Chapter 3

MARKOV AND BAYESIAN
NETWORKS:

Two Graphical Representations of
Probabilistic Knowledge

Probability is not really about numbers;
it is about the structure of reasoniny.

— G. Shafer

In this chapter, we shall seek effective graphic representations of the dependencies
embedded in probabilistic models. First, we will uncover a set of axioms for the
probabilistic relation "X is independent of Y, given Z" and offer the set as a formal
definition for the notion of informational dependency. Given an initial set of
independence relationships, the axioms permit us to infer new independencies by
nonnumeric, logical manipulations. Using this axiomatic basis, we will identify
structural properties of probabilistic models that can be captured by graphical
representations and compare two such representations, Markov networks and Baye-
sian networks. A Markov network is an undirected graph whose links represent
symmetrical probabilistic dependencies, while a Bayesian network is a directed
acyclic graph whose arrows represent causal influences or class-property relation-
ships. After establishing formal semantics for both network types, we shall explore
their power and limitations as knowledge representation schemes in inference sys-
terns.
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78 Markov and Bayesian Networks

3.1 FROM NUMERICAL TO GRAPHICAL
REPRESENTATIONS

3.1.1 Introduction

Scholarly textbooks on probability theory have created the impression that to
construct an adequate representation of probabilistic knowledge, we must literally
define a joint distribution function P(x,..., x,) on all propositions and their
combinations, this function serving as the primary basis for all inferred judgments.
While useful for maintaining consistency and proving mathematical theorems, this
view of probability theory is totally inadequate for representing human reasoning.

Consider, for example, the problem of encoding an arbitrary joint distribution,
P(x1,..., X,), for n propositional variables. To store P(xy,..., X,) explicitly would
require a table with 2" entries, an unthinkably large number by any standard. Even
if we found some economical way of storing P(xy,..., X,) —or rules for generating
jt—there would remain the problem of computing from it the probabilities of
propositions people consider interesting. For example, computing the marginal
-1 combinations
of the remaining n—1 variables. Similarly, computing the conditional probability
P(x; | x;) via its textbook definition

P(-xiaxj)

Px; 1 xp) = Pir)
j

would entail dividing two marginal probabilities, each a result of summation over
an exponentially large number of variable combinations. Human performance
shows the opposite pattern of complexity: probabilistic judgments on a small
number of propositions (especially two-component conditional statements such as
the likelihood that a patient suffering from a given disease will develop a certain
type of complication) are issued swiftly and reliably, while judging the likelihood
of a conjunction of propositions entails much difficulty and hesitancy. This
suggests that the elementary building blocks of human knowledge are not entries
of a joint-distribution table. Rather, they are low-order marginal and conditional
probabilities defined over small clusters of propositions.

Another problem with purely numerical representations of probabilistic
information is their lack of psychological meaningfulness. The numerical
representation can produce coherent probability measures for all propositional
sentences, but it often leads to computations that a human reasoner would not use.
As a result, the process leading from the premises to the conclusions cannot be
followed, tested, or justified by the users, or even the designers, of the reasoning
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system. Even simple tasks such as computing the impact of a piece of evidence
E = e onahypothesis H = h via

. ) Z P(X];..., xn)
x,‘ZX,' H,E
P(hle)= %’E’e? - e

require a horrendous number of meaningless arithmetic operations, unsupported by
familiar mental processes.

-

THE QUALITATIVE NOTION OF DEPENDENCE

The most striking inadequacy of traditional theories of probability lies in the way
these theories address the notion of independence. The traditional definition of
independence uses equality of numerical quantities, as in P(x, y) = P(x) - P(y),
suggesting that one must test whether the joint distribution of X and Y is equal to
the product of their marginals in order to determine whether X and Y are
independent. By contrast, people can easily and confidently detect dependencies,
even though they may not be able to provide precise numerical estimates of
probabilities.

A person who is reluctant to estimate the probability of being burglarized the
next day or of having a nuclear war within five years can nevertheless state with
ease whether the two events are dependent, namely, whether knowing the truth of
one proposition will alter the belief in the other. Likewise, people tend to judge
the three-place relationship of conditional dependency (i.e., X influences Y, given
Z) with clarity, conviction, and consistency. For example, knowing the time of the
last pickup from a bus stop is undeniably relevant for assessing how long we must
wait for the next bus. However, once we learn the whereabouts of the next bus, the
previous knowledge no longer provides useful information. These commonsense
judgments are issued qualitatively, without reference to numerical probabilities,
and could not possibly rely on arithmetic manipulation of precise probabilities.

Evidently, the notions of relevance and dependence are far more basic to
human reasoning than the numerical values attached to probability judgments. In a
commonsense reasoning system, therefore, the language used for representing
probabilistic information should allow assertions about dependency relationships
to be expressed qualitatively, directly, and explicitly. The verification of
dependencies should not require lengthy numerical manipulations but should be
accomplished swiftly with a few primitive operations on the salient features of the
representation scheme. Once asserted, these dependency relationships should
remain a part of the representation scheme, impervious to variations in numerical
inputs. For example, one should be able to assert categorically that a nuclear
disaster is independent of a home burglary; the system should retain and reaffirm
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80 Markov and Bayesian Networks

this independence despite changes in the estimated likelihoods of these and other
events in the system.

Making effective use of information about dependencies is essential in
reasoning. If we have acquired a body of knowledge K and now wish to assess the
truth of proposition A, it is important to know whether it is worthwhile to consult
another proposition B, which is not in K. In other words, before we examine B, we
need to know if its truth value can generate new information that is relevant to A
and is not available from K. Without this knowledge, an inference engine might
spend precious time on derivations bearing no relevance to the task at hand.
Relevance information, if available, can confine the engine’s attention to
derivations that truly are needed for the target conclusion. But how can we encode
relevance information in a symbolic system?

Explicit encoding is clearly impractical; the number of (4, B, K) combinations
needed is astronomical, because relevance and dependency are relationships that
vary depending on the information available at any given time. Acquisition of
new facts may destroy existing dependencies as well as create new ones. For
example, learning a child’s age destroys the dependency between height and
reading ability, and learning that a patient suffers from a given symptom creates
new dependencies among the diseases that could account for the symptom. The
first kind of change will be called normal as it fits the normal picture that learning
reduces dependencies, and the second will be called induced as it permits learned
facts to induce new dependencies. What logic would facilitate these two modes of
reasoning?

In probability theory, the notion of informational relevance is given
quantitative underpinning through the device of conditional independence, which
successfully captures our intuition about how dependencies should change in
response to new facts. A proposition A is said to be independent of B, given the
information K, if

P(A|B,K)=PAIK),

namely, if once K is given, the probability of A will not be affected by the
discovery of B. This formulation can represent both normal and induced
dependencies: A and B could be marginally dependent (i.., dependent when K is
unknown) and become conditionally independent given K; conversely, A and B
could be marginally independent and become dependent given K. Thus, in
principle, probability theory could provide the machinery for identifying the
propositions that are relevant to each other under a given state of knowledge.

But we have already argued that it is unreasonable to expect people or
machines seeking relevance information to resort to numerical equality tests.
Human behavior suggests that relevance information is inferred qualitatively from
the organizational structure of human memory, not calculated from numerical
values assigned to its components. Accordingly, it would be interesting to explore
how assertions about relevance can be inferred qualitatively, and whether
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assertions equivalent to those made about probabilistic dependencies can be
derived logically without reference to numerical quantities. This task will be
discussed in Section 3.1.2, which establishes an axiomatic basis for probabilistic
dependencies and examines whether the set of axioms matches our intuitive notion
of informational relevancy.

WHY GRAPHS?

A logic of dependency might be useful for verifying whether a set of dependencies
asserted by an agent is consistent and whether a new dependency follows from the
initial set. We could not guarantee, however, that the verification would be
tractable or that any sequence of inferences would match mental steps taken by
humans. To facilitate psychological meaningfulness, we must make sure most
derivations in the logic correspond to simple local operations on structures
depicting commonsense associations. We call such structures dependency graphs.

The nodes in these graphs represent propositional variables, and the arcs
represent local dependencies among conceptually related propositions. Graph
representations meet our earlier requirements of explicitness, saliency, and
stability. The links in the graph permit us to express directly and qualitatively the
dependence relationships, and the graph topology displays these relationships
explicitly and preserves them, under any assignment of numerical parameters.

It is not surprising, therefore, that graphs are the most common metaphor for
conceptual dependencies. Models of human memory are often portrayed in terms
of associational graphs (e.g., semantic networks [Woods 1975], constraint
networks [Montanari 1974], inference networks [Duda, Hart, and Nilsson 1976],
conceptual dependencies [Schank 1972], and conceptual structures [Sowa 1984]).
Graph concepts are so entrenched in our language (e.g., "threads of thoughts,"
“lines of reasoning," "connected ideas," "far-fetched arguments") that one wonders
if people can reason any other way except by tracing links and arrows and paths in
some mental representation of concepts and relations. The next question to ask is
what aspects of informational relevance and probabilistic dependence can be
represented graphically. In other “words, what types of dependencies and
independencies are deducible from the topological properties of a graph? This
question will be addressed in Sections 3.2 (undirected graphs) and 3.3 (directed
graphs).

Despite the prevailing use of graphs as metaphors for communicating and
reasoning about dependencies, the task of capturing informational dependencies
by graphs is not at all trivial. We have no problem configuring a graph which
represents phenomena with explicit notions of neighborhood or adjacency (e.g.,
families, electronic circuits, communication networks). However, in modeling
conceptual relations, such as causation, association, and relevance, it is often hard
to distinguish direct neighbors from indirect neighbors; constructing a graph for
the relation therefore becomes more delicate. The notion of conditional
independence in probability theory is a perfect example. For a given probability
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82 Markov and Bayesian Networks

distribution P and any three variables X,Y, Z, it 1s straightforward to verify
whether knowing Z renders X independent of Y, but P does not dictate which
variables should be regarded as direct neighbors. Thus, many different topologies
might be used to display P’s dependencies. We shall also see that some useful
properties of dependencies and relevancies cannot be represented graphically. The
challenge is to devise graphical schemes that minimize these deficiencies; Markov
and Bayesian networks are two such schemes.

CHAPTER OVERVIEW

This chapter is organized as follows: Sec%ion 3.1.2 uncovers a set of axioms for
the probabilistic relation "X is independent of Y, given Z" and offers the set as a
formal definition for the notion of informational dependency. Sections 3.1.3 and
3.1.4 examine those properties of dependencies that can be captured by graphical
representations. Sections 3.2 and 3.3 compare two such representations, Markov
networks and Bayesian networks. For both network types, we shall establish (1)a
formal description of the dependencies portrayed by the networks, (2) an
axiomatic description of the class of dependencies that can be captured by the
network, (3) methods of constructing the network from either hard data or
subjective judgments, and (4) a summary of properties relevant to the network’s
use as a knowledge representation scheme.

3.1.2 An Axiomatic Basis for Probabilistic
Dependencies

NOTATION AND DEFINITIONS

We will consider a finite set U of discrete random variables (also called partitions
or attributes), where each variable X € U may take on values from a finite domain
Dy. We will use capital letters for variable names (e.g., X, Y, Z) and lowercase
letters (e.g., x, y, z) for specific values taken by variables. Sets of variables will be
denoted by boldfaced capital letters (e.g., X, Y, Z), and assignments of values to
the variables in these sets (also called configurations), will be denoted by
boldfaced lowercase letters (e.g., X, ¥, z). For example, if Z stands for the set of
variables {X, Y}, then z represents the configuration {x,y}: x € Dy, y € Dy.
When the distinction between variables and sets of variables requires special
emphasis, Greek letters o, B, ¥.... will be used to represent individual variables.

We shall repeatedly use the short notation P(x) for the probabilities
P(X =x),x € Dy, and we will write P(z) for the set of variables Z=1{X,Y},
meaning

PZ=2)=PX=x,Y=Y) xe€ Dx,y € Dy.
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(In the rare event that we run out of symbols, variable names will be used as
arguments of probability statements, e.g., P(X, Y), which is equivalent to P(x, y).)

DEFINITION: Let U = {a, B, ...} be a finite set of variables with discrete values.
Let P(:) be a joint probabzllty functzon over the variables in U, and let X, Y, and Z
stand for any three subsets of variables in U. X and Y are said to be conditionally
independent given Z if

P(xly, z) = P(x1z) whenever P(y, z) > 0. 3.1

Eq. (3.1) is a terse way of saying the following: for any configuration x of the
variables in the set X and for any configurations y and z of the variables in Y and Z
satisfying P(Y =y, Z = z) > 0, we have

PX=x1Y=y,Z=2)=PX=xIZ=2). 3.2)

We will use the notation /(X,Z,Y)p or simply I(X,Z Y) to denote the
conditional independence of X and Y given Z; thus,

IX,Z,Y)p iff P(xly, z) = P(xlz) 3.3

for all values x, y, and z such that P(y, z) > 0. Unconditional independence (also
called marginal independence ) will be denoted by I(X, &, Y), i.e.,

I(X, 3,7Y) iff P(x|y) = P(x) whenever P(y) > 0. 3.4)

Note that /(X, Z, Y) implies the conditional independence of all pairs of variables
a.€ X and B € Y, but the converse is not necessarily true.

The following is a partial list of (equivalent) properties satisfied by the
conditional independence relation /(X, Z, Y) [Lauritzen 1982]:

IX,Z,Y) <> P(x,ylz) = P(x|2) P(y|2), (3.5a)
I(X,Z,Y) <= 3f, g: P(x, 5, 2) = f(x, 2) g0, 2), (3.5b)
IX,Z,Y) <> P(x, y,2) = P(x12) P(y, 2). 3.5¢)

The proof of these properties can be derived by elementary means from Eg. (3.3)
and the basic axioms of probability theory. The properties are based on the
numeric representation of P and therefore would be inadequate as an axiomatic
system.

_
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AXIOMATIC CHARACTERIZATION

We now ask what logical conditions, void of any reference to numerical forms,
should constrain the relationship (X, Z, Y) if in some probability model P it stands
for the statement "X is independent of ¥, given that we know Z."

THEOREM 1: Ler X, Y, and Z be three disjoini subsets of variables from U. If
I(X, Z,Y) stands for the relation “X is independent of Y, given Z” in some
probabilistic model P, then 1 must satisfy the following four independent

conditions:

e Symmetry:

IX, Z2,Y) <=1, Z, X) (3.6a)
e Decomposition:

IX,Z,YUW) = IX,Z2,Y) & IX,Z, W) (3.6b)
e Weak Union:

IX,Z,YUW) = X, ZUW,Y) (3.60)

e Contraction:
IX,Z,YY&IX, ZUY, W) = IX, Z, YO W) (3.64d)

If P is strictly positive, then a fifth condition holds:

e [ntersection:
IX,ZUW,Y) & IX,ZUY, W)= IX, Z,YUW). (3.6¢)

REMARKS:

1. The symbol U in ¥ U W represents a union of variable sets and should
not be confused with logical disjunction. More specifically, it stands for
the conjunction of events asserted by instantiating the set union Y U W.
For example, /(X, &, Y U W) stands for

PX=x,Y=y,W=w)=PX=x)PA=yW=w) Vxyw

A simpler notation, (X, &, YW), will occasionally be used.

