , 1 . In this case, the resulting graph 1 is not as sparse:



THE ROLE OF CAUSALITY

 The topology of a Bayesian network can be extremely sensitive to the node ordering d.

e.g., a tree in one ordering might become a complete graph if that ordering is reversed.

 Why do people agree on whether two propositions are directly or indirectly related?

Social convention of adopting a standard ordering of events that conforms to the flow of time and causation.

Why, do we use temporal ordering to organize our memory?

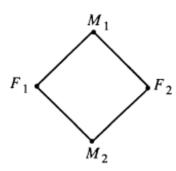
Information about temporal precedence is more readily available than other indexing information?

Networks constructed with temporal ordering are inherently more parsimonious?

Back to Markov random fields (if time)

MARKOV NETWORK AS A KNOWLEDGE BASE





How can we construct a probability Distribution that will have all these independencies?

Figure 3.2. An undirected graph representing interactions among four individuals.

QUANTIFYING THE LINKS

- If couple (M₁, F₂) meet less frequently than the couple (M₁, F₁), then the first link should be weaker than the second
- The model must be consistent, complete and a Markov field of G.
- Arbitrary specification of P(M₁, F₁), P(F₁, M₂), P(M₂, F₂), and P(F₂, M₁) might lead to inconsistencies.
- If we specify the pairwise probabilities of only three pairs, incompleteness will result.

Markov Random Field (MRF)

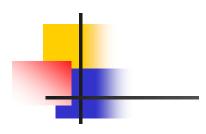
- A safe method (called *Gibbs' potential*) for constructing a complete and consistent quantitative model while preserving the dependency structure of an arbitrary graph G.
 - Identify the cliques† of G, namely, the largest subgraphs whose nodes are all adjacent to each other.
 - 2. For each clique C_i , assign a nonnegative compatibility function $g_i(c_i)$, which measures the relative degree of compatibility associated with the value assignment c_i to the variables included in C_i .
 - 3. Form the product $\prod_{i} g_{i}(c_{i})$ of the compatibility functions over all the cliques.
 - Normalize the product over all possible value combinations of the variables in the system

$$P(x_1,...,x_n) = K \prod_i g_i(c_i),$$
 (3.13)

where

[†] We use the term clique for the more common term maximal clique.

Markov Random Field (MRF)



G is locally markov If neighbors make every Variable independent From the rest. **THEOREM 6** [Hammersley and Clifford 1971]: A probability function P formed by a normalized product of nonnegative functions on the cliques of G is a Markov field relative to G, i.e., G is an I-map of P.

Proof: G is guaranteed to be an I-map if P is locally Markov relative to G (Theorem 5). It is sufficient, therefore, to show that the neighbors in G of each variable α constitute a Markov blanket of α relative to P, i.e., that $I(\alpha, B_G(\alpha), U - \alpha - B_G(\alpha))$ or (using Eq. (3.5c)) that

$$P(\alpha, \mathbf{B}_G(\alpha), \mathbf{U} - \alpha - \mathbf{B}_G(\alpha)) = f_1(\alpha, \mathbf{B}_G(\alpha)) f_2(\mathbf{U} - \alpha). \tag{3.17}$$

• Let J_{α} stand for the set of indices marking all cliques in G that include α , $J_{\alpha} = \{j : \alpha \in C_j \}$. Since P is in product form, we can write

$$P(\alpha,\beta,\ldots) = K \prod_j \mathsf{g}_j(c_j) = K \prod_{j \in J_\alpha} \mathsf{g}_j(c_j) \prod_{j \notin J_\alpha} \mathsf{g}_j(c_j). \tag{3.18}$$

• The first product in Eq. (3.18) contains only variables that are adjacent to α in G; otherwise, C_j would not be a clique. According to the definition of J_{α} , the second product does not involve α . Thus, Eq. (3.17) is established. Q.E.D.

INTERPRETING THE LINK PARAMETERS

It is difficult to assign meanings to the parameters of the compatibility functions.

- Given the joint probability $P(M_1, F_1, F_2, M_2)$, to infer the compatibility functions g_i we must solve a set of simultaneous nonlinear equations for g_i
- The solution for g_i will not be applicable to new situations.
- For a parameter to be meaningful, it must be an abstraction of some invariant property of one's experience.
- The quantities $P(f_1|m_1, \neg m_2)$ and $P(f_1|\neg m_1, \neg m_2)$ and their relations to the frequency of interaction of couple $\{M_1, F_1\}$ are perceived as invariant characteristics of the disease.
- The Markov network formulation does not allow the direct specification of such judgmental input.
- Judgments about low-order conditional probabilities (e.g., P(m₁|f₁, ¬m₂)) can be taken only as constraints that the joint probability distribution (Eq. (3.13)) must satisfy; from them, we might be able to calculate the actual values of the compatibility parameters.

Pearl says: this information must come from measurements or from experts. But what about learning?

DECOMPOSABLE MODELS

 Consider a distribution P having a Markov network in the form of a chain

$$X_1 - X_2 - X_3 - X_4$$
.

