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Example of Common Sense
Reasoning

= Zebra on Pajama: (7:30 pm): I told Susannah: you have a nice
pajama, but it was just a dress. Why jump to that conclusion?: 1.
because time is night time. 2. certain designs look like pajama.

= Cars going out of a parking lot: You enter a parking lot which is
quite full (UCI), you see a car coming : you think ah... now there is a
space (vacated), OR... there is no space and this guy is looking and
leaving to another parking lot. What other clues can we have?

= Robot gets out at a wrong level: A robot goes down the elevator.
stops at 2™ floor instead of ground floor. It steps out and should
immediately recognize not being in the right level, and go back inside.
= Turing quotes
= If machines will not be allowed to be fallible they cannot be intelligent

= (Mathematicians are wrong from time to time so a machine should also be
allowed)



i Why/What/How Uncertainty?

= Why Uncertainty?
= Answer: It is abundant

= What formalism to use?
= Answer: Probability theory

= How to overcome exponential
representation?

=« Answer: Graphs, graphs, graphs... to
capture irrelevance, independence
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Class Description

s Instructor: Rina Dechter

= Days: Monday & Wednesday
= [IMe: 11:00 - 12:20 pm
= Class page:

s http://www.ics.uci.edu/~dechter/courses/ics-275b/spring-17/



http://www.ics.uci.edu/~dechter/courses/ics-275b/spring-13/
http://www.ics.uci.edu/~dechter/courses/ics-275b/spring-17/

i Outline

= Why/What/How... uncertainty?

= Basics of probability theory and
modeling




i Outline

= Why/What/How uncertainty?




i Why Uncertainty?

Al goal: to have a declarative, model-based, framework that
allows computer system to reason.

= People reason with partial information

= Sources of uncertainty:

= Limitation in observing the world: e.g., a physician see symptoms and not
exactly what goes in the body when he performs diagnosis. Observations
are noisy (test results are inaccurate)

= Limitation in modeling the world,
= maybe the world is not deterministic.



Example of Common Sense
i Reasoning

= EXxplosive noise at UCI
= Parking in Cambridge
= The missing garage door

= Years to finish an undergrad degree in
college

= The Ebola case
= Lots of abductive reasoning




‘L Shooting at UCI

what is the likelihood that there was a
criminal activity if S1 called?

What is the probability that someone will
call the police?

Someone
xcalls



What is the likelihood that P has Ebola

EbOIa In the US if he came from Africa?
If his sister came from Africa?
What is the probability P was in Africa
given that he tested positive for Ebola?

Ebola(sister(P))
@ Ebola(p)

m Test-Ebola(p)
est-malaria(p)

10



i Why Uncertainty

= Summary of exceptions

= Birds fly, smoke means fire (cannot enumerate all
exceptions.

= Why is it difficult?
= Exception combines in intricate ways

= e.g., we cannot tell from formulas how exceptions
to rules interact:

A->C
B->C

Aand B--> C
11



i Commonsense Reasoning(*)

Example: My car is still parked where I left it this morning. If I turn the
key of my car, the engine will turn on. If I start driving now, I will get
home in thirty minutes.

= None of these statements is factual as each is qualied by a set of
assumptions. We tend to make these assumptions, use them to derive
certain conclusions (e.g., I will arrive home in thirty minutes if I head
out of the ofice now), and then use these conclusions to justify some of
our decisions (I will head home now).

= We stand ready to retract any of these assumptions if we observe
something to the contrary (e.g., a major accident on the road home).
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The Problem

men are mortal T h

All penguins are birds T
True
propositions

Socrates is a man y

Men are kind pl |

birds ﬂy : p2 > Uncertain

T looks like a penguin propositions

Turn key —> car starts Pn |

Q: Does T fly? Logic?....but how we handle exceptions

P(Q)? Probability: astronomical 13



i Managing Uncertainty

Knowledge obtained from people is almost always
loaded with uncertainty

Most rules have exceptions which one cannot afford
to enumerate

Antecedent conditions are ambiguously defined or
hard to satisfy precisely

First-generation expert systems combined
uncertainties according to simple and uniform
principle

