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Overview

3. Markov Chain Monte Carlo: Gibbs Sampling



Markov Chain

O 00 0

A Markov chain is a discrete random process with
the property that the next state depends only on the

current state (Markov Property):
P(x' | x',x°,..,xX ") =P(x" | x)

o |f P(X'|x"!) does not depend on t (time
homogeneous) and state space is finite, then it is
often expressed as a transition function (aka

transition matrix) E P(X =x)=1




Example: Drunkard’s Walk

 arandom walk on the number line where, at
each step, the position may change by +1 or

-1 with equal probability

00000

D(X)=1012,.}

P(n-1) ‘ P(n+1)

4

transition matrix P(X)




Example: Weather Model

rain rain rain

D(X) = {rainy, sunny}

sun rain

P(rainy) ‘ P(sunny)

rainy

sunny

4

transition matrix P(X)



Multi-Variable System
X ={X,,X,,X,},D(X,) =discrete, finite

e state is an assignment of values to all the

variables ° Q

x'={x,x),.., X}




Bayesian Network System

* Bayesian Network is a representation of the
joint probability distribution over 2 or more
variables

X={X19X29X3} xt={x1tax;9x§}




Stationary Distribution

Existence

* |f the Markov chain is time-homogeneous,
then the vector nt(X) is a stationary distribution
(aka invariant or equilibrium distribution, aka
“fixed point”), if its entries sum up to 1 and

A 2= Sat)Px |x)
x,€D(X)
* Finite state space Markov chain has a unique
stationary distribution if and only if:
— The chain is irreducible

— All of its states are positive recurrent



Irreducible

» Astate xis irreducible if under the transition rule
one has nonzero probability of moving from xto
any other state and then coming back in a finite
number of steps

* |f one state is irreducible, then all the states
must be irreducible

(Liu, Ch. 12, pp. 249, Def. 12.1.1)



Recurrent

e A state xis recurrent if the chain returns to x
with probability 1

e Let M(x) be the expected number of steps to
return to state x

e State xis positive recurrent if M(x) is finite

The recurrent states in a finite state chain are positive
recurrent .



Stationary Distribution Convergence

* Consider infinite Markov chain:
P =P(x" |x")=P'P
* |f the chainis both irreducible and aperiodic,

then: ,
7 = lim P

Nn—>00

* |nitial state is not important in the limit

“The most useful feature of a “good” Markov
chain is its fast forgetfulness of its past...”

(Liu, Ch. 12.1)



Aperiodic

* Define d(i) =g.c.d.{n >0 | it is possible to go
fromitoiin n steps}. Here, g.c.d. means the
greatest common divisor of the integers in the

set. If d(i)=1 for Vi, then chain is aperiodic
* Positive recurrent, aperiodic states are ergodic



Markov Chain Monte Carlo
. P(X) P(X[e)

* Generate samples that form Markov Chain
with stationary distribution 7=P(X/e)
e Estimate wfrom samples (observed states):

visited states x9,...,x" can be viewed as “samples”
from distribution

7(x) = %Zé(x,xt)

7 = lmi(x)

T —0



MCMC Summary

Convergence is guaranteed in the limit

Initial state is not important, but... typically,
we throw away first K samples - “burn-in”

Samples are dependent, not i.i.d.

The stronger correlation between states, the
slower convergence!
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Gibbs Sampling (Geman&Geman,1984)

* Gibbs sampler is an algorithm to generate a
sequence of samples from the joint probability
distribution of two or more random variables

 Sample new variable value one variable at a
time from the variable’s conditional
distribution:

P(X)=P(X, | X,y X, X0, e, X, b= P(X [ X"\ )

* Samples form a Markov chain with stationary
distribution P(X/e)



Gibbs Sampling: lllustration

The process of Gibbs sampling can be understood as a random walk
in the space of all instantiations of X=x (remember drunkard’s walk):

In one step we can reach instantiations
that differ from current one by value
assignment to at most one variable
(assume randomized choice of variables
X:).



Ordered Gibbs Sampler

Generate sample xt*! from xt:
t+1 t 4 4
X, =x" < P(X,|x5,x5,..,Xy,€)

Process
All ot t+1 .t t
| X,=x, < P(X,|x ,X3,.0,Xy,€)
Variables
In Some
Order r+1 t+1 r+1 r+1
Xy=xy < P(X,|x",x, ,...xy_,€)

In short, for i=1 to N:

X, = x/*' < sampled from P(X, | x' \ x. ,e)




Transition Probabilities in BN

Given Markov blanket (parents,
children, and their parents),
X. is independent of all other nodes

Markov blanket:
markov(X.) = pa, Uch, U( Upaj)

P(X.|x'\x,))=P(X, | markov;):
P(x, | X' \x;) & P(x; | pa;) HP('XJ' |paj)
X Ech,

Computation is linear in the size of Markov blanket!
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Ordered Gibbs Sampling Algorithm
(Pearl,1988)

Input: X, E=e

Output: T samples {x'}

Fix evidence E=e, initialize x° at random
1. Fort=1toT (compute samples)

2 Fori=1to N (loop through variables)
3. X" < P(X. | markov})
4. End For
5. End For



Gibbs Sampling Example - BN

X ={X,,X,,..X,},E={X,}

X=X,
X5 = Xg'
Xg = Xg'
X, =x
Xg = Xg'
Xg = Xg'
X, =X,

o 0
X;5=X;
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Gibbs Sampling Example - BN

X ={X,,X,,..X,},E={X,}

X, <= P(X, | x],..., %, , X,)

Xy <= P(X, | X ey Xg X))
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Answering Queries P(x; [e) = ?

