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BAYESIAN NETWORKS

/Rmmuced and non-transitive dependencies

Employ meaningful parameters

- d-separation: paths that traverse converging arrows are blocked
until the consequence variable (or any of its descendents) is
instantiated.

coin 1 = bell « coin 2

e  d-separation is the usual cutset criterion whenever the arrows are
diverging (height « age — reading ability) or cascaded (weather
— wheat crop — wheat price).

1.  Given a probability distribution P, can we construct an
edge-minimal DAG D that is an / -map of P ?

2. Given a pair (P, D) can we test whether D is a (minimal) [ -
map of P ?

3. Given a DAG D, can we construct a probability distribution
P such that D is a perfect map of P?



d-separation

= 1o test whether X and Y are d-separated by Z in dag G, we
need to consider every path between a node in X and a node in
Y, and then ensure that the path is blocked by Z.

= A path is blocked by Z if at least one valve (node) on the path
is ‘closed’ given Z.

= A divergent valve or a sequential valve is closed if it is in Z

= A convergent valve is closed if it is not on Z nor any of its
descendants are in Z.



DEPENDENCE SEMANTICS FOR BAYESIAN NETWORKS

DEFINITION: If X, Y, and Z are three disjoint subsets of nodes in a
DAG D, then Z is said mI from Y, denoted
<X | Z 1Y >p, if there is no path berw anode in X and anodein¥
along which the following two conditions hold: (1) every node with
converging arrows is in Z or has a descendent in Z and (2) every other
node is outside Z .

. If a path satisfies the condition above, it is said to be active;
otherwise, it is said to be blocked by Z .

<21113>p , =<211513>,

Figure 3.10. A DAG depicting d-separation; node 1 blocks
the path 2-1-3, while node 5 activates the path 2-4-3.

No path

Is active =
Every path is
blocked



BAYESIAN NETWORKS AS I-MAPS

DEFINITION: A DAG D is said to be an I-map of a dependency
model M if every d-separation condition displayed in D corresponds to
a valid conditional independence relationship in M, i.e., if for every
three disjoint sets of vertices X, Y, and Z we have

<XIZIYsp = I(X,Z,Y),.

. A DAG is a minimal [-map of M if none of its arrows can be
deleted without destroying its / -mapness.

DEFINITION: Given a probability distribution P on a set of variables
U, a DAG D =(U,E) is called a Bayesian network of P iff D is a
minimal /-map of P .



CONSTRUCTING A BAYESIAN NETWORK
FOR ANY GIVEN DISTRIBUTION P




CONSTRUCTING A BAYESIAN NETWORK
FOR ANY GIVEN DISTRIBUTION P

DEFINITION: Let M be a dependency model defined on a set
U={X,X5..,X,} of elements, and let d be an ordering
(X1, Xs,..., X;,...) of the elements of U,




CONSTRUCTING A BAYESIAN NETWORK
FOR ANY GIVEN DISTRIBUTION P

DEFINITION: Let M be a dependency model defined on a set
U={X,X5..,X,} of elements, and let d be an ordering
(X1, Xs,..., X;,...) of the elements of U,

. The boundary strata of M relative to d is an ordered set of
subsets of U, (B, B,,..., B;,...), such that each B; is a Markov
boundary of X; with respect to the set Uj;y = {X |, X,,.... X; 1, i.e.,
B, is a minimal set satisfying B; — Uy and /(X;, B;, U;, - B;).

®  The DAG created by designating each B; as parents of vertex X; is
called a boundary DAG of M relative to d.




CONSTRUCTING A BAYESIAN NETWORK
FOR ANY GIVEN DISTRIBUTION P

DEFINITION: Let M be a dependency model defined on a set
U={X,X,,...X,} of elements, and let d be an ordering
(X1, Xs,..., X;,...) of the elements of U,

. The boundary strata of M relative to d is an ordered set of
subsets of U, (B, B,,..., B;,...), such that each B; is a Markov
boundary of X; with respect to the set Uj;y = {X |, X,,.... X; 1, i.e.,
B, is a minimal set satisfying B; — Uy and /(X;, B;, U;, - B;).

