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Capturing Independence 
Graphically; Undirected Graphs

COMPSCI 276, Spring 2017

Set 2: Rina Dechter

(Reading: Pearl chapters 3, Darwiche chapter 4)



Outline

• Graphical models: The constraint network, Probabilistic networks, cost networks and 

mixed networks. queries: consistency, counting, optimization and likelihood queries.

• Graphoids: Qualitative Notion of Dependencies by axioms, Semi-graphoids

• Dependency Graphs, D-MAPS and I-MAPS

• Markov networks, Markov Random Fields

• Examples of networks 
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Example: map coloring

Variables - countries (A,B,C,etc.)

Values    - colors (red, green, blue)

Constraints: etc.  ,ED  D,  AB,A 
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Bayesian Networks (Pearl 1988)

P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea
P(D|C,B)

P(B|S)

P(S)

P(X|C,S)

P(C|S)

Θ) (G,BN 

CPD:
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• Posterior marginals, probability of evidence, MPE

• P( D= 0) = σ𝑆,𝐿,𝐵,𝑋 P(S)· P(C|S)· P(B|S)· P(X|C,S)· P(D|C,B

MAP(P)=  𝑚𝑎𝑥𝑆,𝐿,𝐵,𝑋 P(S)· P(C|S)· P(B|S)· P(X|C,S)· P(D|C,B)
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Combination: Product
Marginalization: sum/max



Sample Applications for Graphical 
Models



Complexity of Reasoning Tasks

 Constraint satisfaction

 Counting solutions

 Combinatorial optimization

 Belief updating

 Most probable explanation 

 Decision-theoretic planning
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The Qualitative Notion of Depedence
Motivations and issues

 Motivating example:

 What I eat for breakfast, what I eat for dinner?

 What I eat for breakfast, What I dress

 What I eat for breakfast today, the grade in 276

 The time I devote to work  on homework 1, my grade in 276

 Shoe size,reading ability

 Shoe-size, reading ability, if we know the age
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The Qualitative Notion of Depedence
motivations and issues

 The traditional definition of independence uses equality of numerical 
quantities as in P(x,y)=P(x)P(y)

 People can easily and confidently detect dependencies, but not provide 
numbers

 The notion of relevance and dependence are far more basic to human 
reasoning than the numerical quantification.

 Assertions about dependency relationships should be expressed  first. 
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Dependency graphs

 The nodes represent propositional variables and the arcs represent 
local dependencies among conceptually related propositions.

 Graph concepts are entrenched in our language (e.g., “thread of 
thoughts”, “lines of reasoning”, “connected ideas”). One wonders if 
people can reason any other way except by tracing links and arrows 
and paths in some mental representation of concepts and relations.

 What types of (in)dependencies are deducible from graphs?

 For a given probability distribution P and any three variables X,Y,Z,it is 
straightforward to verify whether knowing Z renders X independent of 
Y, but P does not dictates which variables should be regarded as 
neighbors.

 Some useful properties of dependencies and relevancies cannot be 
represented graphically.





Properties of Probabilistic independence
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If Probabilistic independence is a good (intuitive to human reasoning)
formalizm, then the axioms it obeys will be consistent with our intuition



Properties of Probabilistic independence

 Symmetry:
 I(X,Z,Y)  I(Y,Z,X)  

 Decomposition: 

 I(X,Z,YW) I(X,Z,Y) and I(X,Z,W)

 Weak union: 
 I(X,Z,YW)I(X,ZW,Y)

 Contraction: 
 I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW)

 Intersection:
 I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)
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Pearl language:
If two pieces of information are irrelevant to X then each one is irrelevant to X



Example: Two coins and a bell
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Graphs vs Graphoids

 Symmetry:
 I(X,Z,Y)  I(Y,Z,X)  

 Decomposition: 

 I(X,Z,YW) I(X,Z,Y) and I(X,Z,W)

 Weak union: 
 I(X,Z,YW)I(X,ZW,Y)

 Contraction: 
 I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW)

 Intersection:
 I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)

 Graphoid: satisfy all 5 axioms

 Semi-graphoid: satisfies the first 4.