2. The requirement that the arguments of /(-) be disjoint was made for the
sake of future clarity. Theorem 1 can be extended to include overlapping
subsets as well, using an additional axiom,

IX, Z, Z). (3.6f)
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From Eqs. (3.6a) through (3.6d) and Eq. (3.6/) one can prove the
theorem

IX,2,Y) <=>1(X~2,2,Y~Z),

stating that the parts of X and Y that do not overlap Z are sufficient to
determine whether /(X, Z, Y) holds. Thus, once I(*) is defined on the set
of disjoint triplets (X, ¥, Z) it is also defined on the set of all triplets.
Note that both I(X, Z, Z) and /(X, Z, &) follow from Eq. (3.3).

3. The proof of Theorem 1 can be derived from Eq. (3.3) and from the
basic axioms of probability theory [Dawid 1979]. That Egs. (3.6a)
through (3.6¢) are logically independent can be demonstrated by letting
U contain four elements and showing that it is always possible to
contrive a subset 7 of triplets (from the subsets of U) that violates one
property and satisfies the other four.

INTUITIVE INTERPRETATION OF THE AXIOMS

Egs. (3.6a) through (3.6¢) can be interpreted as follows: The symmetry axiom
states that in any state of knowledge Z, if Y tells us nothing new about X, then X
tells us nothing new about Y. The decomposition axiom asserts that if two
combined items of information are judged irrelevant to X, then each separate item
is irrelevant as well. The weak union axiom states that leaming irrelevant
information W cannot help the irrelevant information Y become relevant to X. The
contraction axiom states that if we judge W irrelevant to X after learning some
irrelevant information Y, then W must have been irrelevant before we learned Y.
Together, the weak union and contraction properties mean that irrelevant
information should not alter the relevance of other propositions in the system;
what was relevant remains relevant, and what was irrelevant remains irrelevant.
The intersection axiom states that unless Y affects X when W is held constant or W
affects X when Y is held constant, neither W nor Y nor their combination can
affect X.

GRAPHICAL INTERPRETATIONS

The operational significance of these axioms and their role as inference rules can
best be explained with a graph metaphor. Let /(X, Z, Y) stand for the phrase "Z
separates X from Y," i.e., "The removal of a set Z of nodes from the graph (together
with their associated edges) would render the nodes in X disconnected from those
in Y." The validity of Eqs. (3.6a) through (3.6¢) is clearly depicted by the chain
X~Z-Y—-W and by the schematics of Figure 3.1.
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Decomposition
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Figure 3.1. Graphical interpretation of the axioms governing conditional independence.

Symmetry simply states that if Z separates X from Y, it also separates Y from X.
Decomposition asserts that if Z separates X from the compound set S =Y U W, it
also separates X from every subset of §. Weak union provides conditions under
which a separating set Z can be augmented by additional elements W and still
separate X from Y. The condition is that the added subset W should come from the
section of space that was initially separated from X by Z. Contraction provides
conditions for reducing the size of the separating set; it permits the deletion of a
subset Y from the separator Z U Y if the remaining part, Z, separates the deleted
part, ¥, from X. Intersection states that if within some set of variables
S=XuUYuUZuUW, X can be separated from the rest of § by two different subsets,
S, and S, (e, Sy =ZuYand S, =ZU W), then the intersection_of S| and §; is
sufficient to separate X from the rest of S. 0‘3\




3.1 From Numerical to Graphical Representations . 87

THE INTERSECTION AXIOM AND STRICTLY
POSITIVE DISTRIBUTIONS

The intersection axiom is the only one that requires P(x) > O for all x, and it will
not hold if the variables in U are constrained by logical dependencies. For
instance, if Y stands for the proposition "The water temperature is above freezing"
and W stands for "The water temperature is above 32°F," then knowing the truth of
either proposition clearly renders the other superfluous. Contrary to the
intersection axiom, however, Y and W might still be relevant to a third proposition
X ("We will enjoy swimming in that water," for example). The intersection axiom
will hold if we regard these logical constraints as having some small probability €
of being violated.

The assumption P = € > 0 means every event or combination of events, no
matter how outrageous, has some chance of being true. When examining empirical
facts, making this assumption is not as strange as it seems. For example, 1t is
possible for the water temperature to be above freezing but below 32°F (if it is
very salty, for instance). Once we accept such a possibility we must reject the
statement that knowing either of these facts renders the other superfluous relative
to any X. If X represents our concern about swimming in the water, then the
temperature becomes the relevant fact, and whether it is frozen is irrelevant. On
the other hand, if our interest is ice fishing, the frozenness, not the temperature, is
relevant. This is exactly what Eq. (3.6¢) claims: if two properties exert influence
on X, then (at a sufficiently high level of detail) it is impossible that each of the two
properties will render the other irrelevant. Such symmetrical exclusion is possible
only with analytical or definitional properties (e.g., Y = "The water temperature is
above 32°F," W = "The water temperature is not equal to or lower than 32°F") and
not with properties defined by independent empirical tests.

GRAPHS VS. GRAPHOIDS

Decomposition and weak union are strikingly similar to vertex separation in
graphs, but are much weaker. In graphs, two sets of vertices are said to be
separated if there exists no path between an element of one set and an element of
the other. The decomposition property (Eq. (3.65)), on the other hand, reflects only
one-way implication; a variable X may be independent of each individual variable
in set Y and still be dependent on the entire set. For example, let ¥ be the
outcomes of a set of fair coins, and let X be a variable that gets the value 1
whenever an even number of coins turn up ‘‘heads’’ and gets 0 otherwise. X is
independent of every element and every proper subset of Y, yet X is completely
determined by the entire set Y. Weak union is also weaker than vertex separation.
If Z is a cutset of vertices that separates X from Y in some graph, then enlarging Z
keeps X and Y separated. Weak union, on the other hand, severely restricts the
conditions under which a separating set Z can be enlarged with elements W; it
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88 Markov and Bayesian Networks

states that W should be chosen from a set that, like Y, is already separated from X
by Z.

Any three-place relation /() that satisfies Egs. (3.6a) through (3.64) is called a
semi-graphoid. 1f it also obeys Eq. (3.6e), it is called a graphoid [Pearl and Paz
1985]. Egs. (3.6a) through (3.6d) are satisfied by many dependency models.
Besides vertex separation in undirected graphs, they also hold in directed graphs
(see Section 3.3), and they govern information dependencies based on partial
correlations [Pearl and Paz 1985], embedded multi-valued dependencies (EMVDs)
in relational databases [Fagin 1977], and qualitative constraints [Shafer, Shenoy,
and Mellouli 1988]. Because of this generality, the semi-graphoid axioms have
been proposed as the basis of information dependencies.

Qualitative formulations of dependencies are accompanied by extra properties,
whereas the probabilistic formulation seems to be completely characterized by
these four axioms and therefore is more general. This observation can be expressed
more formally.

COMPLETENESS CONJECTURE [Pearl and Paz 1985]: The set of axioms in
Egs. (3.6a) through (3.6d) is completewhen I is interpreted as a conditional
independence relation. In other words, for every three-place relation 1 satisfying
Egs. (3.6a) through (3.6d), there exists a probability model P such that

Pxly,2)=Pxlz) iff IX ZY).

If the intersection axiom (Egs. (3.6e)) also is satisfied, then there exists a positive P
satisfying the above relation.

While no proof has yet been found for this conjecture, all known properties of
conditional independence (those valid for all P) have been shown to be derivable
from Egs. (3.6a) through (3.6d). A thorough treatment of the completeness
problem, as well as completeness results for special types of probabilistic
dependencies, are given by Geiger and Pearl [1988a].

WHY AXIOMATIC CHARACTERIZATION?

Axiomatizing the notion of probabilistic dependence is useful for three reasons.
First, it allows us to conjecture and derive interesting and powerful theorems that
may or may not be obvious from the numerical representation of probabilities. For
example, the chaining rule [Lauritzen 1982],

IX, Y, Z) & (XY, Z, W) = I(X, Y, W),

follows directly from Egs. (3.6a) through (3.6d) and is important for recursively
constructing directed graph representations (see Section 3.3). Another interesting
theorem is the mixing rule [Dawid 1979],

IX,Z,YUW)&IY,Z,W) = IXUW Z,Y),
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which also follows from Egs. (3.6a) through (3.6d). The mixing rule, with
symmetry and decomposition, constitutes a complete axiomatization of marginal
independencies, i.e., independence statements where the knowledge set Z is fixed
[Geiger and Pearl 1988a]. The rule states that for each of the variables X , Y, Wto
be independent of the other two, it is enough that just one of them be independent
of the other two and that the remaining pair be mutually independent.
Generalizing recursively to n variables, the rule states that for n variables to be
mutually independent, it is enough that one of them be independent of the other
n — 1, and that the remaining n — 1 be mutually independent.

Second, the axioms can be viewed as qualitative inference rules used to derive
new independencies from some initial set. For example, an expert might provide
us with an initial set £ of qualitative independence judgments in the form of
triplets (X, Z, Y), and we may wish to test whether a new triplet 6 =(X",Z",Y")
follows from X. This task, called the memb/éfship problem [Beeri 1980] may in
principle be undecidable, because to test whether ¢ follows from T we must test
whether ¢ holds in every distribution that satisfies ¥, and the number of
distributions is infinite. If, however, we can derive & by repeated application of
sound axioms, we can guarantee that ¢ follows from ¥ without searching the vast
space of probability distributions. If, in addition, the set of axioms is complete, we
are also guaranteed that every o that follows from X eventually will be derived
from X by repeated application of the axioms. In other words, the decidability of
the membership problem hinges upon finding a complete set of axioms for
conditional independence. Closely related to the membership problem is the task
of verifying whether a mixed set ¥ of dependencies and independencies is
consistent , namely, whether no subset of ¥ implies the negation of another. Thus,
with a sound and efficient inference mechanism we can test and maintain
consistency in a database of dependency information.

Finally, an axiomatic system provides a parsimonious and convenient code for
comparing the features of several formalisms of dependency (e.g., probabilistic vs.
qualitative) as well as the expressive power of various representations of such
formalisms. In Sections 3.2 and 3.3, for example, we will use the axioms to
compare the expressive powers of directed and undirected graphs, and to reveal
what types of dependencies cannot be captured by graphical representations.

SUMMARY

The probabilistic relation of conditional independence possesses a set of
qualitative properties that are consistent with our intuitive notion of "X is
irrelevant to Y, once we learn Z." These properties, which are also satisfied by
vertex separation in graphs, are captured by the axioms in Eq. (3.6). The defining
axioms convey the idea that when we learn an irrelevant fact, the relevance
relationships among other propositions remain unaltered; any information that was
relevant remains relevant, and irrelevant information remains irrelevant. The
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axioms established can be used as inference rules for deriving new independencies
and for defining the common features among various formalisms of dependence.

3.1.3 On Representing Dependencies by

WHAT’ S IN A MISSING LINK?

Suppose we have a collection U = {a, B,...} of interacting elements, and we decide
to represent their interactions by an undirected graph G, in which the nodes
correspond to individual elements of U. Naturally, we would like to display
independence between two elements as a lack of connection between their
corresponding nodes in G; conversely, dependent elements should correspond to
connected nodes in G. This requirement alone, however, does not take full
advantage of the expressive power of graphical representation. It treats all
connected components of G as equivalent and does not attribute any special
significance to the structure of each connected component.

Clearly, if graph topology is to convey meaning beyond connectedness, a
semantic distinction must be drawn between direct connection and indirect
connection. This means that the absence of a direct link between two elements o
and B should reflect an interaction that is conditional, i.e., it may become stronger,
weaker, or zero, depending on the state of other elements in the system, especially
those that lie on the paths connecting o and B and thus mediate between them.

As an example, consider a group of two males {M, M,} and two females
{F;, F,} who occasionally engage in pairwise heterosexual activities. The lack of
direct contact between the two males and between the two females can be
represented by the diamond-shaped graph of Figure 3.2, which can also be used to
represent conditional dependencies between various propositions. For example, if
by m; (or f;) we denote the proposition that male M; (or female F;) will carry a
certain disease within a year, then the topology of the network in Figure 3.2 asserts
that f, and f, are independent given m and m,, namely, once we know for sure
whether M; and M, will carry the disease, knowing the truth of f; ought not
change our belief in f5.1

+ This assumes, of course, that we are dealing with a known disease whose spreading mechanism is
well understood. Otherwise, while we are still learning the disease characteristic, knowledge of f;
may help decide the more basic question of whether the disease is contagious at all, and this
information will and should have an effect on f5.
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Figure 3.2. An undirected graph representing interactions among four individuals.

This conditional independence reflects a model whereby the disease spreads
only by direct contact. Note that the links in this network are undirected, namely,
either partner might be the originator of the disease. This does not exclude
asymmetric interactions (e.g., the disease may be more easily transferable from
males to females than the other way around). Such information, if available, will
be contained in the numerical parameters that eventually will characterize the
links in the network—they will be described in Section 3.2.3.

In summary, the semantics of the graph topology are defined by the meaning of
the missing links, which tells us what other elements mediate the interactions
between nonadjacent elements. This process of mediation will now be compared
to the probabilistic relation of conditional independence I (X, Z, Y), Eq. (3.1),
which formalizes the intuitive statement "Knowing Y tells me nothing new about X
if I already know Z."

DEPENDENCY MODELS AND DEPENDENCY MAPS

Let U = {a, B,...} be a finite set of elements (e.g., propositions or variables), and
let X, Y, and Z stand for three disjoint subsets of elements in U. Let M be a
dependency model, that is to say, a rule that assigns truth values to the three-place
predicate I(X, Z, Y)y, or in other words determines a subset / of triplets (X, Z, Y)
for which the assertion "X is independent of ¥ given Z" is true. Any probability
distribution P is a dependency model, because for any triplet (X, Z, ¥) we can test
the validity of 1(X, Z, Y) using Eq. (3.1). Our task is to characterize the set of
dependency models capturable by graphs, including models that provide no
explicit notion of adjacency. In other words, we are given the means to test
whether a given subset Z of elements intervenes in a relation between the elements
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of X and those of Y, but it is up to us to decide how to connect the elements in a
graph that encodes these interventions.

An undirected graph G = (V, E) is characterized by a set V of nodes (or
vertices) and a set E of edges that connect certain pairs of nodes inV. By a
graphical representation of a dependency model M, we mean a direct
correspondence between the elements in U (of M) and the set of vertices in V (of
G), such that the topology of G reflects some properties of M. When this
correspondence is established, we will make no distinction between U and V but
will write G = (U, E).

Ideally, if a subset Z of nodes in a graph G intercepts all paths between the
nodes of X and those of ¥ (written < X | Z | ¥ > (), then this interception should
correspond to conditional independence between X and ¥ given Z, namely,

<XIlZI Y>G > I(X,Z;Y)M’
and conversely,

IX,Z, V), = <XI1Z1Y>.

This correspondence would provide a clear graphical representation for the notion
that X does not affect Y directly, that the variables in Z mediate between them.
Unfortunately, we are about to see that these two requirements are too strong;
there often is no way of using vertex separation in a graph to display all
dependencies and independencies embodied in a dependency model, even if the
model portrays simple, everyday experiences.

DEFINITION: An undirected graph G is a dependency map (or D-map) of M if
there is a one-to-one correspondence between the elements of U and the nodes V
of G, such that for all disjoint subsets X, Y, Z of elements we have

IX,Z,Y)y = <XI1ZI1Y>g. 3.7
Similarly, G is an independency map (or I-map) of M if
IXZY)y < <XI1Z1Y>g. 3.8)

G is said to be a perfect map of M if it is both a D-map and an I-map.