. The DAG created by designating each B; as parents of vertex X; is
called a boundary DAG of M relative to d.

THEOREM 9: [Verma 1986]: Let M be any semi-graphoid (i.e., any
dependency model satisfying the axioms of Egs. (3.6a) through (3.6d)).
If D 1s a boundary DAG of M relative to any ordering d, then D is a
minimal /-map of M.



Constructing a Bayesian Network for
any Distribution P

COROLLARY 3: Given a probability distribution P (x 1» X25..., X,, ) and
any ordering d of the variables, the DAG created by designating as
parents of X; any minimal set Iy of predecessors satisfying

Pl:.l.’l- I"X.-) =.P(J.'I- |I1,...,.‘.’"_1) R l'[x'_ [ - [th‘z.,..,Xj._]} (3.27)

is a Bayesian network of P.

. If P is strictly positive, then all of the parent sets are unique (see
Theorem 4) and the Bayesian network is unique (given d).

COROLLARY 4: Given a DAG D and a probability distribution P, a
necessary and sufficient condition for D to be a Bayesian network of P
is that each variable X be conditionally independent of all its non-
descendants, given its parents Ily, and that no proper subset of Ily
satisfy this condition.



Capturing Independence Graphically

These examples of independence are all implied by a formal
interpretation of each DAG as a set of conditional independence
statements.

Given a variable V in a DAG G:

Parents(V') are the parents of V' in DAG G, that is, the set of
variables N with an edge from N to V.

Descendants(V/) are the descendants of V' in DAG G, that is, the
set of variables N with a directed path from V to N
(we also say that V is an ancestor of N in this case).

Non_Descendants(V') are all variables in DAG G other than V/,
Parents(V) and Descendants(V'). We will call these
variables the non-descendants of V' in DAG G.




Capturing Independence Graphically

We will formally interpret each DAG G as a compact
representation of the following independence statements

(Markovian assumptions):

[(V,Parents(V), Non_Descendants(V)),

for all variables V' in DAG G.

o If we view the DAG as a causal structure, then Parents(V)
denotes the direct causes of V' and Descendants(V') denotes

the effects of V.

@ Given the direct causes of a variable, our beliefs in that
variable will no longer be influenced by any other variable
except possibly by its effects.



ayesian Networks as i-maps

E: Employment
V: Investment )
H: Health
W: Wealth

C: Charitable
contributions

P: Happiness

Are C and V d-separated give E and P?
Are C and H d-separated?

13



Idsep(R, EC, B)?




Idsep(R, EC, B)'P

_ B 7 R and B are d-separated by E

/N// and C. The closure of only one
— valve is sufficient to block the

GadioD ;;l_all_lh L -
(R @ path, therefore, establishing
| d-separation.




Idsep(R,@,C)?




ﬂIdsep(R,@,C)?

Ea;’thquaiie‘? B_fm;;yq
SO NNG

——

/\ R and C are not d-separated
| since both valves are open.

Cis(iii)o‘-) Algl)lh, Hence, the path is not blocked
— open “T_/ and d-separation does not hold.

il

v

.



i d-separation using ancestral graph

= X is d-separated from Y given Z (<X,Z,Y>d) iff:

Take the ancestral graph that contains X,Y,Z and their ancestral subsets.
Moralized the obtained subgraph

Apply regular undirected graph separation

Check: (E{},V),(E,P,H),(C,EW,P),(CE,HP)?
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Idsep(C,S,B)= ?

Visit to Asia?
(A)

Tuberculosis?

(1)

e —

Lung Cancer?
()
B

Tuberculosis or Cancer?

(F)
Positive X-Ray?
(X




Idsep(C,S, B)

r/f Visit to Asia? E\I T Smaker? >

A S NG

-

C Tubemm C and B are d-separated by S

since both paths between them

G—x _‘/ are blocked by S.

uberculosis or Cancer? ™
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|

oy (S1, S2, {53, Sa}) for any probability distribution Pr which is
induced by the DAG.