 Decomposition is only one way in 
probability independeencies, while in 
graphs it is iff.

 Weak union states that w should be 
chosen from a set that, like Y should 
already be separated from X by Z

20
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Why Axiomatic Characterization?

 Allows deriving conjectures about independencies in 
a clear fashion

 Axioms serve as inference rules

 Can capture the principal differences between various 
notions of relevance or independence



Dependency Models and Dependency Maps

 A dependency model is a set of independence statements 
I(X,Y,Z) that are either true or false.

 An undirected graph with node separation is a dependency 
model

 We say  < 𝑋, 𝑍, 𝑌 >𝐺 iff once you remove Z from the graph X 

and Y are not connected

 Can we completely capture probabilistic independencies by the 
notion of separation in a graph?

 Example: 2 coins and a bell.
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Independency-map (i-map) 
and Dependency-maps (d-maps)

 A graph G is an independency map (i-map) of 
a probability distribution iff

< 𝑋, 𝑍, 𝑌 >𝐺 implies 𝐼𝑃(X,Z,Y)

 A  graph G is a Dependency map (d-map) of 
a probability distribution P iff
𝑛𝑜𝑡 < 𝑋, 𝑍, 𝑌 >𝐺 implies 𝑛𝑜𝑡 𝐼𝑃(X,Z,Y)
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• A model with induced dependencies cannot have a graph which is a perfect map. 
• Example: two coins and a bell… try it
• How we then represent  two causes leading to a common consequence?



Axiomatic Characterization of Graphs

 Definition: A model M is graph-isomorph if there exists a graph 
which is a perfect map of M.

 Theorem (Pearl and Paz 1985): A necessary and sufficient 
condition for a dependency model  to be graph–isomorph is that 
it satisfies

 Symmetry:  I(X,Z,Y)  I(Y,Z,X)  

 Decomposition:  I(X,Z,YW) I(X,Z,Y) and I(X,Z,Y)

 Intersection:  I(X,ZW,Y) and I(X,ZY,W)I(X,Z,YW)

 Strong union: I(X,Z,Y)  I(X,ZW, Y)

 Transitivity: I(X,Z,Y)  exists t s.t. I(X,Z,t) or I(t,Z,Y)

 This properties are satisfied by graph separation
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Markov Networks

 Graphs and probabilities:

 Given P, can we construct a graph I-map with minimal 
edges?

 Given (G,P) can we test if G  is an I-map? a perfect map?

 Markov Network Definition: A graph G which is a 
minimal I-map of  a probability distribution P, namely 
deleting any edge destroys its i-mappness, is called a 
Markov network of P.
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Markov Networks

 Theorem (Pearl and Paz 1985): A dependency model 
satisfying  symmetry decomposition and intersection has a 
unique minimal graph as an i-map, produced by deleting every 
edge (a,b) for which I(a,U-a-b,b) is true.

 The theorem defines an edge-deletion method for constructing G0

 Markov blanket of a is a set S for which I(a,S,U-S-a).

 Markov Boundary: a minimal Markov blanket.

 Theorem (Pearl and Paz 1985): if symmetry, decomposition, 
weak union and intersection are satisfied by P, the Markov 
boundary is unique and it is the neighborhood in the Markov 
network of P
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Markov Networks

 Corollary: the Markov network G of any strictly positive 
distribution P can be obtained by connecting every node to its 
Markov boundary.

 The following 2 interpretations of direct neighbors are identical:

 Neighbors as blanket that shields a variable from the influence of 
all others

 Neighborhood as a tight influence between variables that cannot be 
weakened by other elements in the system

 So, given P (positive) how can we construct G?

 Given (G,P) how do we test that G is an I-map of P?