A D-map guarantees that vertices found to be connected are indeed dependent
in M (from the contrapositive form of Eq. (3.7)); it may, however, display a pair of
dependent variables as a pair of separated vertices. An I-map, conversely,
guarantees that vertices found to be separated correspond to independent variables
but does not guarantee that all those shown to be connected are in fact dependent.
Empty graphs are trivial D-maps, while complete graphs are trivial /-maps.
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It is clear that many reasonable models of dependency have no perfect maps.
An example is a model in which I (X, Z, Y) exhibits induced dependencies, i.e.,
totally unrelated propositions become relevant to each other when we learn new
facts. Such a model, implying both I (X, Z,, Y)y and —I[(X, Z, U Z,, Y),,, cannot
have a graph representation that is both an /-map and a D-map, because graph
separation always satisfies :

<XIZ Y2, = <XIZ,VZy 1Y >,
for any two subsets Z; and Z, of vertices. Thus, being a D-map requires G to
display Z, as a cutset separating X and ¥, while G’s being an I-map prevents
ZyUZ, from separating X and Y. No graph can satisfy both requirements
simultaneously.

This weakness in the expressive power of undirected graphs severely limits
their ability to represent informational dependencies. Consider an experiment with
two coins and a bell that rings whenever the outcomes of the two coins are the
same. If we ignore the bell, the coin outcomes, X and Y, are mutually independent,
ie., (X, D, Y),butif we notice the bell (Z), then learning the outcome of one coin
should change our opinion about the other coin, i.e., =1(X, Z, Y). How can we
graphically represent the simple dependencies between the coins and the bell, or
between any two causes leading to a common consequence? If we take the naive
approach and assign links to (Z, X) and (Z, Y), leaving X and Y unlinked, we get
the graph X—Z—7Y. This graph is not an /-map because it (wrongly) asserts that X
and Y are independent given Z. If we add a link between X and Y we get the trivial
I-map of a complete graph, which no longer reflects the obvious fact that the two
coins are genuinely independent (the bell being a passive device that does not
affect their interaction). In Section 3.3, we will show that such dependencies can
be represented completely with the richer language of directed graphs. For now,
let us further examine the representational capabilities of undirected graphs.

Our inability to provide graphical representations for some models of
dependency (e.g., induced dependency) raises the need to delineate the class of
models that do lend themselves to graphical representation. This we do in the
following section by establishing an axiomatic characterization of the family of
relations that are isomorphic to vertex separation in graphs.

3.14 Axiomatic Characterization of Graph-
Isomorph Dependencies

DEFINITION: A dependency model M is said to be a graph-isomorph if there
exists an undirected graph G = (U, E) that is a perfect map of M, i.e., for every
three disjoint subsets X, Y, and Z of U, we have

IX,Z,Y)y <> <XI1ZI1Y> (3.9)
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THEOREM 2 [Pearl and Paz 1985]: A necessary and sufficient condition for a
dependency model M to be a graph-isomorph is that 1(X, Z, Y)y satisfies the
following five independent axioms ( the subscript M is dropped for clarity ):

e Symmetry:

IX,Z,Y) < Iy, zZ, X) (3.10a)
e Decomposition:

IX,Z, YOW)=> 1X,Z,VN&IX, Z, W) (3.100)
e Intersection:

I(X,ZUW,Y)&I(X,ZUY,W)==:>I(X,Z,YUW) (3.100)
e Strong union:

1(X,Z,Y) => 1, ZUW,Y) (3.104)
o Transitivity:

1X,Z,Y) =>I1X, Z,y) or I(Y, Z,Y). . (3.10¢)

REMARKS:

1. v is a singleton element of U, and all three arguments of I(+) must
represent disjoint subsets.

9. The axioms are clearly satisfied for vertex separation in graphs. Eq.
(3.10¢) is the contrapositive form of connectedness transitivity, stating
that if X is connected to some vertex Y and 7y is connected to ¥, then X
must also be connected to ¥. Eq. (3. 10d) states that if Z is a vertex cutset
separating X from Y, then removing additional vertices W from the
graph leaves X and Y still separated. Eq. (3.10c) states that if X is
separated from W with ¥ removed and X is separated from Y with W
removed, then X must be separated from both Y and W.

3. Egs. (3.10c) and (3.10d) imply the converse of Eq. (3.10b), meaning / is
completely defined by the set of triplets (o, Z, ) in which o and P are
individual elements of U:

(X, Z, Y)<=——¢>(Van)(VBe Y) (o, Z, B).

Equivalently, we can eXpress the axioms in Eq. (3.10) in terms of such
triplets. Note that the union axiom, Eq. (3.10d), is unconditional and
therefore stronger than Eq. (3.6¢), which is required for probabilistic
dependencies. Eq. (3.10d) provides a simple way to construct a unique
graph G that is an I-map of M: starting with a complete graph, W€

delete every edge (a., B) for which I(o, Z, B) holds.
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Proof:

1. The "necessary” part follows from the observation that all five axioms are
satisfied by vertex separation in graphs. The logical independence of the five
axioms can be demonstrated by letting U contain four elements and showing
that it is always possible to contrive a subset [ of triplets that violates one axiom
and satisfies the other four.

2. To prove sufficiency, we must show that for any set [ of triplets (X, Z, Y) closed
under Egs. (3.10a) through (3.10¢), there exists a graph G such that (X, Z, Y) is
in / iff Z is a cutset in G that separates X from Y. We show that Gy =, Ey is
such a graph, where (a, B)¢ E, iff I (o, Z, B). In view of Remark 3 above, it is
sufficient to show that

(o, S, B) => <alSIB>;, where o, Be Uand Sc U,
since the converse follows automatically from the construction of Gy.
This is proved by finite descending induction:

i.  For ISl =n-2, the theorem holds automatically, because of the way G, is
constructed.

ii.  Assume the theorem holds for all § of size IS| = k < n—2. Let §” be any set of
size 18”1 = k—1. For k < n-2, there exists an element Youtside " U L B, and
using Eq. (3.10d), we have I(o, §°, B) == I(a, §" U7, B).

iii. By Eq. (3.10e) we have either /(a, S°, Yorl(y, S, B).
iv.  Applying Eq. (3.104) to either alternative in (iii) gives I{a, S"U B, 7).

v.  The middle arguments §" Uy and §" U B in (ii) and (iv) are both of size k, so by
the induction hypothesis we have <o/l$” U YIB>¢, and <alS UBIY>, .

vi. By Eq. (3.10c), the intersection property for vertex separation in graphs, (iv)
and (v) imply <olS" 1>, . QED.

Having a complete characterization for vertex separation in graphs allows us to
test whether a given model of dependency lends itself to graphical representation.
In fact, it is now easy to show that probabilistic models may violate both of the last
two axioms. Eq. (3.104d) is clearly violated in the coins and bell example of the
preceding subsection. Transitivity (Eq. (3.10¢)) is violated in the same example,
or if one of the coins is not fair, the bell’s response is dependent on the outcome
of each coin separately; yet the two coins are independent of each other. Finally,
Eq. (3.10¢) is violated whenever ¥ and W logically constrain one another, as in the
arlier water temperature example.

. Having failed to provide isomorphic graphical representations for even the
most elementary models of informational dependency, we settle for the following
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compromise: instead of complete graph isomorphism, we will consider only /-
maps, i.e., graphs that faithfully display every dependency. However,
acknowledging that some independencies will escape representation, we shall
insist that their number be kept at a minimum—in other words, that the graphs
contain no superfluous edges.

3.2 MARKOV NETWORKS

When a connection is drawn between such seemingly unrelated objects as
probability distributions and graphs, it is natural to raise the following three
questions:

1. Given a probability distribution P, can we construct an I-map G of P that
has the minimum number of edges?

2. Given a pair (P, G), can we test whether G is an [-map of P?

3. Given a graph G, can we construct a probability distribution P such that
G is a perfect map of P?

The theory of Markov fields provides satisfactory answers to Question 2 for strictly
positive P [Isham 1981; Lauritzen 1982]. This treatment is rather complex and
relies heavily on the numerical representation of probabilities. We shall start with
Question 1 and show the following:

e Question 1 has a simple unique solution for strictly positive
distributions.

e The solution to Question 2 follows directly from the solution to
Question 1.

¢ The solutions are obtained by nonnumerical analysis, based solely on
Egs. (3.6a) through (3.6¢) in Section 3.1.2.

Question 3 recently was answered affirmatively [Geiger and Pearl 1988a] and will
be treated briefly in Section 3.2.3. Sections 3.2.3 and 3.2.4 focus on finding a
probabilistic interpretation for a graph G such that the dependencies shown in G
reflect empirical knowledge about a given domain.

3.2.1 Definitions and Formal Properties

DEFINITION: A graph G is a minimal I-map of a dependency model M if
deleting any edge of G would make G cease to be an I-map. We call such a graph
a Markov network of M.
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THEOREM 3 [Pearl and Paz 1985]: Every dependency model M satisfying
symmetry, decomposition, and intersection (Eq.(3.6)) has a unique minimal I-map
Go = (U, Ey) produced by deleting from the complete graph every edge (o, B) for
which I(o,U—a.— B, By, holds, i.e.,

(o, B)ye Ey iff (o, U~ =B, B)yy. (3.11)

The proof is given in Appendix 3-A.

DEFINITION: A Markov blanketBL,(0) of an element o€ U is any subset S of
elements for which

I(o, S, U-S~0a) and o.¢ S. (3.12)

A set is called a Markov boundary of o, denoted B/(o), if it is a minimal Markov
blanket of a,, i.e., none of its proper subsets satisfy Eq. (3.12).

The boundary B,(o) is to be interpreted as the smallest set of elements that
shields o from the influence of all other elements. Note that B, (o) always exists
because I (X, S, @) guarantees that the set S = I/ — o satisfies Eq. (3.12).

THEOREM 4 [Pearl and Paz 1985]: Every element o.e Uin a dependency model
satisfying symmetry, decomposition, intersection, and weak union ( Eq.(3.6)) has a
unique Markov boundary B/(0). Moreover, B((0) coincides with the set of vertices
B, () adjacent to o in the minimal I-map G,.

The proof of Theorem 4 is given in Appendix 3-B. Since B,(a) coincides with
Bg, (o), the following two interpretations of direct neighbors are identical:
neighborhood as a blanket that shields o from the influence of all other variables,
and neighborhood as a permanent bond of mutual influence between two variables,
a bond that cannot be weakened by other elements in the system. Models
satisfying the conditions of Theorem 4 are called pseudo-graphoids , i.e., graphoids
lacking the contraction property (Eq. (3.64)).

Since every strictly positive distribution defines a pseudo-graphoid, we can
derive two corollaries.

COROLLARY 1: The set of Markov boundaries B{ot) induced by a strictly
positive probability distribution forms a neighbor system, i.e., a collection
B] = {B/0) : e U} of subsets of U such that for all pairs «, B e Uwe have

(i) a¢ Byo) and
(i) ove B/P) iff Be Byo).
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COROLLARY 2: The Markov network G of any strictly positive distribution
can be constructed by connecting each variable o to all members of its Markov
boundary B/(0).

Corollary 2 is useful because often it is the Markov boundaries Bj(o) that are
given to us when we request the factors that affect oo most directly. These factors
may be the immediate consequences of an event, the justifications for an action, or
the salient properties that characterize a class of objects or a concept. Moreover,
since either construction will yield an [-map, many global independence
relationships can be validated by separation tests on graphs constructed from local
information.

TESTING I-MAPNESS

We are now in a position to answer Question 2 from the beginning of this
subsection: can we test whether a given graph G is an /-map of a distribution P
(i.e., test the [-mapness of G)? We assume that P is not given explicitly but is
represented by a procedure that answers queries of the type “‘Is I(X, Z, Y) true in
P?”

THEOREM 5: Given a strictly positive probability distribution P on U and a
graph G = (U, E), the following three conditions are equivalent.

i. Gisanl-map of P.
ii. G is a supergraph of the Markov network G of P,i.e.,

(o, Bye E  whenever  —l(a, U= 0 — B, B).

iii. G is locally Markov with respect to P, i.e., for every variable oo.e U we
have I(0, Bg(o), U—o.—Bg(a)), where Bg(0) is the set of vertices
adjacent to 0.in G.

Proof: The implication (ii) => (i) follows from the /-mapness of G¢ (Theorem 3), and (i)
=> (iii) follows from the definition of I-mapness. It remains to show (iii) => (ii), but this
follows from the identity of B;(ct) and Bg, (o) (Theorem 4). Q.E.D.

Properties (ii) and (iii) provide local procedures for testing /-mapness without
examining every cutset in G. To show the essential role played by the assumption
of strict positivity let us demonstrate the insufficiency of local tests when variables
are subjected to functional constraints. Imagine four random variables constrained
by equality, i.e,X =Y =Z =W. Any single variable is a Markov boundary of any
other, because knowing the first variable determines the value of the second.
Consequently, the graph shown in Figure 3.3a would qualify under the Markov
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boundary condition (Property iii of Theorem 5). This graph is not an /-map of the
distribution, however, because the pair (X, Y) is not independent of the pair (Z, W).
Worse yet, since any pair of variables is rendered independent given the values of
the other pair, I(o, U~ o~ B, B) holds for every pair (o, B). Thus, were we to
construct Gy by the edge-deletion method of Eq. (3.11), we would get an empty
graph (Figure 3.3b), which obviously is not an /-map of the distribution.

(a) (b)

Figure 3.3. Failure of local tests for I-mapness under equality constraints X=Y=2Z=W.
(a) A graph qualifying under the Markov boundary test. (b) An empty graph
qualifying under the edge-deletion test (Eq. (3.11)).

It can be shown that even if we connect each variable to the union of all its
Markov boundaries, we will not get an /-map when categorical constraints are
present. Thus, there appears to be no local test for I-mapness of undirected graphs
that works for extreme probability distributions. We shall see in Section 3.3 that
directed graphs do not suffer from this deficiency; local tests for /-mapness and
minimal /-mapness exist even for distributions that reflect categorical constraints.
It should be noted that the tests in (ii) and (iii), while local, still involve all the
varibles in U and therefore may require exponentially complex procedures,
especially when P is given as a table. Fortunately, in most practical applications
we start with the graph representation G and use the probability model P merely as
a theoretical abstraction to justify the operations conducted on G.

We see that representations of probabilistic independencies using undirected
graphs rest heavily on the intersection and weak union axioms, Eqgs. (3.6¢) and
(3.6¢). In contrast, we shall see in Section 3.3 that directed graph representations
rely on the contraction and weak union axioms, with intersection playing only a
minor role.
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3.2.2 Illustrations

GRAPHOIDS AND THEIR MARKOV NETWORKS

To see the roles of the various axioms of Eq. (3.6), consider a set of four integers
U=11,2, 3,4}, and let ] be the set of twelve triplets listed below:

I=1{(1,2,3),(1,3,4,23,4,({12},3.4,
(1, {2,3},4), (2, {1,3}.4), symmetrical images }.