Example

Any path between S; and {53, 5;}
. — - . must have the valve 5;—5,— 53

| on it, which is closed given 5.

| Hence, every path from 57 to

{S3, 54} is blocked by S;, and we
have dsepc(S1, S5, {S3, 54}),

) (0,) (0, ¢ H)-. which leads to
L 2/ N3 N2 Ipr(S1.S2.{S3.541}).

oy (S1, S2, {53, S4}) for any probability distribution Pr which is
induced by the DAG.



Soundness of d-separation

We already showed that:

The d-separation test is sound in the following sense.

If Pr is a probability distribution induced by a Bayesian network
(G,©), then

dsepc(X,Z,Y) only if Ip,(X,Z,Y).

The proof of soundness is constructive, showing that every
independence claimed by d-separation can indeed be derived using
the graphoid axioms.



Completeness of d-separation

It is not a d-map
d-separation is not complete in the following sense:

@ Consider a network with three binary variables X—Y—/Z.
@ / is not d-separated from X.

@ / can be independent of X in a probability distribution
induced by this network.

Choose the CPT for variable Y so that 0, = 0,z.
Y independent of X since

o Pr(y) =Pr(y|x) = Pr(y|x
o Pr(y) =Pr(y|x) = Pr(y
Z is also independent of X.




i Perfect Maps for Dags

= Theorem 10 [Geiger and Pearl 1988]: For any dag D
there exists a P such that D is a perfect map of P
relative to d-separation.

= Corollary 7: d-separation identifies any implied
independency that follows logically from the set of
independencies characterized by its dag.

25



GENERALIZATION OF CELEBRATED
MARKOYV CHAIN PROPERTY

o Ifin a sequence of n trials X |, X,...., X,, the outcome of any trial
Xy (where 2 <k < n) depends only on the outcome of the directly
preceding trial X, _,, then, given the entire sequence, the outcome
of X depends only on its predecessor and successor, X,_, and
Xp1-

T X Xy X)) = I{Ik,Xl o X o Xy o X))

e  Theorem 9 generalizes the Markov chain property to non-
probabilistic dependencies and to structures that are not chains.

COROLLARY 6: In any Bayesian network, the union of the following
three types of neighbors is sufficient for forming a Markov blanket of a
node X: the direct parents of X, the direct successors of X, and all
direct parents of X 's direct successors.

The ancestral undirected graph G of a directed graph D is
An i-map of D. Is it a Markov network of D?



Blanket Examples

If Pr is induced by DAG G, then a Markov blanket for variable X
with respect to Pr can be constructed using its parents, children,
and spouses in DAG G. Here, variable Y is a spouse of X if the
two variables have a common child in DAG G.

0,) (0,) (0,

{S¢_1.5¢11. O} is a Markov
blanket for every variable S;,
where t > 1




Blanket Examples

If Pr is induced by DAG G, then a Markov blanket for variable X
with respect to Pr can be constructed using its parents, children,
and spouses in DAG G. Here, variable Y is a spouse of X if the
two variables have a common child in DAG G.

0,) (0,) (0,

{Si_—1,S¢11, O} is a Markov

{S,P, T} is a Markov blanket for blanket for every variable S;,
h where t > 1

variable C - - -




Capturing Independence Graphically

Markov assumptions in G:

Earthquake"’ Burg aryﬁ
(B ) <JB_/ I(C,A {B,E.R})
I(R.E.{A,B.C})
- I(A.{B.E},R)
Algl)n?/' I(vaa {Ev R})
_T|JJ I(E.0.B)
’birﬁ
Q@/

Note that variables B and E have no parents, hence, they are
marginally independent of their non-descendants.
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Capturing Independence Graphically
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Every independence which is declared (or implied) by the second
DAG is also declared (or implied) by the first one. Hence, if we
accept the first DAG, then we must also accept the second.



Bayesian Networks as
i Knowledge-Bases

= Given any distribution, P, and an ordering we can
construct a minimal i-map.