Lead to unpredictable and counterintuitive results
Early days: logicist, new-calculist, neo-probabilist
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The Limits of Modularity

Deductive reasoning: modularity and detachment

P> Q P>Q P>Q
P K and P K>P
_____________ ¢
Q Q e
Q

Plausible Reasoning: violation of locality

Wet - rain wet = rain
Wet Sprinkler and wet
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‘L Violation of Detachment

Deductive reasoning Plausible reasoning
P> :
K> g Wet - rain
K Sprinkler >wet
________ Sprinkler
Q rain?
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i Probabilistic Modeling with Joint Distributions

= All frameworks for reasoning with
uncertainty today are “intentional”
model-based. All are based on the
probability theory implying calculus and
semantics.
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i Outline

= Basics of probability theory and
modeling
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Degrees of Belief

@ Assign a degree of belief or probability in [0, 1] to each world
w and denote it by Pr(w).
@ [he belief in, or probability of, a sentence a:

Pr(a) « ZPI‘(L{J).

wEa
world | Earthquake Burglary Alarm  Pr(.)
W1 true true true  .0190
Wo true true false  .0010
W3 true false true  .0560
W4 true false false  .0240
Wws false true true  .1620
We false true false .0180
Wy false false true  .0072
ws false false false  .7128




Properties of Beliefs

@ A bound on the belief in any sentence:

0 < Pr(a) <1 forany sentence «.
@ A baseline for inconsistent sentences:

Pr(a) =0 when « is inconsistent.
@ A baseline for valid sentences:

Pr(a) =1  when « is valid.



Properties of Beliefs
o
X

@ [he belief in a sentence given the belief in its negation:

Pr(a) 4+ Pr(—a) = 1.

Example

Pr(Burglary) = Pr(wi)+ Pr(ws) + Pr(ws) + Pr(wg) = .2
Pr(—Burglary) = Pr(ws3)+ Pr(ws)+ Pr(wz) + Pr(ws) = .8




Properties of Beliefs

a R
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|'I I'|
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@ The belief in a disjunction:
Pr(a Vv 3) = Pr(a) + Pr(3) — Pr(a A 3).

o Example:

Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(wsz) + Pr(ws) = .1
Pr(Burglary) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .2
Pr(Earthquake A Burglary) = Pr(wi) + Pr(wz) = .02
Pr(Earthquake vV Burglary) = .1+ .2 - .02 = .28



Properties of Beliefs

@« B
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@ [he belief in a disjunction:

Pr(av3) = Pr(a)+Pr(3) when « and 3 are mutually exclusive.



Quantify uncertainty about a variable X using the notion of
entropy:

ENT(X) % —ZPr x) log, Pr(x),

where 0log0 = 0 by convention.

Earthquake Burglary Alarm

true 1 2 2442
false 9 8 7558
ENT(.) 469 722 802
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@ The entropy for a binary variable X and varying p = Pr(X).

@ Entropy is non-negative.

@ When p =0 or p =1, the entropy of X is zero and at a
minimum, indicating no uncertainty about the value of X.

@ When p = % we have Pr(X) = Pr(—X) and the entropy is at
a maximum (indicating complete uncertainty).
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Bayes Conditioning

Alpha and beta are events

Closed form for Bayes conditioning:

Pr(a A 3)

Pr(«|3) =

Pr(/3)

Defined only when Pr(/3) # 0.



Degrees of Belief

world | Earthquake Burglary Alarm  Pr(.)

W1 true true true .0190
Wo true true false  .0010
W3 true false true  .0560
Wy true false false .0240
W false true true  .1620
We false true false  .0180
Wy false false true  .0072
wg false false false .7128

Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .1

Pr(Burglary) = .2

Pr(—Burglary) = .8

Pr(Alarm) = .2442



Belief Change

Burglary is independent of Earthquake

Conditioning on evidence Earthquake:

Pr(Burglary) = .2
Pr(Burglary|Earthquake) 2

Pr(Alarm) = .2442
Pr(Alarm|Earthquake) ~ 751

The belief in Burglary is not changed, but the belief in Alarm
Increases.



