Capturing Independence
!'_ Graphically; Undirected Graphs

COMPSCI 276, Spring 2017
Set 2: Rina Dechter

(Reading: Pearl chapters 3, Darwiche chapter 4)



Outline

Graphical models: The constraint network, Probabilistic networks, cost networks and
mixed networks. queries: consistency, counting, optimization and likelihood queries.

Graphoids: Qualitative Notion of Dependencies by axioms, Semi-graphoids
Dependency Graphs, D-MAPS and I-MAPS
Markov networks, Markov Random Fields

Examples of networks



Constraint Networks

Example: map coloring
Variables - countries (A,B,C,etc.)

Values - colors (red,
Constraints:

A B

red green
red yellow
green red
green yellow
yellow  green
yellow red

green, blue)
A =D, D#E, etc.

Constraint graph



Bayesian Networks (Pearl 1988)

b

P(CIS)

BN = (G, O)

P(B|S)

P(X]C,S)

P(s, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B) Coml:_)ina_tion_: Product
Marginalization: sum/ma:




Sample Applications for Graphical
Models

Computer Vision

Genetic Linkage Sensor Networks
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Figure 1: Application areas and graphical models used to represent their respective systems: (a) Finding
correspondences between images, including depth estimation from stereo; (b) Genetic linkage analysis and
pedigree data; (c) Understanding patterns of behavior in sensor measurements using spatio-temporal models.



= Counting solutions

= Combinatorial optimization
= Belief updating

= Most probable explanation
m Decision-theoretic planning

Reasoning is
computationally hard

Complexity is
Time and space(memory)

Complexity of Reasoning Tasks
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The Qualitative Notion of Depedence
Motivations and issues

Motivating example:

What I eat for breakfast, what I eat for dinner?

What I eat for breakfast, What I dress

What I eat for breakfast today, the grade in 276

The time I devote to work on homework 1, my grade in 276
Shoe size,reading ability

Shoe-size, reading ability, if we know the age



The Qualitative Notion of Depedence
motivations and issues

The traditional definition of independence uses equality of humerical
quantities as in P(X,y)=P(x)P(y)

People can easily and confidently detect dependencies, but not provide
numbers

The notion of relevance and dependence are far more basic to human
reasoning than the numerical quantification.

Assertions about dependency relationships should be expressed first.



Dependency graphs

= The nodes represent propositional variables and the arcs represent
local dependencies among conceptually related propositions.

= Graph concepts are entrenched in our language (e.g., “thread of
thoughts”, “lines of reasoning”, “connected ideas”). One wonders if
people can reason any other way except by tracing links and arrows

and paths in some mental representation of concepts and relations.
=  What types of (in)dependencies are deducible from graphs?

= For a given probability distribution P and any three variables X,Y,Z,it is
straightforward to verify whether knowing Z renders X independent of
Y, thl‘tb P does not dictates which variables should be regarded as
neighbors.

= Some useful properties of dependencies and relevancies cannot be
represented graphically.



Variable Independence

Pr finds X independent of Y given Z, denoted /p.(X,Z.Y), means
that Pr finds x independent of y given z for all instantiations x, y
and z.

X={A,B},)Y={C}and Z={D.E}, where A,B,C,D and E
are all propositional variables. The statement /p,(X,Z.,Y) is then a
compact notation for a number of statements about independence:

A » B is independent of C given D / E;
A n =B is independent of C given D / E;

—A A =B is independent of = C given =D A —E;

That is, lpr(X,Z,Y) is a compact notation for 4 x 2 x 4 = 32
independence statements of the above form.




Properties of Probabilistic independence

THEOREM 1: Let X, Y, and Z be three disjoint subsets of
variables from U. If / (X, Z, Y) stands for the relation ‘X 1S 1n-
dependent of Y, given Z’’ in some probabilistic model P, then /
must satisfy the following four independent conditions:

If Probabilistic independence is a good (intuitive to human reasoning)
formalizm, then the axioms it obeys will be consistent with our intuition
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Properties of Probabilistic independence

THEOREM 1: Let X, Y, and Z be three disjoint subsets of

variables from U. If / (X, Z, Y) stands for the relation ‘X is in-
dependent of Y, given Z’’ in some probabilistic model P, then /
must satisfy the following four independent conditions:

= Symmetry:
1(X,Z2,Y) > I(Y,ZX)

= Decomposition:
I(X,Z,YW)> I(X,Z,Y) and I(X,Z,W)

= Weak union:
I(X,Z,YW)->I(X,ZW,Y)

= Contraction:
I(X,Z,Y) and I(X,ZY,W)->I(X,Z,YW)

= Intersection:
I(X,ZY,W) and I(X,ZW,Y) > I(X,Z,YW)

12



If some information is irrelevant, then any part of it is also
irrelevant.

