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Introduction 
 Inference presented algorithmically thus far 

1. Find elimination order 
2. Construct Bucket Tree  
3. Pass messages on Bucket Tree 
 

 New perspective on approximation 
 p(x) is hard, so choose an easy q(x) ϵ Q 
 Formulate inference as an optimization problem 

• e.g. minimize “distance” between q and p 



Projection Problem 
 Given p, find distribution from family of 

distributions Q that is closest to p:  
 

 

Space of all 
distributions 

Family Q 

What if p ϵ Q? 



Projection Problem 
 Given p, find distribution from family of 

distributions Q that is closest to p  
 

 p(x) 

“Hard” “Easy” “Easier” 



Outline 
 KL Divergence & Free Energy 
 Simple form of Q 
 Mean-Field 
 Exact Inference / Junction Tree 

 Approximate Free Energy 
 Loopy Belief Propagation 

 Variational Upper Bounds  
 Weighted Mini-Bucket 



Divergence Measures 
 Say I have distribution  

 

 Approximate by  
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M-Projection Information-Projection Moment-Projection 
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Divergence Measures 
 Say I have distribution  

 

 Approximate by  

0.7 0.2 

0.05 0.05 

I-Projection M-Projection 



Free Energy and DKL(q,p) 
 Let                               
 Consider the I-Projection: 

 
 

 

 Since                      we have a bound 

Energy Functional 

Unnormalized 
Measure 

Function is a mapping:   
Functional is a mapping:   “function of a function” 



Free Energy and DKL(q,p) 
 Let                               
 Consider the I-Projection: 

 
 

 

 Since                     we have a bound 

Energy Functional 

Unnormalized 
Measure 

Function is a mapping:   
Functional is a mapping:   “function of a function” 

 For I-Projections we have: 
 

 What about M-Projections? 
 Much harder: requires marginals of p(x) 
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 Mean-Field 
 Exact Inference / Junction Tree 

 Approximate Free Energy 
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 Variational Upper Bounds  
 Weighted Mini-Bucket 



Naïve Mean Field 
 Target distribution is: 
 Assume q takes simple form: 
 Running Example: 



Naïve Mean Field 
 Goal is to optimize: 

 
 
 

 Can re-write Entropy as: 
   

 

 For our example: 
   
  

 
 
 

s.t.                               , 



Naïve Mean Field 
 Construct Lagrangian 

 
 
 

 Take partials and equate to zero 
 

 
 

From Normalization 
Constraint 



Naïve Mean Field 
 Construct Lagrangian 

 
 
 

 Take partials and equate to zero 
 

 
 

From Normalization 
Constraint 



Naïve Mean Field 
 Re-arranging gives:  
 
 

 For node i: 
 
 



Naïve Mean Field Algorithm 
Input:        
Output: 
  

initialize each            , 
while ¬converged 

for each node i  
  

Update:  
 

Normalize:  
  

return  



Naïve Mean Field Summary 
 Every update increases energy 
 Look at terms involving qi  

 
 

Will converge to stationary point 
 Limitations: 

Concave in Linear in  

0.47 0.03 

0.03 0.47 If then 



Structured Mean Field 
 Choose q with some low tree-width structure 
 Updates more complex / require inference in q   
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Junction Trees 
 Let T be a junction tree of p(x) 
 Let Ci denote clusters in T  
 Let Sij denote separators on edges of T 
 Let βi be the belief over cluster Ci 

 Let μij be the belief over edge sep. Sij  

 Ex: 

Junction Trees Satisfy: 
- Factor Preservation 
- Running Intersection 

Recall that: 



Junction Trees 
 Junction Tree T of p(x) defines a distribution qT(x) 

 
 
 
 
 

 ‘Consistent’ beliefs are marginals of qT(x) 
 e.g.,  

where 



Junction Trees 
 In our example: 

where 



Exact Inference as Optimization 
 Goal is to optimize: 

s.t. 

Consistency 
Constraints 

Normalization 
Constraints 



Exact Inference as Optimization 
More generally: 

 
 
 
 

 Find stationary points by:  
 Constructing Lagrangian  
 Taking derivatives of      wrt  

 

s.t. for all edges 

for all vertices 



Fixed Point Characterization 
 Results in standard message passing updates: 

 
 
 

 Ex: 
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 Cluster Graph generalizes Junction Tree 
 Family preservation & relaxed running intersection 

Loopy Belief Propagation 

Markov 
Network 

Junction 
Tree 

Loopy Cluster 
Graph 



Factored Energy Functional 
 Exact inference was cast as: 

s.t. 

for all edges 

for all vertices 



Factored Energy Functional 
 Exact inference was cast as: 

s.t. 

for all edges 

for all vertices 

 Because q is a junction tree, entropy decomposes 
 
 

 Factored Energy 



What if q isn’t a junction tree? 