= The conditional probabilities of x given its parents is
all we need.

= In practice we go in the opposite direction: the
parents must be identified by human expert... they

can be viewed as direct causes, or direct influences.
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BAYESIAN NETWORK AS A KNOWLEDGE BASE

STRUCTURING THE NETWORK

Given any joint distribution P (x, ..., x,) and an ordering d of the
variables in U, Corollary 4 prescribes a simple recursive
procedure for constructing a Bayesian network.

Choose X | as a root and assign to it the marginal probability P (x,)
dictated by P (x,,..., x,, ).

If X, is dependent on X |, a link from X, to X, is established and
quantified by P(x,lx;). Otherwise, we leave X; and X,
unconnected and assign the prior probability P (x,) to node X ,.

At the i-th stage, we form the node X;, draw a group of directed
links to X; from a parent set Ily defined by Eq. (3.27), and
quantify this group of links by the conditional probability
P (x; Iny ).

The result is a directed acyclic graph that represents all the
independencies that follow from the definitions of the parent sets.



Conversely, the conditional probabilities P (x; Iny ) on the links of

the DAG contains all the information necessary for reconstructing
the original distribution function.

PxyXp0 X, ) =P, 1%, _gses X)) Py _y 1 Xy _90eeey X 1)

o Plxglxa, x ) Plxslx)) Pxy)

=I1P(x; Iny,). (3.28)
i

For example, the distribution corresponding to the DAG of Figure
3.11 can be written by inspection:

P(xy, x4, X3, X4, X5, Xg) (3.29)

=Pxglxs) Plxslxs, xq) Plxglxy, x50 Plxslx) Plxsylxy) P(xy).

Figure 3.11. A Bayesian network representing the distribution
Plxglxs) Plxslxgxs) Plxglxsxs)
Pxslx)) Plxylx,) Pix)).



e  Inpractice, P(x.....x, ) is not available.
. The parent sets ITy must be identified by human judgment.

. To specify the strengths of influences, assess the conditional
probabilities P (x; Iny,) by some functions F;(x;, my) and make
sure these assessments satisfy

ZFI(‘II-! "X,-]: 1 . (3,300
X

where 0<F;(x;,ny ) <1

] This specification is complete and consistent because the product
form

Po(xy, o x, ) =11 F;(x;, ny ) (3.31)
i

constitutes a joint probability distribution that supports the
assessed quantities.

b P (xq...x,)
Pa(x;, my,) X e (x; wIily)

P, (ny)

Pa(x;lny,) = =F; (x;, ny )332)

Y Pixpe.,x,)
J:Ji & "x"

. DAGs constructed by this method will be called Bayesian belief
networks or causal networks interchangeably.



Parameterizing the Independence Structure
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Parameterizing the Independence Structure

@ The CPT ©x)y is exponential in the number of parents U.

@ If every variable can take up to d values, and has at most k
parents, the size of any CPT is bounded by O(d**1).

@ If we have n network variables, the total number of Bayesian
network parameters is bounded by O(n- d**+1).

@ This number is quite reasonable as long as the number of
parents per variable is relatively small.



The role of causality

y -l T e ] i £ . X TR : .
.0 LI bhis case, Wi l!E;E.T. CFILY {]-t']gl.llq'l.l netwiork {Juh”,:”_-

;.. In this case, the resulting graph (7, is not as sparse:
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THE ROLE OF CAUSALITY

The topology of a Bayesian network can be extremely sensitive to
the node ordering d.

€.g., a tree in one ordering might become a complete graph if that
ordering is reversed.

Why do people agree on whether two propositions are directly or
indirectly related?

Social convention of adopting a standard ordering of events that
conforms to the flow of time and causation.
Why, do we use temporal ordering to organize our memory?

Information about temporal precedence is more readily available
than other indexing information?

Networks constructed with temporal ordering are inherently more
parsimonious?



Back to Markov random fields (if time)
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MARKOV NETWORK AS A KNOWLEDGE BASE

M,
How can we construct a probability
Distribution that will have all these
F Fy independencies?
M,

Figure 3.2. An undirected graph representing
interactions among four individuals.