 Given G, can we construct P which is a perfect i-map? (Geiger and 
Pearl 1988)
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Testing I-mapness

 Theorem 5 (Pearl): Given a positive P and a graph G the 
following are equivalent:
 G is an I-map of P iff G is a super-graph of the Markov network of P

 G is locally Markov w.r.t. P (the neighbors of a in G is a Markov blanket.) iff
G is a super-graph of the Markov network of P

 There appear to be no test for I-mappness of undirected graph 
that works for extreme distributions without testing every cutset
in G (ex: x=y=z=t )

 Representations of probabilistic independence using undirected 
graphs rest heavily on the intersection and weak union axioms.

 In contrast, we will see that directed graph representations rely 
on the contraction and weak union axiom, with intersection 
playing a minor role.
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Markov Networks: Summary



Outline

• Graphical models: The constraint network, Probabilistic networks, cost networks and 

mixed networks. queries: consistency, counting, optimization and likelihood queries.

• Graphoids: Qualitative Notion of Dependencies by axioms, Semi-graphoids

• Dependency Graphs, D-MAPS and I-MAPS

• Markov networks How do you build them? 

• Markov Random Fields; modeling? Examples of networks 





The unusual edge (3,4)
reflects the reasoning that if we fix 
the arrival time (5) the travel time (4) 
must depends on current time (3)



How can we construct a probability
Distribution that will have all these 
independencies?



So, How do we learn
Markov networks From data?

Markov Random Field (MRF)



G is locally markov
If neighbors make every 
Variable independent
From the rest.

Markov Random Field (MRF)



Pearl says: this 
information must 
come from 
measurements or 
from experts.
But what about 
learning?
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Example Markov networks and applications



Probabilistic Reasoning

 Alex is-likely-to-go in bad weather
 Chris rarely-goes in bad weather
 Becky is indifferent but unpredictable

Questions:
 Given bad weather, which group of individuals is 

most likely to show up at the party? 
 What is the probability that Chris goes to the 

party but Becky does not?

Party example: the weather effect

P(W,A,C,B) = P(B|W) · P(C|W) · P(A|W) · P(W)

P(A,C,B|W=bad) = 0.9 · 0.1 · 0.5

P(A|W=bad)=.9W A

P(C|W=bad)=.1W C

P(B|W=bad)=.5W B

W

P(W)

P(A|W)

P(C|W)P(B|W)

B C
A

W A P(A|W)

good 0 .01

good 1 .99

bad 0 .1

bad 1 .9



Mixed Networks: Mixing Belief and 
Constraints

Belief or Bayesian 
Networks
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occur as zeros in the Belief network



Motivation: Applications

• Determinism: More Ubiquitous than you may think! 

 Transportation Planning (Liao et al. 2004, Gogate et al. 
2005)
 Predicting and Inferring Car Travel Activity of individuals

 Genetic Linkage Analysis (Fischelson and Geiger, 2002)
 associate functionality of genes to their location on 

chromosomes.

 Functional/Software Verification (Bergeron, 2000)
 Generating random test programs to check validity of 

hardware

 First Order Probabilistic models (Domingos et al. 2006, 
Milch et al. 2005)
 Citation matching



Transportation Planning: Graphical model

gt-1

rt-1

lt-1

yt-1

vt-1

gt

rt

lt

yt

vt

Ft-1

D: Time-of-day (discrete)

W: Day of  week (discrete)

G: collection of  locations where the 

person spends significant amount of  

time. (discrete)

F: Counter

Route: A hidden variable that just 

predicts what path the person takes 

(discrete)

Location: A pair (e,d) e is the edge on 

which the person is and d is the 

distance of  the person from one of  the 

end-points of  the edge (continuous)

Velocity: Continuous

GPS reading: (lat,lon,spd,utc).

Ft

dt-1 wt-1
dt wt



Outline

• Graphical models: The constraint network, Probabilistic networks, cost networks and 

mixed networks. queries: consistency, counting, optimization and likelihood queries.

• Graphoids: Qualitative Notion of Dependencies by axioms, Semi-graphoids

• Dependency Graphs, D-MAPS and I-MAPS

• Markov networks, Markov Random Fields

• Examples of networks 