Junction Tree 
Loopy Cluster Graph 

s.t.                                                     , 



What if q isn’t a junction tree? 

s.t.                                                     , 

 Beliefs are marginals 
   

 Entropy factors, so                 
                  is exact energy 
 Bound on log Zψ  

 Beliefs not necessarily 
marginals 

 Entropy doesn’t factor, 
so  

 No bound on log Zψ  



Marginal Polytope 
 Marginal Polytope: Set of achievable marginals   
 Not compact generally (exponential # of constraints)  
 Difficult to optimize over 
 NP-hard even to check if beliefs lie in polytope 

Cartoon borrowed from Andrew McCallum 
(http://people.cs.umass.edu/~mccallum/courses/gm2011/14-loopy-bp.pdf) 

Distributions p Marginal 
polytope 

Local 
Consistency 

polytope 

Beliefs 



Marginal vs. Local Polytope 
 Local consistency polytope defined by 
                                        ,                         , 
   

 Example: 

Markov 
Network 

Locally Consistent set of Beliefs  



Marginal vs. Local Polytope 
 Local consistency polytope defined by 
                                        ,                         , 

 

 Example: 
Markov 
Network 

Locally Consistent set of Beliefs  
Try to find a solution to:  

1: 

2: 

3: 

4: 

5: 



Marginal vs. Local Polytope 
 Local consistency polytope defined by 
                                        ,                         , 

 

 Example: 
Markov 
Network 

Locally Consistent set of Beliefs  
Try to find a solution to:  



Loopy BP Algorithm 
Input:                                 
Output: Approximate marginals  
 

build cluster graph:  
initialize messages:  

while locally inconsistent beliefs 
 for each edge  
  update message:  

 for each node  
  update beliefs:  



Loopy BP Summary 
 Introduces two approximations 
 Inexact, factored energy functional 
 Local consistency may yield bad marginals 

 Does not provide a bound on log Zψ  
 Does not improve energy at every iteration 
Might not converge, many stationary points 

 

 Useful in hard problems!  
 Easy to implement / solid empirical performance 
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Weighted Mini-Bucket [Liu & Ihler] 

 Builds upon Mini-Bucket Elimination (MBE) 
 

 Bounds log Zψ using Hölder’s Inequality 
 Parameterized by set of weights 
 Weights optimized to ‘tighten’ bound  
 Standard MBE is specific setting of weights 

 

 Complexity controlled by iBound parameter 



Review of Mini-Bucket Elimination 
Markov Network 

Cost is O(k4) 

In Bucket 1: 

Cost is O(k3) 

Copies of Variable x1 

Bucket 1 



Hölder’s Inequality 
 The weighted summation operator is: 

 
 

   where        ,               are positive functions and 
                                are weights 

 Hölder’s Inequality 
 Let                    and all weights be positive, then 



Weighted Mini-Bucket Elimination 
Markov Network 

In Bucket 1: Let 

Gives the mini-bucket bound: 



Weighted Mini-Bucket Elimination 
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In Bucket 1: Let 

Gives the mini-bucket bound: 

 What happens when? 



Weighted Mini-Bucket Elimination 
Markov Network 

In Bucket 1: Let 

Gives the mini-bucket bound: 

 What happens when? 

“Standard “ 
mini-Bucket 



One-Pass WMB Algorithm 
Input:                                 , elimination order o  
Output: Partition function bound  
 

set  
for i=1…n along ordering o  

 
Partition       into       mini-buckets s.t.  
 

Assign weight         to each         s.t.  

 
return   



Tightening the bound 
 Note that bound written as   

 

 Let  
 Optimization problem is: 

 
Weights are optimized by iterative algorithm 
 Messages passed up/down the bucket tree 
 Weights updated on each pass 



Experiments 
 Run on 15-by-15 grid with binary variables 

for 



WMB -  

iBounds 



WMB -  

iBounds 



WMB -  

iBounds 



Summary 
 Variational methods formulate inference as 

an optimization problem 
 e.g. given p, find distribution in Q closest to p 

 Provides new perspective for analysis 
 e.g. equivalence between fixed points of sum-

product message passing and stationary points 

 Led to development of many new algorithms 
 e.g. Liu & Ihler’s weighted mini-bucket 
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