Belief Change

Earthguake is independent of burglary

Conditioning on evidence Burglary:

Pr(Alarm) = .2442
Pr(Alarm|Burglary) ~ .9051
Pr(Earthquake) = .1
Pr(Earthquake|Burglary) = .1

The belief in Alarm increases in this case, but the belief in
Earthquake stays the same.



Belief Change

The belief in Burglary increases when accepting the evidence
Alarm. How would such a belief change further upon obtaining
more evidence?

@ Confirming that an Earthquake took place:

Pr(Burglary|Alarm) ~ .741
Pr(Burglary|Alarm A Earthquake) ~ .253 |
We now have an explanation of Alarm.
@ Confirming that there was no Earthquake:
Pr(Burglary|Alarm) 741

Pr(Burglary|Alarm A —=Earthquake) =~ .957

New evidence will further establish burglary as an explanation.



Conditional Independence

Pr finds a conditionally independent of (3 given -y iff

Pr(a|3 A ~v) = Pr(aly) or Pr(BA~v)=0.

Another definition

Pr(a A Bly) = Pr(a|y)Pr(3|y) or Pr(vy) = 0.




Variable Independence

Pr finds X independent of Y given Z, denoted /p.(X,Z.Y), means
that Pr finds x independent of y given z for all instantiations x, y
and z.

X={A,B},)Y={C}and Z={D.E}, where A,B,C,D and E
are all propositional variables. The statement /p,(X,Z.,Y) is then a
compact notation for a number of statements about independence:

A » B is independent of C given D / E;
A n =B is independent of C given D / E;

—A A =B is independent of = C given =D A —E;

That is, lpr(X,Z,Y) is a compact notation for 4 x 2 x 4 = 32
independence statements of the above form.




Conditional Entropy

To quantify the average uncertainty about the value of X after
observing the value of Y.

Conditional entropy of a variable X given another variable Y

ENT(X|Y) = 3 Pr(y)ENT(X|y).
y
where o
ENT(X]y) = =) Pr(xly)log, Pr(x|y).

@ Entropy never increases after conditioning:
ENT(X|Y) < ENT(X).

@ Observing the value of Y reduces our uncertainty about X.
e For a particular value y, we may have ENT(X|y) > ENT(X).
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Conditional Entropy

Burglary  Burglary|Alarm=true Burglary|Alarm =false
true 2 741 025
false 8 259 975
ENTY(.) 122 825 169

The conditional entropy of Burglary given Alarm is then:

ENT(Burglary|Alarm)
= ENT(Burglary|Alarm=true)Pr(Alarm =true) +
ENT (Burglary|Alarm=false)Pr(Alarm =false)
— 329,

indicating a decrease in the uncertainty about variable Burglary.
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Chain rule

Further Properties of Beliefs
Chanrgle . ... ...

Pr(ai Aas AL A ap)
= Pr(ai|ag A ... Aap)Pr(az|laz Ao A ap) ... Pr(ag).

Case analysis (law of total probability)

n
Pr(a) = Z Pr(a A 5;),
i=1

where the events /31, .... (3, are mutually exclusive and exhaustive.

>




Further Properties of Beliefs
 Another version of case analysis |

Another version of case analysis

Pr(a) =) Pr(a|8;)Pr(3),

i=1

where the events 31, ..., 3, are mutually exclusive and exhaustive.

o

Two simple and useful forms of case analysis are these:

Pr(a) = Pr(aApB)+ Pr(aA—/3)
Pr(a) = Pr(a|8)Pr(3)+ Pr(a|-=38)Pr(—73).

The main value of case analysis is that, in many situations,
computing our beliefs in the cases is easier than computing our

beliefs in «v. We shall see many examples of this phenomena in
later chapters.



Further Properties of Beliefs

Bayes rule

Pr(3|a)Pr(a)

Pr(a|3) = Pr(3)

@ Classical usage: «v is perceived to be a cause of /3.
@ Example: a is a disease and (3 is a symptom-—
@ Assess our belief in the cause given the effect.

@ Belief in an effect given its cause, Pr(/3|«), is usually more

readily available than the belief in a cause given one of its
effects, Pr(a|/3).




Probabilistic Madeling with Joint Distribution

Difficulty: Complexity in model construction and inference

m In Alarm example:

m 31 numbers needed,
m Quite unnatural to assess: e.g.