Expand P in the order dictated by the chain,

$$P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) = P\left(x_{1}\right) P\left(x_{2} | x_{1}\right) P\left(x_{3} | x_{1}, x_{2}\right) P\left(x_{4} | x_{1}, x_{2}, x_{3}\right),$$

Using the conditional independencies encoded in the chain, we obtain

$$P(x_1, x_2, x_3, x_4) = P(x_1) P(x_2|x_1) P(x_3|x_2) P(x_4|x_3).$$

- P is a product of three functions, pairwise conditional probabilities.
- Expand P in the order (X_3, X_2, X_4, X_1) , we get

$$P(x_3, x_2, x_4, x_1) = P(x_3) P(x_2 | x_3) P(x_4 | x_3, x_2) P(x_1 | x_3, x_2, x_4)$$

$$= P(x_3) P(x_2 | x_3) P(x_4 | x_3) P(x_1 | x_2),$$

- As we order the variables from left to right, every variable except the first should have at least one of its graph neighbors to its left.
- (X_1, X_4, X_2, X_3) would not yield the desired product form because X_4 is positioned to the left of its only neighbor, X_3 .

Product form over Markov trees

 Two ways to find product-form distribution for Markov Trees: directed trees and product division.

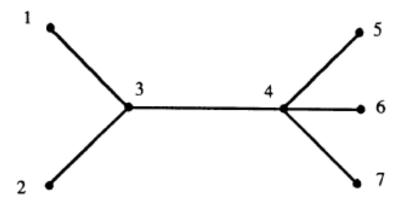


Figure 3.7. An undirected tree of seven variables.

 Choose node 3 as a root and assign to the links arrows pointing away from the root. Write the product distribution by inspection, going from parents to children:

$$P(1,...,7) = P(3) P(1|3) P(2|3) P(4|3) P(5|4) P(6|4) P(7|4).$$
(3.20)

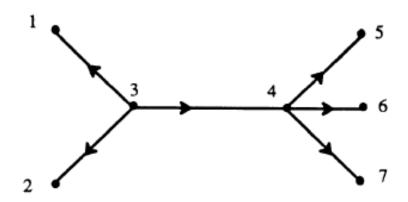


Figure 3.8. A directed tree with root 3.

 The second method: divide the product of the marginal distributions on the edges (i.e., cliques) by the product of the distributions of the intermediate nodes (i.e., the intersections of the cliques).

$$P(1, ..., 7) = \frac{P(1, 3) P(2, 3) P(3, 4) P(4, 5) P(4, 6) P(4, 7)}{P(3) P(3) P(3) P(4) P(4) P(4)},$$
 (3.21)

 Each variable in the denominator appears one more time than it appears in the numerator.

Trees are not the only distributions that have product meaningful forms. They can generalize to join-trees

JOIN TREES

$$P(a,b,c,d,e) = P(a) P(b | a) P(c | a,b) P(d | a,b,c) P(e | a,b,c,d)$$

$$= P(a) P(b | a) P(c | a,b) P(d | b,c) P(e | c)$$

$$= \frac{P(a,b,c) P(b,c,d)}{P(b,c)} \frac{P(c,e)}{P(c)}.$$
(3.22)

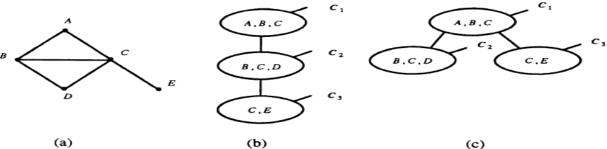
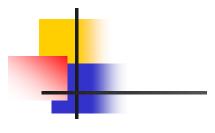


Figure 3.9. Two join trees, (b) and (c), constructed from the cliques of the graph in (a).

- The numerator is a product of the distributions of the cliques, and the denominator is a product of the distributions of their intersections.
- P(c) appears only once in the denominator.
- The unique feature of the graph in Figure 3.9a: there is a tree that is an I-map of P, with vertices corresponding to the cliques of G.



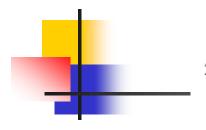
DEFINITION: An undirected graph G = (V, E) is said to be *chordal* if every cycle of length four or more has a chord, i.e., an edge joining two nonconsecutive vertices.

THEOREM 7: Let G be an undirected graph G = (V, E). The following four conditions are equivalent:

- G is chordal.
- The edges of G can be directed acyclically so that every pair of converging arrows emanates from two adjacent vertices.
- 3. All vertices of G can be deleted by arranging them in separate piles, one for each clique, and then repeatedly applying the following two operations:
 - Delete a vertex that occurs in only one pile.
 - Delete a pile if all its vertices appear in another pile.
- 4. There is a tree T (called a join tree) with the cliques of G as vertices, such that for every vertex v of G, if we remove from T all cliques not containing v, the remaining subtree stays connected. In other words, any two cliques containing v are either adjacent in T or connected by a path made entirely of cliques that contain v.

The running intersection property

HOW EXPRESSIVE ARE BAYESIAN NETWORKS?



- Can all dependencies that are representable by a Markov network also be represented by a Bayesian network?
- 2. How well can Bayesian networks represent the type of dependencies induced by probabilistic models?
 - A diamond-shaped Markov network asserts I (A, BC, D) and I (B, AD, C).

No Bayesian network can express these two relationships simultaneously and exclusively.

 Every chordal graph can be oriented so that the tails of every pair of converging arrows are adjacent.

Hence, every dependency model that is isomorphic to a chordal graph is also isomorphic to a DAG.