Ior(X, Z,Y UW) emig=if Ip,(X,Z,Y) and lp,(X, Z, W).

If learning yw does not influence our belief in X, then learning y
alone, or learning w alone, will not influence our belief in x either.

i

Pearl language:
If two pieces of information are irrelevant to X then each one is irrelevant to X



The opposite of Decomposition, called Composition:

lpr(X.Z,Y) and Ipr(X. Z,W) emiy= Ipr(X. Z. Y UW)

does not hold in general.

i

Two pieces of information may each be irrelevant on their own, yet
their combination may be relevant.

Example: Two coins and a bell



Ipe(X,Z.Y) and Ip (X, Z U Y, W) eabeif [p (X, Z.Y UW)

If after learning the irrelevant information y, the information w is
found to be irrelevant to our belief in x, then the combined
information yw must have been irrelevant from the beginning.

Compare Contraction with Composition:
(X, Z,Y) and Ip, (X, Z, W) emis=# Ip, (X, Z. Y UW)

One can view Contraction as a weaker version of Composition.
Recall that Composition does not hold for probability distributions.



Strictly Positive Distributions

Definition
A strictly positive distribution assign a non-zero probability to
every consistent event.

: :

\x/ ] A strictly positive distribution

N4 cannot represent the behavior

CT ’D of Inverter X as it will have to
d J/l assign the probability zero to
"‘\z/' the event A=true, C =true. )

T

A strictly positive distribution cannot capture logical constraints.



Intersection

Holds only for strictly positive distributions
(X, ZUW.,Y) and Ip (X, ZUY, W) only if p.(X,Z,Y UW)

If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.




Intersection
Holds only for strictly positive distributions

Ior (X, ZUW.Y) and Ip,(X.Z UY., W) only if Ip,(X.Z,Y UW)

If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.

@ If we know the input A of

A B inverter X, its output C
becomes irrelevant to our belief

—? . v ] in the circuit output E.
(:;’f \\__ f/ @ If we know the output C of
cl [D inverter X, its input A becomes
\| irrelevant to this belief.
|\ — /I,.-l @ Yet, variables A and C are not
\Z/ irrelevant to our belief in the

TE circuit output E.



THE INTERSECTION AXIOM AND
STRICTLY POSITIVE DISTRIBUTIONS

The intersection axiom requires 2 (x) > O for all x

Will not hold if the wariables in L are constrained by logi-
cal dependencies.

¥: "The water temperature is above freczing"
W : "The warer temperature is above 3I2°F"

knowing the truth of either proposition renders the other
superfluous.

Howewver, ¥ and W might still be relevant to a third Propo-
sition X = "We will enjoy swimming in that water,” for ex-
— e —

ample.

If vwo properties exert influence on X . then it is impossible
that each of the two properties will render the other ir-

relevant.

Such symmetrical exclusion is possible only with analytical
or definitional properties (e.g., ¥ = "The water emperature
is above 32°F," W = "The water temperature is not equal to
or lower than 32°F™") and not with properties defined by in-
dependent empirical tests.



Graphs vs Graphoids

Symmetry:
= I(X,ZY) > IY,ZX)

Decomposition:
= I(X,Z,YW)> I(X,Z,Y) and I(X,Z,W)

Weak union:
= I(X,Z,YW)>I(X,ZW,Y)

Contraction:
= I(X,Z,Y) and I(X,ZY,W)>I(X,Z,YW)

Intersection:
= I(X,ZY,W) and I(X,ZW,Y) > I(X,Z,YW)

Graphoid: satisfy all 5 axioms
Semi-graphoid: satisfies the first 4.

Decomposition is only one way in
probability independeencies, while in
graphs it is iff.

Weak union states that w should be
chosen from a set that, like Y should
already be separated from X by Z

20



i Why Axiomatic Characterization?

Allows deriving conjectures about independencies in
a clear fashion

Axioms serve as inference rules

Can capture the principal differences between various
notions of relevance or independence

21



Dependency Models and Dependency Maps

= A dependency model is a set of independence statements
I(X,Y,Z) that are either true or false.