PB=y.E=y, A=y, J=y,M=y)

m Computing P(B=y|M=y) takes 29 additions.
m In general,

m P(X1, Xz, ...,X,) needs at least 2" — 1 numbers to specify the joint
probability. Exponential model size.
m Knowledge acquisition difficult (complex, unnatural),

m Exponential storage and inference,

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007 8 /h4 8



Conditional Independence and Factorization

Chain Rule and Factorization

Overcome the problem of exponential size by exploiting conditional independence

m [he chain rule of probabilities:

P(X1,X2) = P(X1)P(X2|X1)
P(X1, X2, X3) = P(X1)P(Xz|X1)P(X5] X1, X3)

m No gains yet. The number of parameters required by the factors is:
pn=lgon=l4  +1=2"-1.

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007 10 / 54 9



Conditional Independence and Factorization

Conditional Independence

m About P(X;|X1,...,Xi—1):

m Domain knowledge usually allows one to identify a subset
pa(Xi) € {X1,...,X;—1} such that

m Given pa(X;), X; is independent of all variables in
[ X1, ..., Xic1} '\ pa(Xi), ie.

P{X,.|X1 ..... X,.'_]_:I = P{X,|pa(%}}
m [hen

m Joint distribution factorized.

B [he number of parameters might have been substantially reduced.

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007
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‘L Example

P(B,E,A,J,M)="

41



Conditional Independence and Factorization

Example continued

P(B.E. A, J, M)
= P(B)P(E|B)P(AB,E)P(JIB,E.A)P(M|B,E,A,J)
= P(B)P(E)P(A|B, E)P(J|A)P(M|A)(Factorization)

m pa(B) = {}. pa(E) = {},pa(A) = {B, E}, pa(J) = {A},pa(M) = {A}.

m Conditional probabilities tables (CPT)

E FPI(E)
B F(B) m— L B E F(A|B, E)

¥ 01 T .02

. - 98 ¥ ¥ ¥ .95

N -99 " N Y Y .05

¥ ¥ H -94

N ¥ H L5

M A P(M|A) J A F(J|A) Y N ¥ 29
N N .95 N M .98

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007

12 / 54 2



Conditional Independence and Factorization

Example continued

m Model size reduced from 31 to 1+1+4+242=10

m Model construction easier

m Fewer parameters to assess.
m Parameters more natural to d55€55.€.8.

P(B=Y),P(E=Y),P(A=Y|B=Y,E=Y),

P(J=Y|A=Y),P(M=Y|A=Y)

m Inference easier.\Will see this later.

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007 13 /54 3



Bayvesian Metwaorls

From Factorizations to Bayesian Networks

Graphically represent the conditional independency relationships:

m construct a directed graph by drawing an arc from X; to X; iff Xj € pa(X;)
pa(B) = {}, pa(E) = {}, pa(A) = {B,E}, pa(J) = {A}, pa(M) = {A}.

{-—B—--:} PiB) .;::::n :::::. P(E}
< a > P(A|B, E)

N

- a T op(J|m) (;__H_ 3 PpiM|R)

m Also attach the conditional probability (table) P(X;|pa(X;)) to node X;.

m What results in is a Bayesian network.Also known as belief network,
probabilistic network.

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007 15 / &4 4



A Bayesian network is:
m An directed acyclic graph (DAG), where
m Each node represents a random variable

m And is associated with the conditional probability of the node given its
parents.




i Bayesian Networks: Representation

P(S)

BN = (G, ©)

P(CIS) P(B|S)

P(X]C,S)

P(S, C, B, X, D) =P(S)P(C|S) P(BIS) P(X|C,S) P(D|C,B)
Conditional Independencies == Efficient Representation
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Capturing Independence Graphically

7 Visitto Asia? N

_/

/’/-— Tuberculosis?

Tuberculosis or Cancer?

We would clearly find a visit to
Asia relevant to our belief in
the X-Ray test coming out
positive, but we would find the
visit irrelevant if we know for
sure that the patient does not
have Tuberculosis. That is, X
is dependent on A, but is
independent of A given —T.