All other triplets are assumed to be dependent, i.e., outside /. It is easy to see that /
satisfies the other axioms of Eq. (3.6) but does not satisfy contraction; [ contains
(1,2, 3) and (1, {2, 3}, 4) but not (1, 2, {3, 4}). Thus, (from Theorem 1) [ is
supported by no probability model, but (from Theorem 3) it has a unique minimal
[-map G, shown in Figure 3.4. Moreover, Theorem 4 ensures that G, can be
constructed in two different ways, either by deleting the edges (1, 4) and (2, 4)
from the complete graph, in accordance with Eq. (3.11), or by computing from /
the Markov boundary of each element, in accordance with Eq. (3.12), yielding

B(1) = (2,3), B/2)={1.3}, B(3)={1.2,4], B4 = {3}

L ]
Figure 3.4. The minimal I-map, Gy, of L
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Now consider a modified list /” containing only the last two triplets of I (and
their symmetrical images):

I"={(1, {2, 3}, 4), (2, {1, 3}, 4), symmetrical images }.

I” is a semi-graphoid (it satisfies Egs. (3.6a) through (3.6d)) but not a graphoid,
because the absence of the triplet ({1,2}, 3,4) violates the intersection axiom (Eq.
(3.6€)). Hence, I” can represent a probability model but not a strictly positive one.
Indeed, if we try to construct G by the usual criterion of edge-deletion (Eq.
(3.11)), we get the graph in Figure 3.4, but it is no longer an /-map of I ; it shows 3
separating 1 from 4, but (1, 3, 4) is not in /. In fact, the only /-maps of /" are the
three graphs in Figure 3.5, and the minimal /-map clearly is not unique.

1 1 1
2 3 2 3 2 3
4 4 4
(a) (b) ()

Figure 3.5. The three I-maps of I".

Now consider the list
17=1{(1,2,3),(1,3,4), (2,3, 4), ({1, 2}, 3, 4), symmetrical images ).

17" satisfies Egs. (3.6a), (3.6b), and (3.6¢), but not the weak union axiom (Eq.
(3.6¢)). From Theorem 3 we can still construct a unique I-map for /" using the
edge-deletion method, but because no triplet of the form (o, U — o~ B, B) appears
in I, the only /-map for this list is the complete graph. Moreover, the Markov
boundaries of /°” do not form a neighbor set (B;-(4) = 3, B;-(2) = {1, 3, 4}, so
2 ¢ B;-(4) while 4 € B;-(2)). Thus, we see that the lack of weak union prevents us
from constructing an /-map by the Markov boundary method.

Since / does not obey the contraction property (Eq. (3.6d)), no probabilistic
model can induce this set of independence relationships unless we add the triplet
(1, 2,4) to 1. If I were a list of statements given by a domain expert, it would be
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possible to invoke Eq. (3.6a) through (3.6¢) to alert the expert to the inconsistency
caused by the absence of (1,2, 4). The incompleteness of /” and I™ would be
easier to detect by graphical means because they interfere with the formation of
G and could be identified by a system attempting to construct it.

CONCEPTUAL DEPENDENCIES AND THEIR
MARKOV NETWORKS

Consider the task of constructing a Markov network to represent the belief about
whether agent A will be late for a meeting. Assume the agent identifies the
following variables as having influence on the main question of being late to a
meeting:

1. The time shown on the watch of Passerby 1.

2. The time shown on the watch of Passerby 2.

3. The correct time.

4. The time it takes to travel to the meeting place.
5

The arrival time at the meeting place.

The construction of G can proceed by one of two methods:
e The edge-deletion method.

¢ The Markov boundary method.

Following Eq. (3.11), the first method requires that for every pair of variables
(o, B) we determine whether fixing the values of all other variables in the system
will render our belief in o sensitive to B. We know, for example, that the reading
on Passerby 1’s watch (1) will vary with the actual time (3) even if all other
variables are known. On that basis, we can connect node 1 to node 3 and, by
proceeding this way through all pairs of variables, construct the graph of Figure
3.6. The unusual edge (3, 4) reflects the reasoning that if we fix the arrival time
(5), the travel time (4) must depend on the current time (3).

The Markov boundary method requires that for every variable o in the system,
we identify a minimal set of variables sufficient to render the belief in o insensitive
to all other variables in the system. It is a commonsense task, for instance, to
decide that once we know the current time (3), no other variable can affect what
we expect to read on passerby 1’s watch (1). Similarly, to estimate our arrival time
(5), we need only know the current time (3) and how long it takes to travel (4),
independent of the watch readings (1) and (2). On the basis of these
considerations, we can connect 1 to 3, 5 to 4 and 3, and so on. After we find
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(1) watch - 1 (2) watch - 2

(4) travel time

(3) current time

(5) arrival time

Figure 3.6. The Markov network representing the prediction of A’s arrival time.

the immediate neighbors of any four variables in the system, the graph G, will
emerge, identical to that of Figure 3.6.

~ Once established, G can be used as an inference instrument. For example, we
need not state explicitly that knowing the current time (3) renders the time on
Passerby 1’s watch (1) irrelevant for estimating the travel time (4) (i.e., 1(1,3,4));
we can infer the information from the fact that 3 is a cutset in G, separating 1
from 4. Deriving such conclusions by syntactic manipulation of Egs. (3.6a)
through (3.6e) probably would be more complicated. Additionally, the graphical
representation can help maintain consistency and completeness during the
knowledge-building phase. One need ascertain only that the relevance boundaries
identified by the expert form a neighbor system.

SUMMARY

The essential qualities of conditional independence are captured by five logical
axioms: symmetry (Eq. (3.6a)), decomposition (Eq. (3.6b)), weak union (Eq.
(3.6¢)), contraction (Eq. (3.6d)), and intersection (Eq. (3.6e)). Intersection holds
only for strictly positive distributions (i.e., reflecting no functional or definitional
constraints) and is essential to the construction of undirected graphs. Symmetry,
decomposition, and intersection enable us to construct a minimal graph G,
(Markov network), in which every cutset corresponds to a genuine independence
condition. The weak union axiom is needed to guarantee that the set of neighbors
that G assigns to each variable o is the smallest set required to shield o from the
effects of all other variables.
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The Markov network representation of conditional independence offers a sound
inference mechanism for deducing, at any state of knowledge, which propositional
variables are relevant to each other. If we identify the Markov boundaries
associated with each proposition in the system and treat them as neighborhood
relations defining a graph G, then we can correctly identify independence
relationships by testing whether the set of known propositions constitutes a cutset
in GQ. '

Not all probabilistic dependencies can be captured by undirected graphs. For
example, a dependency may be induced and non-transitive (see the coins and bell
example of Section 3.1.3), but graph separation is strictly normal and transitive.
For this reason directed graphs are finding wider application in reasoning systems
[Duda, Hart, and Nilsson 1976; Howard and Matheson 1981; Pearl 1986c]. A
systematic treatment of directed graph representations is given in Section 3.3.

3.2.3 Markov Network as a Knowledge Base

QUANTIFYING THE LINKS

So far, we have established the semantics of Markov networks in terms of the
purely qualitative notion of conditional independence, i.e., a variable is proclaimed
independent of all its non-neighbors once we know the values of its neighbors.
However, if the network is to convey information useful for decisions and
inference, we must also provide quantitative assessments of the strength of each
link. In Figure 3.2, for example, if we know that the couple (M, F,) meet less
frequently than the couple (M, Fy), then the first link should be weaker than the
second to show weaker dependency between the propositions and f.

The assigning of weights to the links of the graph must be handled with
caution. If the weights are to be used in translating evidential data into meaningful
probabilistic inferences, we must be certain that the model is both consistent and
complete. Consistency guarantees that we do not overload the graph with too
many parameters—overspecification can lead to contradictory conclusions,
depending on which parameter is consulted first—and completeness protects us
from underspecifying the model and thus guarantees that routines designed to
generate conclusions will not get deadlocked for lack of information.

An attractive feature of the traditional joint-distribution representation of
probabilities is the ease with which one can synthesize consistent probability
models or detect inconsistencies in models. In this representation, to create a
complete and consistent model, one need only assign to the elementary events (i.e.,
conjunctions of atomic propositions) nonnegative weights summing to one. The
synthesis process in the graph representation is more hazardous. For example,
assume that in Figure 3.2 we want to express the dependencies between the
variables {M,, M,, F1, F;} by specifying the four pairwise probabilities

-ﬂ
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PMy, Fy),P(Fy,M,),P(M,, F,), and P(F,, M). Unless the parameters given
satisfy some nonobvious relationship, no probability model will support all four
inputs, and we will get inconsistencies. Moreover, it is not clear that we can put
all numerical inputs together without violating the qualitative dependency
relationships shown in the graph. On the other hand, if we specify the pairwise
probabilities of only three pairs, incompleteness will result; many models will
conform to the input specification, and we will be unable to provide answers to
many useful queries.

The theory of Markov fields [Isham 1981, Lauritzen 1982] provides a safe
method (called Gibbs’ potential) for constructing a complete and consistent
quantitative model while preserving the dependency structure of an arbitrary graph
G. The method consists of four steps:

1. Identify the cliquest of G, namely, the maximal subgraphs whose nodes
are all adjacent to each other.

2. For each clique C;, assign a nonnegative compatibility function g;(c;),
which measures the relative degree of compatibility associated with
each value assignment ¢; to the variables included in C;.

3. Form the product II g;(c;) of the compatibility functions over all the
cliques. !

4. Normalize the product over all possible value combinations of the
variables in the system

Plxy,..., x,) = K Il gi(cy), (3.13)

where
-1

K=[ X I;Igi(ci)]

Koo Xy

The normalized product P in Eq. (3.13) constitutes a joint distribution that
embodies all the conditional independencies portrayed by the graph G, i.e., G is an
[-map of P (see Theorem 6, below).

To illustrate the mechanics of this method, let us return to the example of
Figure 3.2 and assume that the likelihood of two members of the i-th couple having
the same state of disease is measured by a compatibility parameter o, and the
likelihood that exactly one partner of the couple will carry the disease is assigned a

T We use the term clique for the more common term maximal clique .
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106 Markov and Bayesian Networks

compatibility parameter B;. The dependency graph in this case has four cliques,
corresponding to the four edges

CI :{M17F1}7C2={M15F2}5
Cy={M,,Fi}, and Cy4={M,, F,},

and the compatibility functions g; are given by

o; if X, T A

8ixi,, x;,) = B if x; %x.. (3.14)

where x; and x;, are the states of disease associated with the male and female,
respectively, of couple C;. The overall probability distribution function is given
by the normalized product

PM | My, F\,F))=Kg (M, F\)g2My, Fp) g3(M3, F) ga(M3, F3)

= KIIB™ T ey T (3.15)
1

where K is a constant that makes P sum to unity over all states of the system, i.e.,

K-—l =TI ; BJ aj
=TI +B) + Moy, — +OBY o (3.16)
’ T

For example, the state in which only the males carry the disease,
(my, =f1, M2, =f>), will have a probability measure K3, 3,34 because the male
and female of each couple are in unequal states of disease. The state
(my, f1, —=m2, —f2), on the other hand, has the probability Koy B,B;04 because
couples C; and C,4 are both homogeneous.

To show that P is consistent with the dependency structure of G, we note that
any product of the form of Eq. (3.15) can be expressed either as the product
f(My,F\,Fy) g(F\,Fy,Mpy) or as f'(F\,M,M,;) g (M, M, Fy). Thus,
invoking Eq. (3.5h), we conclude that I(M,, F{UF;, M,), and
I(F{,M{ UM, Fy)p.

The next theorem ensures the generality of this construction method.

THEOREM 6 [Hammersley and Clifford 1971]: A probability function P formed
by a normalized product of positive functions on the cliques of G is a Markov field
relative to G, i.e., G is an I-map of P.
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Proof: G is guaranteed to be an I-map if P is locally Markov relative to G (Theorem 5). It
is sufficient, therefore, to show that the neighbors in G of each variable o constitute a
Markov blanket of « relative to P, i.e., that / (o, Bg(o), U— o — Bg(a)) or (using Eq. (3.5b))
that

P(0, Bs(), U~ 0.~ Bg(o) = f1 (e, Bg(an) fo(U — o). (3.17)

Let J o stand for the set of indices marking all cliques in G that include o, J, = {j:a e C; }.
Since P is in product form, we can write

P(a, B,..) = KIlgic;) = K I1 gi(c;) T g(c)). (3.18)
j jela jé Ty

The first product in Eq. (3.18) contains only variables that are adjacent to o in G; otherwise,
C; would not be a clique. According to the definition of J,, the second product does not
involve o. Thus, Eq. (3.17) is established. Q.E.D.

The converse of Theorem 6 also holds: any positive Markov field can be
expressed in product form as in Eq. (3.13). The theorem, though not its converse
(see Exercise 3.3), also holds for extreme probabilities. Theorem 6 still does not
guarantee that every conditional dependency shown in the graph will be embodied
in P if P is constructed by the product form of Eq. (3.13), but a more recent result
gives us this guarantee, i.e., every undirected graph G has a distribution P such that
G is a perfect map of P [Geiger and Pearl 1988a]. Thus, we can answer yes to
Question 3 of the introduction to this section.

INTERPRETING THE LINK PARAMETERS

The preceding method of modeling guarantees consistency and completeness, but
it leaves much to be desired. In particular, it is difficult to assign meanings to the
parameters of the compatibility functions. If a model’s parameters are to lead to
meaningful inferences or decisions, they must come either from direct
measurements or from an expert who can relate them to actual human experience.
Both options encounter difficulties in the Markov network formulation.

Let us assume we have a huge record of medical tests conducted on
homogeneous subjects, and the record includes a full account of their sexual
habits. Can we extract from it the desired compatibility functions g;(M, F)? The
difficulty is that any disease pattern we observe on a given couple is a function not
only of the relations between the male and female of this couple but also of
interaction between this couple and the rest of the population. In other words, our
measurements invariably are taken in a noisy environment; in our case, this means
a large network of interactions surrounds the one that is tested.

To further appreciate the difficulties associated with context-dependent
measurements, let us take an ideal case and assume that our record is based solely
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108 Markov and Bayesian Networks

on groups of four interacting individuals (as in Figure 3.2), with each group
isolated from the rest of the world and all groups having the same sexual pattern.
In other words, we are given the joint probability P (M, F1, F,, M5), or a close
approximation to it, and we are asked to infer the compatibility functions g;.
Clearly it is not an easy task, even in this ideal case; using the data provided by P
we must solve a set of simultaneous nonlinear equations for g;, such as Eq. (3.13)
or Eq. (3.15). In addition, the solution we obtain for g; will not be applicable to
new situations in which, say, the frequency of interaction is different. Thus, we see
why the compatibility parameters cannot be given meaningful experiential
interpretation.

For a parameter to be meaningful, it must be an abstraction of some invariant
property of one’s experience. In our example, the relation between frequency of
contact and transference of the disease from one partner to another, under
conditions of perfect isolation from the rest of the world, is meaningful. In
probabilistic terminology, the quantities P(fy lm, —mj) and P(fi | = my, = my)
and their relations to the frequency of interaction of couple {M, F;} are
perceived as invariant characteristics of the disease, generalizable across contexfs.
It is with these quantities, therefore, that an expert would choose to encode
experiential knowledge, and it is these quantities that an expert is most willing to
assess. Moreover, were we conducting a clean scientific experiment, these are the
quantities we would choose to measure.