= An undirected graph with node separation is a dependency
model

= Wesay <X,Z,Y >, iff once you remove Z from the graph X
and Y are not connected

= Can we completely capture probabilistic independencies by the
notion of separation in a graph?

= Example: 2 coins and a bell.

22



Independency-map (i-map)
i and Dependency-maps (d-maps)

= A graph G is an independency map (i-map) of
a probability distribution iff

<X,Z,Y >, implies I,(X,Z,Y)

= A graph G is a Dependency map (d-map) of
a probability distribution P iff
not < X,Z,Y >, implies not I,(X,Z,Y)

« A model with induced dependencies cannot have a graph which is a perfect map.
« Example: two coins and a bell... try it
- How we then represent two causes leading to a common consequence?s



Axiomatic Characterization of Graphs

= Definition: A model M is graph-isomorph if there exists a graph
which is a perfect map of M.

= Theorem (Pearl and Paz 1985): A necessary and sufficient
condition for a dependency model to be graph—isomorph is that
it satisfies

= Symmetry: 1(X,z,Y)> I(V,ZX)

= Decomposition: 1(x,z,yw)> 1(X,z,Y) and I(X,Z,Y)
= Intersection: 1(x,zw,Y) and I(X,ZY,W)->I(X,Z,YW)
Strong union: 1(X,z,Y) > I(X,ZW, Y)

Transitivity: I(X,Z,Y) > exists t s.t. I(X,Z,t) or I(t,Z,Y)

= This properties are satisfied by graph separation

24



i Markov Networks

= Graphs and probabilities:

= Given P, can we construct a graph I-map with minimal
edges?
=« Given (G,P) can we test if G is an I-map? a perfect map?

= Markov Network Definition: A graph G which is a
minimal I-map of a probability distribution P, namely
deleting any edge destroys its i-mappness, is called a
Markov network of P.

25



Markov Networks

= Theorem (Pearl and Paz 1985): A dependency model
satisfying symmetry decomposition and intersection has a
unique minimal graph as an i-map, produced by deleting every
edge (a,b) for which I(a,U-a-b,b) is true.

= The theorem defines an edge-deletion method for constructing Go

= Markov blanket of a is a set S for which I(a,S,U-S-a).

= Markov Boundary: a minimal Markov blanket.

= Theorem (Pearl and Paz 1985): if symmetry, decomposition,
weak union and intersection are satisfied by P, the Markov
boundary is unique and it is the neighborhood in the Markov
network of P

26



Markov Networks

= Corollary: the Markov network G of any strictly positive
distribution P can be obtained by connecting every node to its
Markov boundary.

= The following 2 interpretations of direct neighbors are identical:

= Neighbors as blanket that shields a variable from the influence of
all others

= Neighborhood as a tight influence between variables that cannot be
weakened by other elements in the system

= SO0, given P (positive) how can we construct G?
= Given (G,P) how do we test that G is an I-map of P?

= Given G, can we construct P which is a perfect i-map? (Geiger and
Pearl 1988)

27



Testing I-mapness

= Theorem 5 (Pearl): Given a positive P and a graph G the
following are equivalent:
= GisanI-map of P iff G is a super-graph of the Markov network of P

= Gis locally Markov w.r.t. P (the neighbors of a in G is a Markov blanket.) iff
G is a super-graph of the Markov network of P

= There appear to be no test for I-mappness of undirected graph
that works for extreme distributions without testing every cutset
in G (ex: x=y=z=t)

= Representations of probabilistic independence using undirected
graphs rest heavily on the intersection and weak union axioms.

= In contrast, we will see that directed graph representations rely
on the contraction and weak union axiom, with intersection

playing a minor role.
28



Markov Networks: Summary

. The essential qualities of conditional independence are captured by

five logical axioms: {a) symmetry, (b) decomposition, (c) weak
union, (d) contraction and (g) intersection.

. Intersection holds only for strictly positive distributions (i.e.,
reflecting no functional or definitional constraints) and is essential
to the construction of undirected graphs.

- Symmetry, decomposition, and intersection enable us to construct
a minimal graph G, (Markov network), in which every cutset
corresponds to a genuine independence condition.

- The weak union axiom is needed to guarantee that the set of
neighbors that G assigns to each variable o is the smallest set
required to shield « from the effects of all other variables,

. If we identify the Markov boundaries associated with each
proposition in the system and treat them as neighborhood relations
defining a graph G, then we can correctly identify independence
relationships by testing whether the set of known propositions
constitutes a cutset in G,

- Not all probabilistic dependencies can be captured by undirected
graphs because graph separation is strictly normal and transitive.