QUANTIFYING THE LINKS

. If couple (M, F,) meet less frequently than the couple (M, F,),
then the first link should be weaker than the second

. The model must be consistent, complete and a Markov field of G .

e  Arbitrary specification of P(M,F,), P(F{,M5), P(M,, F5), and
P{F,, M) might lead to inconsistencies.

. If we specify the pairwise probabilities of only three pairs,
incompleteness will result.



Markov Random Field (MRF)

e A safe method (called Gibbs' potential) for constructing a
complete and consistent quantitative model while preserving the

dependency structure of an arbitrary graph G.

1. Identify the cliquest of G, namely, the largest subgraphs
whose nodes are all adjacent to each other.

2. For each clique C;, assign a nonnegative compatibility
function g(¢;), which measures the relative degree of
compatibility associated with the value assignment ¢; to the
variables included in C;.

3. Form the product 1T g,(¢;) of the compatibility functions over
i

all the cliques.

4. Normalize the product over all possible value combinations
of the variables in the system

P X2, ) =K T1 g;(¢;), (3.13)
]

where

T We use the term cligue for the more commaon tem maximal cligue,

So, How do we learn Ko ta !
Markov networks From data?



MidrkOV Rdndadoimn rieid (IViRr)

THEOREM 6 [Hammersley and Clifford 1971]: A probability function

P formed by a normalized product of nonnegative functions on the
cliques of G is a Markov field relative to G, i.e., G is an [-map of P.

Proof: G is guaranteed to be an /-map if P is locally Markov relative to
G (Theorem 5). It is sufficient, therefore, to show that the neighbors in

ffis |9C:I;|Y marklfv . G of each variable o constitute a Markov blanket of « relative to P, i.e.,
nei OrS Make ev .
Variagle independent Y that(a, B (o), U~— - Bg (o) or (using Eq. (3.5¢)) that

From the rest.
P (o, Bg (o), U~ o= Bg(o) = f (o, Bg () fo(U - a). 3.17)

e Let J, stand for the set of indices marking all cliques in G that
include o, J,={j:ae C; . Since P is in product form, we can
write

Pla,B,..) = KIlg(c;) =K IT ge;) IT g;(c;) 3.18
(o, B, ...) ; g;(c;) J_Ejﬂgj(cj}iung,(cj} (3.18)

e  The first product in Eq. (3.18) contains only variables that are
adjacent to o in G ; otherwise, C; would not be a clique. According
to the definition of J,, the second product does not involve o.
Thus, Eq. (3.17) is established. Q.E.D.



INTERPRETING THE LINK PARAMETERS

It is difficult to assign meanings to the parameters of the
compatibility functions.

Given the joint probability P(M,,F, F,,M,), to infer the
compatibility functions g; we must solve a set of simultaneous
nonlinear equations for g,

The solution for g; will not be applicable to new situations.

For a parameter to be meaningful, it must be an abstraction of
some invariant property of one's experience.

The quantities P(f,lm,,—~m,) and P(f,| =m,, —m,) and their
relations to the frequency of interaction of couple {M,, F,} are
perceived as invariant characteristics of the disease.

The Markov network formulation does not allow the direct
specification of such judgmental input.

Judgments about low-order conditional probabilities (e.g.,
P(mlf,,—m,)) can be taken only as constraints that the joint
probability distribution (Eq. (3.13)) must satisfy; from them, we
might be able to calculate the actual values of the compatibility
parameters.

Pearl says: this
information must
come from
measurements or
from experts.
But what about
learning?



DECOMPOSABLE MODELS

Consider a distribution P having a Markov network in the form of
a chain

X —Xr—X1X,
Expand P in the order dictated by the chain,

P(xy,x5,x3,x)=P(x{) P(x,1x) P(x,4 1x 1, %) P(x4lxy, xy,x3),

Using the conditional independencies encoded in the chain, we
obtain

P(xy,x5,x3,%x4)=P(xy) P(x,lxy) P(x; lx5) P(x4lxy).