Unfortunately, the Markov network formulation does not allow the direct
specification of such judgmental input. Judgments about low-order conditional
probabilities (e.g., P (m | f, = my)) can be taken only as constraints that the joint
probability distribution (Eq. (3.13)) must satisfy; from them, we might be able to
calculate the actual values of the compatibility parameters. But this is a rather
tedious computation, especially if the number of variables is large (imagine a
group of n interacting couples), and the computation must be performed at the
knowledge-acquisition phase to ensure that the expert provides a consistent and
complete set of constraints.

3.24 Decomposable Models

Some dependency models do not suffer from the quantification difficulty described
in the preceding section; instead, the compatibility functions are directly related to
the low-order marginal probabilities on the variables in each clique. Such
decomposable models have the useful property that the cliques of their Markov
networks form a tree.

MARKOV TREES

To understand why tree topologies have this desirable feature, let us consider a
distribution P having a Markov network in the form of a chain
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From the chain rule of basic probability theory (Eq. (2.12)) we know that every
distribution function P (xy,..., x,) can be represented as a product:

Py, o X)) =P ) P(xplx) o Pty lxy, ooy X,y (3.19)

Thus, if we expand P in the order dictated by the chain, we can write

Py, xp,x3,x0) =P () Plxglxy) P(rslxy, x3) P(xglxy, xy, x3),

and using the conditional independencies encoded in the chain, we obtain

P(xy, X2, X3, x4) = P (x1) P(xa 1x1) P (x31x2) P (x41x3).

The joint probability P is expressible in terms of a product of three functions, each
involving a pair of adjacent variables. Moreover, the functions are the very
pairwise conditional probabilities that should carry conceptual meaning, according
to our earlier discussion. This scheme leaves the choice of ordering quite flexible.
For example, if we expand P in the order (X3, X,, X4, X;), we get

P(x3, x9, x4, 1) = P(x3) P(xy1x3) P(x41x3, xp) P (x;1x3, X5, X4)

=P (x3) P(xylx3) P(xglxs) P(x;lxy),

again yielding a product of edge probabilities. The only requirement is this: as we
order the variables from left to right, every variable except the first should have at
least one of its graph neighbors to its left. The ordering (X, X4, X5, X3), for
example, would not yield the desired product form because X4 is positioned to the
left of its only neighbor, X .

Given a tree-structured Markov network, there are two ways to find its
product-form distribution by inspection: directed trees and product division.

1 5
3 4
e O
’ 7
L

Figure 3.7. An undirected tree of seven variables.




110 Markov and Bayesian Networks

Consider the tree of Figure 3.7, where the variables Xy, ..., X, are marked 1,...,7 for
short. If we arbitrarily choose node 3 as a root and assign to the links arrows
pointing away from the root, we get the directed tree of Figure 3.8, where every
non-root node has a single arrow coming from its unique parent. We can now
write the product distribution by inspection, going from parents to children:

P(,.,7)=P3) PAINPQRIZNPMEIHPGIH PG4 PTIA). (3.20)

1 5
3 4

> p—o 6

> 7

Figure 3.8. A directed tree with root 3.

The conditioning (right) variable in each term of the product is a direct parent of
the conditioned (left) variable.

The second method for expressing the joint distribution is to divide the product
of the marginal distributions on the edges (i.e., cliques) by the product of the
distributions of the intermediate nodes (i.e., the intersections of the cliques). The
distribution corresponding to the tree of Figure 3.8 will be written

_PL3HPR,IHPB.HPMAS)PHE, 6)P 4, 7)
- P3) P3) P& PMA P®

P, ...7) . (3.2D

which is identical to Eq. (3.20). Each variable in the denominator appears one less
time than it appears in the numerator.
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JOIN TREES

Trees are not the only distributions amenable to product forms. Consider, for

example, the structure of Figure 3.9a. Applying the chain rule in the order

(A, B, C, D, E), and using the independencies embedded in the graph, we obtain
P(a,b,c,d, e)=P(a)P(bla)P(cla, b)P(dla, b, c)P(ela, b, c,d)

P(a)P(bla)P(cla, b) P(d1b, c) P(elc)

P(a, b, c)Pb,c,d) Pl e)

i

= . (3.22)
P, c) P(c)
¢, C,
A
B C ¢ c, Cs
E C,

D

(a) (b) (c)

Figure 3.9. Two join trees, (b) and (c), constructed from the cliques of the graph in (a).

Eq. (3.22) again displays the same pattern as Eq. (3.21): the numerator is a product
of the distributions of the cliques, and the denominator is a product of the
distributions of their intersections. Note that C is a node common to all three
cliques—{A, B, C}, {B, C, D}, and {C, E}— yet P(c) appears only once in the
denominator. The reason will become clear in the ensuing discussion, where we
will justify the general formula for clique trees.

The unique feature of the graph in Figure 3.9a that enables us to obtain a
product-form distribution is the fact that the cliques in this graph can be joined to
form a tree, as seen in Figure 3.95 and Figure 3.9c. More precisely, there is a tree
that is an /-map of P, with vertices corresponding to the cliques of G. Indeed,
writing C; = {A, B, C},C; = {B,C, D}, and C5 = {C, E}, we see that C5 and C,
are independent given C,, and we draw the /-map C,—C,—C; of Figure 3.95.
Since €5 and C, are independent given C,, we can also use the I-map C,—C1—C»
of Figure 3.9c. This nonuniqueness of the minimal /-maps, an apparent
contradiction to Theorem 3, stems from the overlapping of Cy, C,, and C5, which
induces equality constraints and occasionally leads to violation of the intersection
axiom (Eq. (3.6¢)).
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Now we shall present a theorem about chordal graphs [Beeri et. al. 1983] in
order to further articulate the concept of a clique tree.

DEFINITION: An undirected graph G = (V, E) is said to be chordalif every
cycle of length four or more has at least one chord, i.e., an edge joining two
nonconsecutive vertices along that cycle.

THEOREM 7: Let G be an undirected graph G = (V, E). The following four
conditions are equivalent:

1. G ischordal.

2. The edges of G can be directed acyclically so that every pair of
converging arrows emanates from two adjacent vertices.

3. All vertices of G can be deleted by arranging them in separate piles, one
for each clique, and then repeatedly applying the following two
operations:

e Delete a vertex that occurs in only one pile.

e Delete a pile if all its vertices appear in another pile.

4. There is a tree T (called a join tree) with the cliques of G as vertices,
such that for every vertex v of G, if we remove from T all cliques not
containing v, the remaining subtree stays connected. In other words,
any two cliques containing v are either adjacent in T or connected by a
path made entirely of cliques that contain v.

The four conditions of Theorem 7 are clearly satisfied in the graph of Figure
3.9q, and none are satisfied in the graph of Figure 3.2 (the diamond is the smallest
nonchordal graph). Tarjan and Yannakakis [1984] offer an efficient two-step
algorithm for both testing chordality of a graph and triangulating it (i.e., filling in
the missing links that would make a non-chordal graph chordal).

GRAPH TRIANGULATION (FILL-IN) ALGORITHM

1. Compute an ordering for the nodes, using a maximum cardinality
search, i.e., number vertices from 1 to V1, in increasing order, always
assigning the next number to the vertex having the largest set of
previously numbered neighbors (breaking ties arbitrarily).

2 From n= |Vl to n=1, recursively fill in edges between any two
nonadjacent parents of n, i.e., neighbors of n having lower ranks than #
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(including neighbors linked to # in previous steps). If no edges are
added the graph is chordal; otherwise, the new filled graph is chordal.

Given a graph G =(V, E) we can construct a join tree using the following
procedure, whose correctness is insured by property 4 of Theorem 7.

ASSEMBLING A JOIN TREE

1. Use the fill-in algorithm to generate a chordal graph G~ (if G is chordal,
G=G).

2. Identify all cliques in G". Since any vertex and its parent set (lower
ranked nodes connected to it) form a clique in G, the maximum number
of cliques-is | V1.

3. Order the cliques C|, C,,..., C; by rank of the highest vertex in each
clique.

4. Form the join tree by connecting each C; to a predecessor C;(j<i)
sharing the highest number of vertices with C;.

EXAMPLE: Consider the graph in Figure 3.9a. One maximum cardinality ordering is
(A, B,C,D, E). Every vertex in this ordering has its preceding neighbors already
connected, hence the graph is chordal and no edges need be added. The cliques are ranked
Cy, €5, and C; as shown in Figure 3.9b. C; = {C, E} shares only vertex C with its
predecessors C; and C|, so either one can be chosen as the parent of C5. These two choices
yield the join trees of Figures 3.9b and 3.9¢.

Now suppose we wish to assemble a join tree for the same graph with the edge (B, C)
missing. The ordering (A4, B, C, D, E) is still a maximum cardinality ordering, but now
when we discover that the preceeding neighbors of node D (i.e., B and C) are nonadjacent,
we should fill in edge (B, C). This renders the graph chordal, and the rest of the procedure
yields the same join trees as in Figures 3.95 and 3.9¢.

DECOMPOSABLE DISTRIBUTIONS

DEFINITION: A probability model P is said to be decomposablef it has a
minimal I-map that is chordal. P is said to be decomposableelativeto a graph G if
the following two conditions are met:

i. Gisanl-map of P.
ii. (ischordal.
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LEMMA 1: If P is decomposable relative to G, then any join tree T of the cliques
of G is an I-map relative to P. In other words, if Cx, Cy, and Cz are three disjoint
sets of vertices in T, and X, Y, and Z are their corresponding sets of variables in G,
then 1(X, Z,Y)p whenever C; separates Cx from Cy in T (written

< Cyl Cyl Cy > 7).

Proof: Since (X, Z, Y) may not be disjoint, we will prove (X, Z, Y)p by showing that
I1(X-=Z, Z, Y-Z), holds the two assertions are equivalent, according to Remark 2 of
Theorem 1. Moreover, since G is an I-map of P, it is enough to show that Z is a cutset in G,
separating X—Z from Y—Z. Thus, we need to show

<CxlCZ|Cy>T=$<X—ZIZ|Y—Z>G, (3.23)

which we shall prove by contradiction in two parts:

Part 1: If the right-hand side of Eq. (3.23) is false, then there exists a path
O, Y1, Y2»-r Yu» B in G that goes from some element o€ X —Z to some element fe ¥Y-Z
without intersecting Z, namely,

(aa Y]) e E (Yla Yi+l) € E’ (Y[l’ B)E E and i ¢ Z

foralli=1,2,..,n

Proof of Part 1: Let C, denote the set of all cliques that contain some vertex v, and
consider the set of cligues

S =1{C,uC,uCy~Cyl.

We now argue that those vertices of T corresponding to the elements of § form a connected
sub-tree. Indeed, T was constructed so that pulling out the variables in Cz would leave the
vertices of every C, connected. Moreover, the existence of an edge (¥, Yier) in G
guarantees that every clique containing 7; shares an element (Y;) with each clique containing
(i, Yi+1); Each clique containing (Y;, ¥;+), in turn, shares an element (y;,,) with every
clique containing 7; ;. Consequently, the vertices corresponding to the elements of C,, and

C

4., are connected in T, even after the variables in C; are deleted.

Part 2: Part 1 asserts the existence of a path in T from some vertex in C, € Cy to some
vertex in Cy < Cy, bypassing all vertices of Cz, thus contradicting the antecedent of Eq.
(3.23). Q.E.D.

We are now in a position to demonstrate that decomposable models have joint
distribution functions expressible in product form. Essentially, the demonstration
relies on property iv of Theorem 7, which allows us to arrange the cliques of G as a
tree and apply to them the chain rule formula (Eq. (3.19)), as we have done to the
individual variables in Eq. (3.20).
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THEOREM 8: [f P is decomposable relative to G, then the joint distribution of P
can be written as a product of the distributions of the cliques of G divided by a
product of the distributions of their intersections.

Proof: Let T be the join tree of the cliques of G, and let (C;, C,,..., C;,...) be an ordering
of the cliques that is consistent with 7, i.e., for every i > j we have a unique predecessor
J(@) < isuchthat Cj is adjacent to C; in T. Clearly, C;;, separates C; from C}, C,,..., C;_,
in any such ordering. Applying the chain rule formula to the cliques of G, we obtain

P()Cl,XZ,..., Xn)znP(Ci I Ciynny ci-—l):HP(ci I cj(i)) (3.24)
= H P(Ci [ ¢ M cj(i)) (3.25)
P(c
VL L) (3.26)
i P(Ci M Cj(i))

Eq. (3.24) follows from the /-mapness of T (Lemma 1), and Eq. (3.25) follows from the /-
mapness of G, since the variables that C,;, does not share with C; are separated from those
in C; by the variables common to both C; and C;y. In Figure 3.9a, for example, A is
separated from D by {B, C}. Q.E.D.

To render P decomposable relative to some graph G, it is enough that G be any
[-map of P; it need not be minimal. Thus, if we wish to express P as a product of
marginal distributions of clusters of variables, and the Markov network G of P
happens to be non-chordal, it is possible to make G, chordal by filling in the
missing chords and expressing P as a product of distributions defined on the
cliques of the resulting graph. For example, if the Markov network of a certain
model is given by the graph of Figure 3.9a with edge (BC) missing (as in Figure
3.2), Gy is not chordal, and we cannot express P as a product of the pairwise
distributions P(a, b), P(a, c), P(c, d), P(d, b), and P(e, d). However, by filling in
the link (B, C) we create a chordal I-map G of P (Theorem 5), and we can express
P as a product of distributions on the cliques of G, as in Eq. (3.22). It is true that
the condition /(B, AD, C) is not explicit in the expression of Eq. (3.22) and can be
encoded only by careful numerical crafting of the distributions P(a, b, ¢) and
P(b, ¢, d). However, once encoded, the tree structure of the cliques of G facilitates
convenient, recursive updating of probabilities [Lauritzen and Spiegelhalter 1988],
as will be shown in Section 4.4.1. Moreover, in situations where the cluster
distributions are obtained by statistical measurements, the graph triangulation -
method can help the experimenter select the right variable clusters for
measurement [Goldman and Rivest 1986]. For example, in the model depicted by
Figure 3.2, graph triangulation would prompt the experimenter to tabulate
measurements of variable triplets (such as {M, F, F,} and {M,, F,, F,}) as
well as variable pairs,
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3.3 BAYESIAN NETWORKS

The main weakness of Markov networks is their inability to represent induced and
non-transitive dependencies; two independent variables will be directly connected
by an edge, merely because some other variable depends on both. As a result,
many useful independencies go unrepresented in the network. To overcome this
deficiency, Bayesian networks use the richer language of directed graphs, where
the directions of the arrows permit us to distinguish genuine dependencies from
spurious dependencies induced by hypothetical observations. Reiterating the
example of Section 3.1.3, if the sound of a bell is functionally determined by the
outcomes of two coins, we will use the network coin 1 — bell « coin 2, without
connecting coin I to coin 2. This network reflects the natural perception of causal
influences; the arrows indicate that the sound of the bell is determined by the coin
outcomes, which are mutually independent.

These arrows endow special status on paths that traverse converging arrows,
like the path leading from coin 1 to coin 2 through bell. Such a path should not be
interpreted as forming a connection between the variables at the tails of the
arrows; the connection should be considered nonexistent, or blocked, until the
variable bell (or any of its descendents) is instantiated. This direction-dependent
criterion of connectivity, called d-separation, captures the induced dependency
relationship among the three variables: the outcomes of the two coins are
marginally independent, but they become mutually dependent when we learn the
outcome of the bell (or any external evidence bearing on that outcome). The d-
separation criterion is replaced by the usual cutset criterion of Markov networks
whenever the arrows are diverging (height < age — reading ability) or cascaded
(weather — wheat crop — wheat price).