Outline

Graphical models: The constraint network, Probabilistic networks, cost networks and
mixed networks. queries: consistency, counting, optimization and likelihood queries.

Graphoids: Qualitative Notion of Dependencies by axioms, Semi-graphoids
Dependency Graphs, D-MAPS and I-MAPS
Markov networks How do you build them?

Markov Random Fields; modeling? Examples of networks



CONCEPTUAL DEPENDENCIES AND
THEIR MARKOV NETWORKS

An agent identifies the following variables as having influence on
the main question of being late to a meeting:

1. The time shown on the watch of Passerby 1.

[

The time shown on the watch of Passerby 2.
The correct time.

The time it takes to travel to the meeting place.

ook w

The arrival time at the meeting place.

The construction of G can proceed by one of two methods:

. The edge-deletion method.

. The Markov boundary method.

The first method requires that for every pair of variables (o, B) we

determine whether fixing the values of all other variables in the
system will render our belief in o sensitive to p.

For example, the reading on Passerby 1’s watch (1) will vary with
the actual time (3) even if all other variables are known, so
connect node 1 to node 3



The Markov boundary method requires that for every variable o in
the system, we identify a minimal set of variables sufficient to
render the belief in o insensitive to all other variables in the
system.

For instance, once we know the current time (3), no other variable
can affect what we expect to read on passerby 1's watch (1).

(1) watch - 1 (2) watch - 2

(4) wavel time The unusual edge (3,4)

reflects the reasoning that if we fix
the arrival time (5) the travel time (4)
must depends on current time (3)

{3) current Wme

(5) armrival time

Figure 3.6. The Markov network representing the prediction
of A’s arrival time,

G can be used as an inference instrument.

™ For example, knowing the current time (3) renders the time
on Passerby 1’'s watch (1) irrelevant for estimating the travel
time (4) (i.e., 1{1,3.4)); 3 is a cutset in G, separating 1 from
4.



MARKOV NETWORK AS A KNOWLEDGE BASE

M,
How can we construct a probability
Distribution that will have all these
F Fy independencies?
M,

Figure 3.2. An undirected graph representing
interactions among four individuals.

QUANTIFYING THE LINKS

. If couple (M, F,) meet less frequently than the couple (M, F,),
then the first link should be weaker than the second

. The model must be consistent, complete and a Markov field of G .

e  Arbitrary specification of P(M,F,), P(F{,M5), P(M,, F5), and
P{F,, M) might lead to inconsistencies.

. If we specify the pairwise probabilities of only three pairs,
incompleteness will result.



Markov Random Field (MRF)

e A safe method (called Gibbs' potential) for constructing a
complete and consistent quantitative model while preserving the

dependency structure of an arbitrary graph G.

1. Identify the cliquest of G, namely, the largest subgraphs
whose nodes are all adjacent to each other.

2. For each clique C;, assign a nonnegative compatibility
function g(¢;), which measures the relative degree of
compatibility associated with the value assignment ¢; to the
variables included in C;.

3. Form the product 1T g,(¢;) of the compatibility functions over
i

all the cliques.

4. Normalize the product over all possible value combinations
of the variables in the system

P X2, ) =K T1 g;(¢;), (3.13)
]

where

T We use the term cligue for the more commaon tem maximal cligue,

So, How do we learn Ko ta !
Markov networks From data?



MidrkOV Rdndadoimn rieid (IViRr)

THEOREM 6 [Hammersley and Clifford 1971]: A probability function

P formed by a normalized product of nonnegative functions on the
cliques of G is a Markov field relative to G, i.e., G is an [-map of P.

Proof: G is guaranteed to be an /-map if P is locally Markov relative to
G (Theorem 5). It is sufficient, therefore, to show that the neighbors in

ffis |9C:I;|Y marklfv . G of each variable o constitute a Markov blanket of « relative to P, i.e.,
nei OrS Make ev .
Variagle independent Y that(a, B (o), U~— - Bg (o) or (using Eq. (3.5¢)) that

From the rest.
P (o, Bg (o), U~ o= Bg(o) = f (o, Bg () fo(U - a). 3.17)

e Let J, stand for the set of indices marking all cliques in G that
include o, J,={j:ae C; . Since P is in product form, we can
write

Pla,B,..) = KIlg(c;) =K IT ge;) IT g;(c;) 3.18
(o, B, ...) ; g;(c;) J_Ejﬂgj(cj}iung,(cj} (3.18)

e  The first product in Eq. (3.18) contains only variables that are
adjacent to o in G ; otherwise, C; would not be a clique. According
to the definition of J,, the second product does not involve o.
Thus, Eq. (3.17) is established. Q.E.D.