P 1s a product of three functions, pairwise conditional
probabilities.

Expand P in the order (X4, X5, X4, X 1), we get
P(x3,x2,x4,x1)=P(x3)P(lex3)P(x4!x3,x2)P(x11x3,x2,x4)

=P(x3) P(xylx3) P(xylxs) P(xqlxy),

As we order the variables from left to right, every variable except
the first should have at least one of its graph neighbors to its left.

(X1, X4, X5, X3) would not yield the desired product form because
X 4 1s positioned to the left of its only neighbor, X ;.



‘L Product form over Markov trees

° Two ways to find product-form distribution for Markov Trees:
directed trees and product division.

1 5
s 0O
7 7

Figure 3.7. An undirected tree of seven variables.




Choose node 3 as a root and assign to the links arrows pointing

away from the root. Write the product distribution by inspection,
going from parents to children:

P(1,..7)=P@B)P(I3)PRI3PMAIZNP(SI4)P6I4) P(T14). (3.20)

Figure 3.8. A directed tree with root 3.



The second method: divide the product of the marginal
distributions on the edges (i.e., cliques) by the product of the
distributions of the intermediate nodes (i.e., the intersections of the
cliques).

) = P(1,3)P(2,3)P(3,4)P(4,5) P(4,6)P(4,7)

P(1,..7
P3) P3) PM@) P@H PH# ’

(3.21)

Each variable in the denominator appears one more time than it
appears 1n the numerator.

Trees are not the only distributions that have product
meaningful forms. They can generalize to join-trees



JOIN TREES

Pla,b,c,d,e)=Pa)Pbhla)Pc la,b)yP(dla,.b,c)P(ela,b,c,d)

(a)

=Pla)yPbla)Plcla,b)P(dIb,c)Plelc)

=P(a,b,c)P{b,c,d) Pilc,e)
P(b.c) P(c) (322

(b) (c)

Figure 3.9. Two join trees, (b) and (c),

constructed from the cliques of the graph in (a).

The numerator is a product of the distributions of the cliques, and
the denominator is a product of the distributions of their

intersections.

P (¢ ) appears only once in the denominator.

The unique feature of the graph in Figure 3.9a: there is a tree that
is an / -map of P, with vertices corresponding to the cliques of G.
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DEFINITION: An undirected graph G = (V, E) is said to be chordal if

every cycle of length four or more has a chord, i.e., an edge joining two
nonconsecutive vertices.

THEOREM 7: Let & be an undirected graph & =(V,E). The
following four conditions are equivalent:

l. & is chordal.

(2. The edges of G can be directed acyclically so that every pair of
converging arrows emanates from two adjacent vertices.

3. All vertices of G can be deleted by arranging them in separate
piles, one for each clique, and then repeatedly applying the
following two operations:

. Delete a vertex that occurs in only one pile.

e Delete a pile if all its vertices appear in another pile.

4. There is a tree T (called a join tree) with the cliques of G as
vertices, such that for every vertex v of &, if we remove from T
all cliques not containing v, the remaining subtree stays connected,
In other words, any two cliques containing v are either adjacent in
T or connected by a path made entirely of cliques that contain v. )

The running intersection property



HOW EXPRESSIVE ARE BAYESIAN NETWORKS?

Can all dependencies that are representable by a Markov network
also be represented by a Bayesian network?

How well can Bayesian networks represent the type of
dependencies induced by probabilistic models?

. A diamond-shaped Markov network asserts / (A, BC, D) and
{[(B,AD,C).
No Bayesian network can express these two relationships

simultaneously and exclusively.

. Every chordal graph can be oriented so that the tails of every
pair of converging arrows are adjacent.

Hence, every dependency model that is isomorphic to a
chordal graph is also isomorphic to a DAG.

Chordal Graphs Undirected
DAGS Graphs
-
—
Probabilisitic
Dependencies
Markov
Fields
Causal Models

Decompaosable Models