A formal definition of the d-separation criterion for general directed acyclic
graphs (DAGs) is given in Section 3.3.1. The criterion permits us to determine by
inspection which sets of variables are considered independent of each other given
a third set, thus making any DAG an unambiguous representation of dependency.
In Section 3.3.2 we examine the possibility of using DAGs as minimal /-maps for
probabilistic models, in much the same way that undirected graphs were used as
minimal /-maps for Markov networks. Such minimal I-map DAGs will be called
Bayesian networks.

In keeping with our treatment of Markov networks at the beginning of Section
3.2, we now address the following questions regarding Bayesian networks:

1. Given a probability distribution P, can we construct an edge-minimal
DAG D that is an /-map of P?

2. Given a pair (P, D) can we test whether D is a (minimal) /-map of P ?

3. Given a DAG D, can we construct a probability distribution P such that
D is a perfect map of P?
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Once again, the first two questions have simple solutions obtained by nonnumeric
analysis and based solely on the axioms of conditional independence (Eq. (3.6)).
This time, however, the semi-graphoid axioms, Eqgs. (3.6a) through (3.6d), are used
in the derivations, with the intersection axiom, Eq. (3.6e), playing only a minor
role. Thus, the directionality of the arrows gives Bayesian networks another
advantage over Markov networks; the requirement of strict positivity (i.e., the
axiom of intersection) is no longer necessary for constructing an I-map from local
dependencies. Hence, the network can serve as an inference instrument for logical
and functional dependencies, too.

An even bigger advantage, perhaps, of the directed graph representations, is
that they make it easy to quantify the links with local, conceptually meaningful
parameters that turn the network as a whole into a globally consistent knowledge
base. This feature is discussed in Section 3.3.2. Finally, in Section 3.3.3 we
compare Bayesian networks with Markov networks for expressive power and
range of applicability.

3.3.1 Dependence Semantics for Bayesian
Networks

Bayesian networks are DAGs in which the nodes represent variables, the arcs
signify the existence of direct causal influences between the linked variables, and
the strengths of these influences are expressed by forward conditional
probabilities. )

The semantics of Bayesian networks demands a clear correspondence between
the topology of a DAG and the dependence relationships portrayed by it. With
Markov networks this correspondence was based on a simple separation criterion:
If the removal of some subset Z of nodes from the network rendered nodes X and Y
disconnected, then X and Y were proclaimed to be independent given Z, i.e.,

<XIZIlY>; = IX,Z,7).

DAGs use a slightly more corﬁplex separability criterion, called d-separation,
which takes into consideration the directionality of the arrows in the graph.

DEFINITION: If X, Y, and Z are three disjoint subsets of nodes in a DAG D, then
Z is said to d-separate X from Y, denoted < X | Z | Y >, if along every path
between a node in X and a node in Y there is node w satisfying one of the following
two conditions: (1) w has converging arrows and none of w or its descendants are
in Z,or (2) w does not have converging arrows and w is in Z.
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If a path satisfies the condition above, it is said to be blocked; otherwise, it is
said to be activated by Z. In Figure 3.10, for example, X = {2} and Y = {3} are
d-separated by Z = {1}; the path 2 < 1 — 3 is blocked by 1 € Z, and the path
7 s 4 < 3 is blocked because 4 and all its descendants are outside Z. X and Y are
not d-separated by Z" = {1, 5}, however, because the path 2 — 4 < 3 is rendered
active: learning the value of the consequence 5 renders 5’s causes, 2 and 3,
dependent.

L
Figure 3.10. A DAG depicting d-separation; node 1 blocks the path 2-1-3, while node 5
activates the path 2-4-3.

The procedure for testing d-separation is only slightly more complicated than
the conventional test for cutset separation in undirected graphs, and it can be
handled by visual inspection. The only difference is that pathways along
converging arrows, representing predicted events, are considered blocked until
activated by evidential information. This is a basic pattern of diagnostic
reasoning; for example, two inputs of a logic gate are presumed independent, but if
the output becomes known, what we learn about one input has bearing on the
other.
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BAYESIAN NETWORKS AS I-MAPS

DEFINITION: A DAG D is said to be an I-map of a dependency model M if every
d-separation condition displayed in D corresponds to a valid conditional
independence relationship in M, i.e., if for every three disjoint sets of vertices X, Y,
and Z we have

<XI1Z\Y>p, => IX, Z, Y)y,.

A DAG is a minimal I-map of M if none of its arrows can be deleted without
destroying its [-mapness.

DEFINI'_I_’;ON: Given a probability distribution P on a set of variables U, a DAG
D = (U, E ) is called a Bayesian network of P iff D is a minimal I-map of P.

We now address the task of constructing a Bayesian network for any given
distribution P.

DEFINITION: Let M be a dependency model defined on a set
U={X,,X,,.., X,} of elements, and let d be an ordering (X, X,,..., X;,...) of the
elements of U. The boundary strata of M relative to d is an ordered set of subsets
of U, (B, By,..., B;,...), such that each B; is a Markov boundary of X; with respect
to the set Uy = (X1, Xy,..., X;—1}, i.e., B; is a minimal set satisfying B; < Uy;, and
I(X;, B;, Uyy — B;). The DAG created by designating each B; as parents of vertex
X; is called a boundary DAG of M relative to d.

THEOREM 9: [Verma 1986]: Let M be any semi-graphoid (i.e., any dependency
model satisfying the axioms of Egs. (3.6a) through (3.6d)). If D is a boundary
DAG of M relative to any ordering d, then D is a minimal I-map of M.

Theorem 9 is the key to constructing and testing Bayesian networks, as will be
shown via three corollaries. The first corollary follows from the fact that every
probability distribution P is a semi-graphoid (see Theorem 1).

COROLLARY 3: Given a probability distribution P(x|, x,,..., x,) and any
ordering d of the variables, the DAG created by designating as parents of X; any
minimal set Iy, of predecessors satisfying

P(x; IHX,) =PO;lxy,.x0), HX,- c X, Xoss Xiot ) (3.27)

is a Bayesian network of P. If P is strictly positive, then all of the parent sets are
unique (see Theorem 4) and the Bayesian network is unique (given d).
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Although the structure of a Bayesian network depends strongly on the node
ordering used in constructing it, each network nevertheless is an /-map of the
underlying distribution P. This means that all conditional independencies
portrayed in the network (via d-separation) are valid in P and hence are
independent of the construction ordering. An immediate corollary of this
observation yields an order-independent definition of Bayesian networks and a
solution to Question 2 from the beginning of this section.

COROLLARY 4: Given a DAG D and a probability distribution P, a necessary
and sufficient condition for D to be a Bayesian network of P is that each variable X
be conditionally independent of all its non-descendants, given its parents Iy, and
that no proper subset of g satisfy this condition.

The "necessary' part holds because every parent set I, d-separates X from all
ts non-descendants. The "sufficient” part holds because X’s independence of all its
non-descendants means X is also independent of its predecessors in a particular
ordering d (as required by Corollary 3).

COROLLARY 5: Ifa Bayesian network D is constructed by the boundary-strata
method in some ordering d, then any ordering d” consistent with the direction of
arrows in D will give rise to the same network topology.

Corollary 5 follows from Corollary 4, which ensures that the set Iy, will
satisfy Eq. (3.27) in any new ordering as long as the new set of X;’s predecessors
does not contain any of X;’s old descendants. Thus, once the network is
constructed, the original order can be forgotten; only the partial ordering displayed
in the network matters.

Another interesting corollary of Theorem 9 is a generalization of the celebrated
Markov chain property, which is used extensively in the probabilistic analysis of
random walks, time-series data, and other stochastic processes [Feller 1968;
Meditch 1969:; Abend, Hartley, and Kanal 1965]. The property states the
following: if in a sequence of n trials X, X,,.... X, the outcome of any trial X
(where 2 < k < n) depends only on the outcome of the directly preceding trial X;_;.
then, given all its predecessors and successors, the outcome of X, depends on its
adjacent outcomes, X;_; and Xy +1. Formally,

1K Xt X1 0 i) = 1K Xy Xewrn Xo7 Kia Kia 70 Xn) -

(The converse holds only in strictly positive distributions, 1i.e., graphoids.)
Theorem 9 generalizes the Markov chain property 1o non-probabilistic
dependencies and to structures that are not chains, and, as the following corollary
shows, the d-separation criterion uniquely determines a Markov blanket for any
node X in a given Bayesian network (see Eq. (3.12)).
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COROLLARY 6: In any Bayesian network, the union of the following three types
of neighbors is sufficient for forming a Markov blanket of a node X: the direct
parents of X, the direct successors of X, and all direct parents of X’s direct
SUCCESSOTS.

Thus, if the network consists of a single path (i.e., is a Markov chain), the
Markov blanket of any nonterminal node consists of its two immediate neighbors,
as expected. In a tree, the Markov blanket consists of the (unique) father and the
immediate successors. In Figure 3.10, however, the Markov blanket of node 3 is
{1, 4, 2}. The reason the sets defined by Corollary 6 are Markov blankets but
generally are not Markov boundaries is that alternative orderings might give X a
different set of neighbors.

BAYESIAN NETWORKS AS A LOGIC OF DEPENDENCIES

A Bayesian network can be viewed as an inference instrument for deducing new
independence relationships from those used in constructing the network. The
topology of the network is assembled from a list of independence statements that
comprise the boundary strata. This input list implies a host of additional
statements, many of which can be deduced from the network by graphical criteria
such as d-separation. For example, the network in Figure 3.10 was constructed
from the boundary strata

(By = {1}, By = {1}, B4 = (2, 3}, Bs = {4)),
representing the independency list
L={121,0),13,1,2),14,23,1),I5, 4, 123)}.

New independence relationships, all of them valid consequences of L, can be
deduced from the network—e.g., 1(5, 23, 1) and (3, 124, 5). This raises the
following questions: 1

1. Can d-separation be improved? Can a more sophisticated criterion
reveal additional independencies that are valid consequences of the
input information?

2. Are there valid consequences that escape graphical representation
altogether?

The answer to both questions is no; every valid consequence of the input
information L must show up as a d-separation condition in the DAG built from L.
This follows from the next theorem.
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THEOREM 10: [Geiger and Pearl 1988a]: For any DAG D there exists a
probability distribution P such that D is a perfect map of P relative to d-
separation, i.e., P embodies all the independencies portrayed in D, and no others.

Theorem 10 makes it impossible for some valid consequence © of the input list
to escape detection by d-separation. Any such ¢ is valid in all distributions that
obey the input, and hence a probability P as specified in Theorem 10 (a probability
that ought to violate &) cannot exist.

COROLLARY 7: Given a list L of independence relationships in the form of a
boundary strata, a Bayesian network combined with the d-separation criterion
constitutes a polynomially sound and complete inference mechanism relative to
the closure of L, i.e., it identifies in polynomial time every conditional
independence relationship that follows logically from those in L.

Note, however, that a prerequisite of completeness is that the input be a
boundary strata, ie., that it identify recursively a Markov boundary for each
element, in some order d. The tractability (and even the decidability) of the
general ‘membership problem, relative to an arbitrary noncausal input list of
conditional independence statements, hinges upon the completeness conjecture
stated in Section 3.1.2. Evidently, there are subtle computational advantages to
organizing information in chronologically ordered strata. Whether this feature
lends imporf\ance to causal schemata in knowledge organization is an interesting
topic which we will leave for speculation.

3.3.2 Bayesian Network as a Knowledge Base

STRUCTURING THE NETWORK

In principle, given any joint distribution P(x, ,..., x,) and an ordering d on the
variables in U, Corollary 4 prescribes a simple recursive procedure for
constructing a Bayesian network. We start by choosing X as a root and assign to
it the marginal probability P(x,) dictated by P(xy,..., x,). Next, we form a node to
represent X,; if X, is dependent on X, a link from X to X, is established and
quantified by P(x, lx;). Otherwise, we leave X, and X, unconnected and assign
the prior probability P(x3) to node Xo. At the i-th stage, we form the node X;,
draw a group of directed links to X; from a parent set Iy, defined by Eq. (3.27),
and quantify this group of links by the conditional probability P(x; 1My ). The
result is a directed acyclic graph that represents many of the independencies
embedded in P(x1,..., X,), i.€., all the independencies that follow logically from the
definitions of the parent sets (Eq. (3.27)).
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Conversely, the conditional probabilities P(x; [y ) on the links of the DAG
should contain all the information necessary for reconstructing the original
distribution function. Writing the chain rule formula in the ordering ¢ and using
Eq. (3.27), we get the product

Py, xo,,x,) = PO, 1 X,y se X)) P2y TX22,.00, X))

C P, x) Pl o) Pey)

=TT P(x; 1 11y ). (3.28)

For example, the distribution corresponding to the DAG of Figure 3.11 can be
written by inspection:

P(xy, x2, X3, X4, X5, X¢) (3.29)

= Plxglxs) Pxslxy, x3) Plrglxy, x3) Plxslxy) Pxy lxp) Plx)).

Figure 3.11. A Bayesian network representing the distribution P (xglxs) P(xslxs,x3)
Pxalxyxg) PO le) Pleglxy) Plxy).

In practice, however, a numerical representation for P (x,...,x,) is rarely available.
Instead we normally have only intuitive understanding of the major constraints in
the domain. The graph can still be configured as before, but the parent sets Iy,
must be identified by human judgment.

The parents of X; are those variables judged to be direct causes of X; or to have
direct influence on X;. The informal notions of causation and influence replace the
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formal notion of directional conditional independence as defined in Eq. (3.27). An
important feature of the network representation is that it permits people to express
directly the fundamental, qualitative relationships of direct influence; the network
augments these with derived relationships of indirect influence and preserves them,
even if the numerical assignments are just sloppy estimates. In Figure 3.11, for
example, the model builder did not state that X can tell us nothing new about X
once we know X, and X3, but the relationship is logically implied by other inputs
and will remain part of the model, regardless of the numbers assigned to the links.
The addition to the network of any new node Y requires that the knowledge
provider identify a set I1y of variables that bear directly on Y, assess the strength of
this relationship, and make no commitment regarding the effect of Y on variables
outside ITy. Even though each judgment is performed locally, their sum is
guaranteed to be complete and consistent, as we shall see next.

QUANTIFYING THE LINKS

Suppose we are given a DAG D in which the arrows pointing to each node X;
emanate from a set Iy of parent nodes judged to have direct influence on X;. To
specify consistently the strengths of these influences, one need only assess the
conditional probabilities P(x; |Iy,) by some functions F;(x;, My,) and make sure

these assessments satisfy

Y Fix, Mg ) =1, (3.30)
where 0 < F;(x;, My,) <1 and the summation ranges over the domain of X;. This
specification is complete and consistent because the product form

Pa(xl, cery xn) = HFi(xi’ HX;) (3.31)

constitutes a joint probability distribution that supports the assessed quantities. In
other words, if we compute the conditional probabilities P,(x; [My,) dictated by

P, (xy, ..., X), the original assessments F;(x;, I1y,) will be recovered:
2 Pa(-xl’-"':xn)
P (x| P, (x;, Ty)  x& (xUTly) F( (332)
Ay ) = = = ' (X iy ). “
a(xz Xi) Pa (HXi) X,)
Y Paxises Xn)
Xj 3 Hxi

Moreover, all the independencies dictated by the choices of Ily, (corresponding to
those in Eq. (3.27)) are embodied in P,.
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Building models this way is much easier than quantifying Markov networks.
The parameters requested from the model builder are the conditional probabilities
that quantify many conceptual relationships in one’s mind, e.g., cause-effect or
frame-slot relations, they are psychologically meaningful and can be obtained by
direct measurement. The thinking required for assessing the parameters of
P(x; 1My, ) is estimating the likelihood that the event X; = x; will occur, given any
instantiation of the variables in Iy, (for example, the likelihood that a patient will
develop a certain symptom, assuming that he suffers from a given combination of
disorders). These kinds of assessments are natural because they point to familiar
frames (e.g:, diseases) by which people organize empirical knowledge.