INTERPRETING THE LINK PARAMETERS

It is difficult to assign meanings to the parameters of the
compatibility functions.

Given the joint probability P(M,,F, F,,M,), to infer the
compatibility functions g; we must solve a set of simultaneous
nonlinear equations for g,

The solution for g; will not be applicable to new situations.

For a parameter to be meaningful, it must be an abstraction of
some invariant property of one's experience.

The quantities P(f,lm,,—~m,) and P(f,| =m,, —m,) and their
relations to the frequency of interaction of couple {M,, F,} are
perceived as invariant characteristics of the disease.

The Markov network formulation does not allow the direct
specification of such judgmental input.

Judgments about low-order conditional probabilities (e.g.,
P(mlf,,—m,)) can be taken only as constraints that the joint
probability distribution (Eq. (3.13)) must satisfy; from them, we
might be able to calculate the actual values of the compatibility
parameters.

Pearl says: this
information must
come from
measurements or
from experts.
But what about
learning?



Example Markov networks and applications

37



i Probabilistic Reasoning

Party example: the weather effect

= Alex is-likely-to-go in bad weather P(A| W=bad)=.9
= Chris rarely-goes in bad weather @—@ Pciw=bad)=.1
= Becky is indifferent but unpredictable (8 | Webad).5
Questions: W A P(A|W)
= Given bad weather, which group of individuals is good | 0 01
most likely to show up at the party? good | 1 99
s What is the probability that Chris goes to the bad | © 1
party but Becky does not? P(W) bad | 1 9
(W)
P(W,AC,B) = P(B|W) * P(C|W) * P(A|W) * P(W) 5

P(A,C,B|W=bad) =0.9-0.1"0.5

(A
(B> © raw

P(BIW) P(C|W)



Mixed Networks: Mixing Belief ana

Constraints

Belief or Bayesian
Networks

P(D|B,C)
c| p=o | =1

== lOoOlO|®

0
1
0
1

Variables: A,B,C,D,E,F

Domains: D, =D, =D. =D, =D =D ={0,1}

CPTS:P(A),P(B|A),P(C|A),P(D|B,C)
P(E|AB),P(F|A)

Constramt

R,(BCD)
B=0,C=0,D =0 is notallowed

», B=1,C=1,D=1is notallowed

R=
Variables: A,B,C,D,E,F
Domains: D, =D, =D, =D, =D, =D, ={0,1}
Constraints: R, (ABC),R,(ACF),R,(BCD),R,(A,E)
Expresses theset of solutions : sol(R)

Constraints could be specified externally or may
occur as zeros in the Belief network



Motivation: Applications

. Determinism: More Ubiquitous than you may think!

o }'(r)%%s)portation Planning (Liao et al. 2004, Gogate et al.

= Predicting and Inferring Car Travel Activity of individuals
= Genetic Linkage Analysis (Fischelson and Geiger, 2002)

= associate functionality of genes to their location on
chromosomes.

= Functional/Software Verification (Bergeron, 2000)

= Generating random test programs to check validity of
hardware

= First Order Probabilistic models (Domingos et al. 2006,
Milch et al. 2005)

= Citation matching



Transportation Planning: Graphical model

’ D: Time-of-day (discrete)

W: Day of week (discrete)

G: collection of locations where the
person spends significant amount of
time. (discrete)

F: Counter

Route: A hidden variable that just
predicts what path the person takes
(discrete)

/.

Location: A pair (e,d) e is the edge on
which the person is and d is the
distance of the person from one of the
end-points of the edge (continuous)

Velocity: Continuous

GPS reading: (lat,Jon,spd,utc).




Outline

Graphical models: The constraint network, Probabilistic networks, cost networks and
mixed networks. queries: consistency, counting, optimization and likelihood queries.

Graphoids: Qualitative Notion of Dependencies by axioms, Semi-graphoids
Dependency Graphs, D-MAPS and I-MAPS
Markov networks, Markov Random Fields

Examples of networks