DAGs constructed by this method will be called Bayesian belief networks or
causal networks interchangeably, the former emphasizing the judgmental origin
and probabilistic nature of the quantifiers and the latter reflecting the directionality
of the links. Such networks have a long and rich tradition, starting with the
geneticist Sewal Wright in 1921. He developed a method called path analysis
[Wright 1934], which later became an established representation of causal models
in economics [Wold 1964], sociology [Blalock 1971; Kenny 1979], and
psychology [Duncan 1975]. Influence diagrams represent another component in
this tradition [Howard and Matheson 1981; Shachter 1986]; developed for decision
analysis, they contain both event nodes and action nodes (see Chapter 6).
Recursive models is the name given to such networks by statisticians seeking
meaningful and effective decompositions of contingency tables [Lauritzen 1982;
Wermuth and Lauritzen 1983; Kiiveri, Speed, and Carlin 1984].

In the strictest sense, Bayesian networks are not graphs but hypergraphs,
because describing the dependency of a given node on its k parents requires a
function of k+1 arguments; in general, it cannot be specified by k two-place
functions on the individual links. Still, the directionality of the arrows and the fact
that many parents remain unlinked convey important information that would be
lost if we used the standard hypergraph representation and specified only the list of
dependent subsets.

If the number of parents £ is large, estimating P(x | Ily,) may be troublesome.
In principle, it requires a table of size 2* (for binary variables), but in practice (as
noted in Section 2.2) people structure causal relationships into small prototypical
clusters of variables; each requiring about £ parameters. Common examples of
such structures are noisy OR-gates (i.e., any variable is likely to trigger the effect),
noisy AND-gates, and various enabling mechanisms (i.e., variables having no
influence of their own except that they enable other influences to take effect).
Detailed analysis of the noisy-OR-gate model is given in Section 4.3.2.

THE ROLE OF CAUSALITY

Note that the topology of a Bayesian network can be extremely sensitive to the
node ordering d. What is a tree in one ordering might become a complete graph if
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that ordering is reversed. For example, if Xy, ..., X,, stands for the outcomes of n
independent coins, and X, represents the output of a detector triggered when any
coin comes up heads, then the Bayesian network will be an inverted tree of n
arrows pointing from each of the variables X, ..., X, to X,;;. On the other hand,
if the detector’s outcome is chosen to be the first variable, say Xg, then the
resulting Bayesian network will be a complete graph.

This sensitivity to order may seem paradoxical at first; d can be chosen
arbitrarily, whereas people have fairly uniform conceptual structures, €.g., they
agree on whether two propositions are directly or indirectly related. This
consensus about the structure of dependencies shows the dominant role causality
plays in the formation of these structures. In other words, the standard ordering
imposed by the direction of causation indirectly induces identical topologies on
the networks that people adopt to encode experiential knowledge. Were it not for
the social convention of adopting a standard ordering of events that conforms to
the flow of time and causation, human communication as we know it might be
impossible. Why, then, do we use temporal ordering to organize our memory? It
may be because information about temporal precedence is more readily available
than other indexing information, or it may be that networks constructed with
temporal ordering are inherently more parsimonious (i.e., they display more
independencies.) Experience with expert systems applications does not entirely
rule out the second possibility [Shachter and Heckerman 1987]. More on this
subject can be found in Chapter 8.

3.3.3 How Expressive Are Bayesian Networks?

One might expect the introduction of directionality into the language of graphs to
render directed graphs more expressive, 1.e., capable of portraying more
conditional independencies. We saw, indeed, that the d-separation criterion
permits us to display induced and non-transitive dependencies that were excluded
from the Markov network vocabulary. So we might ask how DAGs compare for
expressive power with undirected graphs and probability models. Two questions
arise:

1. Can all dependencies that are representable by a Markov network also
be represented by a Bayesian network?

2. How well can Bayesian networks represent the type of dependencies
induced by probabilistic models?

The answer to the first question is clearly no. For instance, the dependency
structure of a diamond-shaped Markov network (e.g., Figure 3.2) with edges (AB),
(AC), (CD), and (BD) asserts two independence relationships: /(A, BC, D) and
I(B, AD, C). No Bayesian network can express these two relationships
simultaneously and exclusively. If we direct the arrows from A to D, we get
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1(A, BC, D) but not I (B, AD, C); if we direct the arrows from B to C, we get
I(B, AD, C) but not I(A, BC, D). In view of property iv of Theorem 7, it is clear
that this difficulty will always be encountered in non-chordal graphs. No matter
how we direct the arrows, there will always be a pair of nonadjacent parents
sharing a common child, a configuration that yields independence in Markov
networks and dependence in Bayesian networks.

On the other hand, property iv of Theorem 7 also asserts that every chordal
graph can be oriented so that the tails of every pair of converging arrows are
adjacent. Hence, every dependency model that is isomorphic to a chordal graph is
also isomorphic to a DAG. We conclude that the class of probabilistic
dependencies that can be represented by both a DAG and an undirected graph are
those that form decomposable models, i.e., probability distributions that have
perfect maps in chordal graphs. These relationships are shown schematically in
Figure 3.12. ‘

Undirected
Graphs

Chordal Graphs

Causal Models

Probabilisitic
Dependencies

—_ Markov .
Fields

Decomposable Models

Figure 3.12. Correspondence between probabilistic  models and  their graphical
representations.

The answer to Question 2 is also not encouraging. Clearly, no graphical
representation can distinguish connectivity between sets from connectivity among
their elements. In other word, in both directed and undirected graphs, separation
between two sets of vertices is defined in terms of pairwise separation between
their corresponding individual elements. In probability theory, on the other hand,
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independence of elements does not imply independence of sets (see Eq. (3.6b)), as
the coins and bell example demonstrated. When the two coins are fair, any two
variables are mutually independent, but every variable is (deterministically)

dependent on the other two.

CAUSAL MODELS AND THEIR DEPENDENCY STRUCTURE

Despite these shortcomings, we will see that the DAG representation is more
flexible than the undirected graph representation, and it captures a larger set of
probabilistic independencies, especially those that are conceptually meaningful.
To show this, we offer a partial axiomatic characterization of DAG dependencies
that indicates clearly where they differ from undirected graph dependencies (Eq.
(3.10)) and from probabilistic dependencies (Eq. (3.0)).

DEFINITION: A dependency model M is said to be causal(or a DAG iSomorph )
if there is a DAG D that is a perfect map of M relative to d-separation, ie.,

IX,Z,Y)y < <XIZIY>). (3.33)

THEOREM 11: A necessary condition for a dependency model M to be a DAG
isomorph is that I(X,Z,Y)y satisfies the following independent axioms (the
subscript M is dropped for clarity):

Symmetry:

I(X,Z,Y) <= I(Y, Z, X). (3.34a)
Composition/Decomposition:

IX,Z,YUW) <> I(X,Z,Y) & I(X, Z, W). (3.34b)
Intersection:

IX,ZUW, N&IX, ZUY, W)= I1X,Z, YUW) (3.34¢)
Weak union:

IX,Z,YOUW)=I(X,ZUW,Y) (3.344)
Contraction:

IX,ZOY,W&IX, Z,Y)=I1(X,Z, YU W) (3.34¢)
Weak transitivity:

IX,Z,Y)&IX, Zuy,Y)=IX,Z,Y) or (v, Z,Y). (3.34f)
Chordality:

(o, YU, B)& I(y, 0 UB, & =>I(an, 7, B) or 1(a,d,P). (3.34g)
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REMARKS:

1. Symmetry, intersection, weak union, and contraction are identical to the
axioms governing probabilistic dependencies (Eq. (3.6)). Composition,
weak transitivity, and chordality are constraints that go beyond Eq.
(3.6). Thus, not every probabilistic model is a DAG isomorph.

2. Comparing Eq. (3.34) to the axioms defining separation in undirected
graphs (Eq. (3.10)), we note that (Eq. (3.10)) implies all axioms in (Eq.
(3.34)) except chordality (Eq. (3.34g)). Weak union is implied by strong
union, composition and contraction are implied by intersection and
strong union, and weak transitivity is implied by transitivity.

WEAK TRANSITIVITY

Weak transitivity (Eq. (3.34f)) means that if two sets of variables X and Y, are both
unconditionally and conditionally independent given a singleton variable v, it is
impossible for both X and Y to be dependent on y. Contrapositively, if X and Y are
each dependent on vy, then they must be dependent on each other in some way,
either marginally or conditionally given y. This restriction, which may be violated
in some probability models, remains in effect when we associate independence
with d-separation in DAGs.

THEOREM 12: d-separation in DAGs is weakly transitive.

Proof: If both X and Y are d-connected to Yy in some DAG, then there must be an
unblocked path from X to y and an unblocked path from Y to y. These two paths form at
least one bidirected path from X to ¥ viay. If that path traverses y along converging arrows,
it should be unblocked when we instantiate 7y, so X and Y cannot be d-separated given v.
Conversely, if the arrows meeting at v do not converge, the path from X to Y is unblocked
when 7is uninstantiated, so X and Y cannot be marginally d-separated. Q.E.D.

Probability theory does not insist on weak transitivity, as it allows the
following four conditions to exist simultaneously:

I(X,0,Y)p IX,v,Y)p, (X, D, Vp, =LY, D, V)p,

For example, let X and Y be singleton binary variables, X, Y € {TRUE, FALSE),
and let ybe a ternary variable, ye {1, 2, 3}. Choosing

Px, y, ) = PxIy) P(yly) P(y),
P(X = TRUE 1Y) = (172, 1/4, 3/8),
P(YIY = TRUE) = (1/3, 1/3, 1/3),
P(YIY = FALSE) = (1/2, 1/2, 0)
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renders y dependent on both X and Y, yet X and Y are mutually independent, both
conditionally (given ¥) and unconditionally. Thus; although DAGs seem more
capable than undirected graphs of displaying non-transitive dependencies, even
DAGs require some weak form of transitivity and cannot capture totally non-
transitive probabilistic dependencies. It can be shown, however, that if all
variables are either normally distributed or binary, all probabilistic dependencies
must be weakly transitive (see Exercise 3.10).

CHORDALITY AND AUXILIARY VARIABLES

The chordality axiom (Eq. (3.34g)) excludes dependency models that are
isomorphic to non-chordal graphs (such as the one in Figure 3.13a), since these
cannot be completely captured by DAGs (see Figure 3.12). In essence, Eq. (3.34¢)
insists that we either add the appropriate chords to any long cycle (length = 4), thus
disobeying the antecedent of Eq. (3.34g), or nullify some of its links, thus
satisfying the consequent of Eq. (3.34g).

Though DAGs cannot represent non-chordal dependencies, this deficiency can
be eliminated by introducing auxiliary variables. Consider the diamond-shaped
graph of Figure 3.13a, which asserts two independence  relationships:
I(A, BC, D)and I (B, AD, C).

A A A
B C B C B C
Y Y
> S F —)“‘-E:el
D D
(a) (b) (c)

Figure 3.13. The dependencies of an undirected graph (a) are represented by a DAG (c)
using an auxilliary node E.

Introducing an auxiliary variable E as shown in Figure 3.13b creates a DAG
model of five variables whose dependencies are represented by the joint
distribution function

P(a, b, c,d, e)=P(eld, c)P(d1b) P(c la) P(bla) P(a).




3.3 Bayesian Networks 131

Now imagine that we clamp the auxiliary variable E to some fixed value F = ¢, as
in Figure 3.13c. The dependency structure that the clamped DAG induces on
A, B, C, D is identical to the original structure (Figure 3.13a). Indeed, applying
the d-separation criterion to Figure 3.12c¢ uncovers the two original
independencies: [ (A, BC, D) and I (B, AD, C). The marginal distribution of the
original variables conditioned upon E = ¢ is given by

Pla,b,c, d e;)
Pley)

Pla,b,c,dE=¢)) =

=K P(e,ld, c)P(dIb)P(cla)yP(bla)P(a)

=g1(d, ¢) g2(d, b) g5(a, ¢) g4(a, b).

Using the analysis of Section 3.2.3, we see that this distribution is equivalent to the
one portrayed by Figure 3.13¢. Thus, the introduction of auxiliary variables
permits us to dispose of the chordality restriction of Eq. (3.34¢) and renders the
DAG representation superior to that of undirected graphs; every dependency
model expressible by the latter is also expressible by the former.

Weak transitivity and chordality are not the only dependencies that are
sanctioned by probability theory but are not representable by DAGs. For example,
one can show that the following axiom must hold in DAGs:

1Y, X, D)&I(Z,Y,X)&IW,ZX)= (X, <, W).
But its denial,
I, X,Z)&I(Z,Y,X)&IW,Z,X)& - 1(X, D, W),

is tolerated by probability theory (see Exercise 3.7). The question arises whether
the class of properties specific to DAGs can be characterized axiomatically the
way that of undirected graphs was (Theorem 2). The answer is probably no. The
results of Geiger [1987] strongly suggest that the number of axioms required for a
complete characterization of the d-separation in DAGs is unbounded.

3.4 BIBLIOGRAPHICAL AND HISTORICAL
REMARKS

The idea of using graphical representations for probabilistic information can be
traced to the geneticist Sewal Wright [1921], who developed the method of path
analysis "as an aid in the biometric analysis of certain classes of data." The method
came under severe attack (e.g., Niles [1922]) and was shunned by statisticians
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during the first half of the 20th century (an era ruled by hard data and quantitative
analysis), until it was discovered by economists, psychologists, and sociologists
(see Section 7.2). The 1960s saw a reversal of this outlook, with statisticians such
as Vorobev [1962], Goodman [1970], and Haberman [1974] realizing that some
decomposition properties of statistical tables (called log-linear models) can best be
expressed in graphical terms. These explorations led to an appreciation of the
esirable properties of join trees, which were later recognized by database
researchers [Beeri et al. 1983]. Lemmer [1983] has suggested the use of trees of
local events groups (LEGs) for Bayesian updating, and Spiegelhalter [1986]
proposed the fill-in algorithm to transform Bayesian networks into join trees.
Other mathematical properties of chordal graphs are given in Golumbic [1980].

The development of Markov fields progressed in parallel, but from an opposite
direction. Here, the network topology was presumed to be given (usually a
geometrical arrangement of physical elements in space), and the problem was to
characterize the probabilistic behavior of a system complying with the
dependencies prescribed by the network. A survey of Markov fields can be found
in Isham [1981]. Lauritzen [1982] applied the theory of Markov fields to the
analysis of statistical tables and derived Theorems 3, 4, and 5 for independencies
embedded in strictly positive probability distributions. Application of Markov
fields to pattern recognition and vision are reported in Abend, Hartley, and Kanal
[1965], Kanal [1981], and Geman and Geman [1984].

Since graphoids are a central theme of this chapter, and since the theory is still
in its embryonic stage, we take the liberty now of presenting an extended history
of this development.

The theory of graphoids was conceived in the summer of 1985, when Azaria
Paz visited UCLA and he and I began collaborating on the problem of graphical
representations. Inspired by Lauritzen’s lecture notes on contingency tables
[Lauritzen 1982], I sought axiomatic conditions on a dependency model M that
would include probabilistic dependencies as a special case, such that the graph
construction of Eq. (3.11) would yield an [-map of M. I posed the problem to
Professor Paz, we labored for a few weeks, and he came up with a proof of what
later became Theorem 3. Surprisingly, only three axioms were needed: symmetry,
decomposition, and intersection. These, unfortunately, were not sufficient for
Corollary 4, which Lauritzen listed among the properties of Markov fields. We
then set out to discover what additional axioms were needed to ensure that the
graph obtained by the edge-deletion method be identical to that built by the
Markov boundary method. This led to Theorem 4, and to the identification of
weak union as the final axiom we needed to fully characterize the graphical
properties of Markov fields. The prospects of providing similar characterization
for graph separation led to Theorem 2.

Strangely, the contraction axiom was not needed for Theorem 3 or for Theorem
4, but when added to the other four axioms of Eq. (3.6) it enabled us to derive all
properties of probabilistic dependencies that we managed to dream up. Hence, we
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posed the completeness of these axioms as a conjecture!”’, and coined the name
graphoid.

Around this time, Thomas Verma began examining the validity of d-separation
in DAGs (Theorem 9). I had introduced this criterion without proof [Pear] 1986¢],
since my attempts to demonstrate its general validity got entangled in messy
probability formulas. I therefore suggested that Tom try a "clean” proof, using the
graphoid axioms only, and to our surprise he managed to do it without the
intersection axioms [Verma 1986]. This led to semi-graphoids, and to directed
graph representations of both probabilistic and logical dependencies; we finally
understood how important the contraction property is for causal modeling. The
generality of this result made us confident that dependency theorists dealing with
databases and qualitative dependencies will eventually adopt DAGs as a
representation scheme for their semi-graphoids, e.g., EMVD [Fagin 1977].

In December 1985, Glenn Shafer mentioned a possible connection between
graphoids and previous work of A. P. Dawid. As it turned out, Dawid had
presented axioms equivalent to Egs. (3.6.a) through (3.6.d) as early as 1979
[Dawid 1979] but apparently was not concerned with their completeness or their
relation to graphical representations. Smith [1989] has recognized the generality
of Dawid’s axioms and has used them to prove Corollaries 4 and 5 without
resorting to probabilistic manipulations (unlike the treatment of Howard and
Matheson [1981]).

The power of the d-separation criterion would have remained only partially
appreciated without Geiger’s proof of Theorem 10. Aside from showing that d-
separation cannot be improved, the theorem legitimizes the use of DAGs as a
representation scheme for probabilistic dependencies; a model builder who uses
the language of DAGs to express dependencies is shielded from inconsistencies.

Recent advances in the theory of graphoids and Bayesian networks are
reported in the references below.?~0)

D The conjecture has recently been refuted by Studeny, M. ‘‘Conditional Independence Relations

Have No Finite Complete Characterization,”” Proc. of 11th Prague Conf. on Inf. Theory, Statist.
Decision Funct. and Random Processes, Prague, 1990. Also Kybernetika, 25(1-3), 1990, 72-79.
@ R.M. Oliver and J.Q. Smith (Eds), Influence Diagrams, Belief Nets and Decision Analysis, Sussex,
England: John Wiley & Sons, Ltd., 1990.
D. Geiger, "Graphoids: A Qualitative Framework for Probabilistic Inference.” Ph.D.
Dissertation. University of California Los Angeles, Computer Science Dept. January 1990.
Shachter, R., {ed.), Special Issue on Influence Diagrams, Networks, 20(5), 1990.
D. Geiger, A. Paz, and J. Pearl, "Axioms and Algorithms for Inferences Involving Probabilistic
Independence," Information and Computation, Vol. 91, No. 1, March 1991, 128-141.
Geva, R., "Representation of Irrelevance Relations by Graphs,” M.Sc. Thesis, Dept. of Computer
Science, Technion, Haifa, Israel, 1989,
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3.1. Show that Eqs. (3.6a) through (3.6d) imply the chaining rule
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belief
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I(X.Y,2) & (XY, Z, W) => [(X, Y, W)

and show that this rule cannot replace Eq. (3.6d) in the set of axioms.

3.2, Show which axioms of Eq. (3.6) are satisfied by the following dependency
models:

a. Let U be the set of nodes in an undirected graph G, and let X, Y, and
Z be three disjoint sets of nodes in G. I (X, Z, Y)y, iff all shortest
paths between a node X € X and a node Y €Y are intercepted by
some node in Z.

b.  Let Ube the set of nodes in an undirected graph G, and let X, Y, and
Z be three disjoint sets of nodes in G. I (X, Z, Y)y, iff all shortest
paths between the sets X and Y are intercepted by Z.

C. Let U be the set of points in a three-dimensional Euclidean space,
and let X, Y, and Z be three disjoint regions of U. I(X, Z, Y)y, iff
every ray of light from a point in X to some point in ¥ is intercepted
by Z.

d. Let U be the set of n-dimensional vectors, and let X, ¥, and Z be
three disjoint sets of such vectors. Denote by Sz the linear
subspace spanned by any set Z. I (X, Z, Y)y,, iff the closest distance
between X and S is equal to the closest distance between X and

S ZuyY:
e. Let U be a set of random variables, let P be a probability
distribution on those variables, and let X, Y, and Z be three disjoint

subsets of U. I (X, Z, Y)p, iff

P(x,2)>0 & P(y,2)>0 => P(x,y,2) > 0.
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Let U= {X, Y, Z, W}, and let P(x, y, z, w) be given by the following
table:

all other tuples 0

a. Show that the graph G given below is a minimal I-map of P.

X
Y V4
w
b.  Show that P cannot be expressed as a product of functions on the
cliques of G.
c. Find a tree /-map of P and express P as a product of functions on its

edges.

d.  Draw all the Bayesian networks of P in the orderings (X, Y, Z, W)

and (W, X, Y, Z) and compute their parameters.

a. Find the graphoid closure 7" of the set [ = {((1,9,2),(12,3,4)}.
b.  Construct the Markov network of /.

c. Construct the Bayesian networks of I” corresponding to the

following 3 orderings: (1, 2, 3, 4), (4, 3, 2. 1), (1, 4,2, 3).

Note: The graphoid closure 7” is the smallest superset of / that is
consistent with the axioms of Egs. (3.6a) through (3.6¢).
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3.5. We wish to construct a Bayesian network for a Markov field of an N XN
grid in the plane. Find the set of parents of a typical node (e.g., row 3,
column 5), in the following two orderings:

(a) (b)
1 2 6 7 1 2 3 4 5”. N-1 N
3 5 8 vee 2N vee N+2 I N+1
4 9 vee IN +1 vee 3N

3.6. a. Find the Markov network G of a probabilistic model P for which
the following DAG is a perfect-map:

1

8

b. Find an undirected graph G such that P (in problem (a)) is
decomposable relative to G.

C. Draw a join tree of G.

d.  Find an algebraic representation of P such that P > O for all events.

3.7. (After D. Geiger)
a. Prove that the following axiom holds for all DAGs:
I(0y, 0, 03) & 1(0, O, O4) & T(0y, 03, 0) ==> (04, D, O4)

(hint: use the definition of d-separation and prove by contradiction).
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b.  Generalize your arguments and prove that the following axiom
holds as well:

1((12’ o, (13) &[(Q@, Oy, (14) & - & ](O('n’ Oy, 0f'r1+l)
&[((XH+1’ Gy al) = [<(le @ (xn-t-l)
(where n > 3).

c. Construct a probability distribution that violates the axiom problem

(a).
38. (After D. Geiger). Let P be a zero-mean normal distribution over n
variables X |, ..., X,, with a covariance matrix I" = (pi;), where
Py=E[X;-X;]and E[X}1=1 (1<ij<n).
a. Prove the following propositions:
](Xi’ @, XJ)P ps=——cd pl/ = O,
I(Xi, Xp, X))p <= Di; = Pir " P

b.  Inlight of Exercises 3.7a and 3.8a construct a normal distribution P
such that no DAG is a perfect map of P.

3.9. a. Show that the axioms of Egs. (3.34a) through (3.34g) do not
preclude the occurrence of
1X,5,2) &-1(X,Y,2) & (Y, D, W) &= (Y, Z, W).

b. Show a DAG where Egs. (3.34a) through (3.34g) hold (in d-
separation) and X, Y, Z, and W are singleton nodes. (The DAG may
have more than four nodes.)

c. Discuss the significance of problem (b) vis @ vis the prospects of
defining causal directionality in terms of dependencies.

3.10.  Show that weak transitivity holds in

(a) every normal distribution, and

(b) every probability distribution over binary variables, relative to Z={.
311. A recursive diagram [Wermuth and Lauritzen 1983] is a DAG

constructed as follows: the elements of U are ordered X s - X, and the
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parents set S; of each X; is defined by S; = {X;: j <iand = /(X (X, ..,
X;_1}—X;, X;) }, namely, X; is a parent of X; if it remains dependent on
X;, given all other predecessors {X, ..., X;_; }— X; of X;.

a. Show that any recursive diagram constructed for a graphoid (i.e., a
dependency model satisfying (3.6.a) to (3.6.¢)) coincides with the
Bayesian network constructed under the same ordering.

b. Show that for semi-graphoids (i.e., dependency models satisfying
(3.6.a) to (3.6.d)) a recursive diagram is a subgraph of any
Bayesian network constructed under the same ordering.

C. Find a probability distribution for which the Bayesian network 1% a
chain but the recursive diagram has only one arc.

d. A recursive diagram R of a semi-graphoid M, has the shape of a
linear chain of five nodes 1 - 2 — 3 — 4 — 5. Using the
same node ordering, draw all the DAGS that are guaranteed to be
I-maps of M.

3.12. Given two DAGs, D, and D,, on the same set of variables. Devise a
polynomial time algorithm to test whether D, is an /-map of D, relative
to d-separation.”) What if D, contains a subset of the variables in D, 2%

3.13. A dag D is said to be a (causal) model of a probability function P if it is

consistent with P, that is, the links of D can be annotated with conditional
probabilities whose product equals P (see Eq. (3.28)). D is said to be a
minimal model of P if the set of probabilities consistent with D is not a
superset of those consistent with some other model of P.

a. Show that D is consistent with P iff it is an /-map of P.

Let a probability function P be isomorphic to a dag D:
b.  Show that every minimal model of P must be a perfect map of D.
C. Show that every minimal model of P has the same arcs as D.

d. Identify the arcs in D whose orientation remains the same in all
minimal models of P.*?

Pearl, J., D. Geiger & T. Verma, "The Logic and Influence Diagrams," in R.M. Oliver and J.Q.
Smith (Eds.), Influence Diagrams, Belief Nets and Decision Analysis, Wiley, 1990, 67-87.

T. Verma & J. Pearl, "Equivalence and Synthesis of Causal Models," in Proc., Sixth Conf. on
Uncertainty in Al, Cambridge, Mass., 1990, 220-227. Also, North Holland, UAI 6, 1991, 255-
268.




‘jAppendix 3-A Proof of Theorem 3 139

A ppendix 3-A
Proof of Theorem 3

'THEOREM 3 [Pearl and Paz 1985]: Every dependency model M satisfying
symmetry, decomposition, and intersection (see Eq. (3.6)) has a ( unique) minimal
I-map Go = (U, Ey) produced by connecting only those pairs (o, B) for which
I(oLU — o —B, By is FALSE, i.c.,

Proof:
. We first prove that G, is an I-map (i.e., <X!SIY> => I(X, 8, Y)) using
descending induction:

ii.

iil,

. Bye By iff 1(0, U= o—B, B)y,. (3.11)

Let n=1Ul. For 18! = n-2 the I-mapness of G, is guaranteed by its
method of construction, Eq. (3.11).

Assume the theorem holds for every S with size |§°1 =k < n=2, and let §

be any set such that 1§| = k—1 and <XISIY> . We distinguish two
subcases: X US U Y = VandXuSuy=U.

If X USUY = U then either X1 22o0r 1Yl 22, Assume, without loss of
generality, that Y122, je. Y=Y U Y. From <XIS|Y>G and obvious
properties of vertex separation in graphs, we conclude <X|§ U Y'Y’ >
and <XISuU Y’ y> - The two separating sets, § U Yand S UY, are at
least 181 + 1 = k in size; therefore, by induction on the hypothesis,

IX,SuyY) & IX,§0Y, ).

Applying the intersection property (Eq. (3.6¢)) yields the desired result:
X, S, Y.
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If XU SwUY=#U, then there exists at least one element & that is not in
X U SuUY, and for any such & two obvious properties of graph separation
hold:

<XISUSIY>g,

and

either <XISUYI 8>, or <3ISUXIY>g, or both.

The separating sets above are at least 1§1 + 1 = k in size; therefore, by
induction on the hypothesis,

IX,S08,Y) & IX,SUY,d)

or

I(X,SUd,Y) & I(6,SUXY).

Applying the intersection property (Eq. (3.6¢)) to either case yields
1(X, S, Y), which establishes the /-mapness of G.

2. Next we show that G, is edge-minimal and unique, i.e., that no edge can be
deleted from G, without destroying its /-mapness. Indeed, deleting an edge
(a,B) € E, leaves o separated from B by the complementary set U-a~f, and if
the resulting graph is still an /-map, we can conclude I(o, U-0—f3, B). However,
from the method of constructing G, and from (o, B) € E, we know that
(o, U-0—P, B) is not in I. Thus, no edge can be removed from Gy, and its
minimality and uniqueness are established. Q.E.D.

Note that the weak union property (Eq. (3.6¢)) is not needed for the proof.
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“Appendix 3-B
- Proof of Theorem 4

THEOREM 4: [Pear]l and Paz 1985]; Every element o.e U in a dependency
model satisfying symmetry, decomposition, intersection, and weak union (Eq.
(3.6)) has a unique Markov boundary B(a). Moreover, B () coincides with the
set of vertices Bg, (1) adjacent to o in the minimal I-map G .

Proof:

il

iil.

iv.

Let BL" (ct) stand for the set of all Markov blankets satisfying Eq. (3.12). B,(o) is
unique because the intersection property (Eq. (3.6e)) renders BL*(or) closed under
intersection. Moreover, B, (o) equals the intersection of all members of BL*(0v).

Conversely, every Markov blanket BL e BL" () remains in BL" (1) after we add to it
an arbitrary set of elements S” not containing o. This follows from the weak union
property (Eq. (3.6c)). In particular, if there is an element B outside B,(o0) U o then
U-o—B is in BL* ().

From (ii) we conclude that for every element B #o outside B,(0)), we have
I(o, U~0~B, B), meaning B cannot be connected to ¢, in Gy. Thus,

B, (o) B/ (o).
To prove that Bg, (o) actually coincides with B/(a) it is sufficient to show that

B, (o) is in BL" (o), but this follows from the fact that Gy, as an /-map, must satisfy
Eq. (3.12). QED.