* Method 1: count # of samples where X; = x; (histogram estimator):

Dirac delta f-n
_ ] 4 /
P(X,=x)==") 0(x;,x")

 Method 2: average probability (mixture estimator):
_ 1 I
P(X, =x)= —EP(XZ. = X, [markov,)
I =

* Mixture estimator converges faster (consider
estimates for the unobserved values of X;; prove via
Rao-Blackwell theorem)



Rao-Blackwell Theorem

Rao-Blackwell Theorem: Let random variable set X be
composed of two groups of variables, R and L. Then,
for the joint distribution t(R,L) and function g, the
following result applies

VarlE{g(R) | L} = Var[g(R)]
for a function of interest g, e.g., the mean or
covariance (Casella&Robert, 1996, Liu et. al. 1995).

* theorem makes a weak promise, but works well in practice!
* improvement depends the choice of Rand L



Importance vs. Gibbs

Gibbs: X' < P(X|e)
P(X |e)—=2— P(X |e)

5(X) - %2 g (x')

Importance: X' < O(X |e) W,
_ 1 S g(xX)P(x")




Gibbs Sampling: Convergence

Sample from |
Converges iff chain is irreducible and ergodic

Intuition - must be able to explore all states:

— if X; and X; are strongly correlated, X;=0<> X.=0,
then, we cannot explore states with X=1 and X;=1

All conditions are satisfied when all
probabilities are positive

Convergence rate can be characterized by the
second eigen-value of transition matrix



Gibbs: Speeding Convergence

Reduce dependence between samples
(autocorrelation)

e Skip samples

 Randomize Variable Sampling Order
 Employ blocking (grouping)

 Multiple chains

Reduce variance (cover in the next section)



Blocking Gibbs Sampler

 Sample several variables together, as a block

 Example: Given three variables _¥, 2,2, with domains of
size 2, group ?and Ztogether to form a variable
W={ 22} with domain size 4. Then, given sample
(15,91, 2), compute next sample:

xt+l - P(X | yt,Zt) _ P(Wt)
(yt+1,Zt+l _ Wt+1 - P(Y,Z | xt+1)

+ Can improve convergence greatly when two variables
are strongly correlated!

- Domain of the block variable grows exponentially with
the #variables in a block!
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Gibbs: Multiple Chains

* Generate M chains of size K
* Each chain produces independent estimate P,

_ 1 &
P, (x;|e)= P(x; | x"\x,)
K2
. Estimate P(x;/e) as average of P _(x.[e):

ZOREONAC

Treat P, as independent random variables.




Gibbs Sampling Summary

* Markov Chain Monte Carlo method
(Gelfand and Smith, 1990, Smith and Roberts, 1993, Tierney, 1994)

e Samples are dependent, form Markov Chain
 Sample from P (X | ) which converges to P(X | e)
 Guaranteed to converge when all P> 0

 Methods to improve convergence:
— Blocking
— Rao-Blackwellised



Overview

5. Rao-Blackwellisation



Sampling: Performance

Gibbs sampling
— Reduce dependence between samples

Importance sampling

— Reduce variance

Achieve both by sampling a subset of variables
and integrating out the rest (reduce
dimensionality), aka Rao-Blackwellisation

Exploit graph structure to manage the extra cost



Smaller Subset State-Space

* Smaller state-space is easier to cover

X={X1,X29X39X4} X={X19X2}

D(X) = 64 D(X) =16



Smoother Distribution

P(XIIX21X3;X4) P(Xl,Xz)

H0-01 ®0.1-0.2 #0.2-0.26 H0-0.1 ®0.1-0.2 70.2-0.26
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Speeding Up Convergence

* Mean Squared Error of the estimator:
MSE,|P |= BIAS® +Var,|P ]
* In case of unbiased estimator, BIAS=0
MSE,[P] = Var,[ P] = (EQ f - EQ[P]z)

* Reduce variance = speed up convergence !



Rao-Blackwellisation
X=RUL

() =%{h<x1>+---+h<xT)}

3 (x) = %{E[h(x) 144 Eh0) | 17T}

Varig(x); =VariE|g(x)| ]} + E{var[g(x)[/]}
Varig(x)j=Variklg(x)|l];
Varis(x)} = Var{;l(X)} _ VaV{E[;(X) 1

Liu, Ch.2.3

=Var{g(x)}



Rao-Blackwellisation

“Carry out analytical computation as much as possible” - Liu
e X=RUL
* I[mportance Sampling:
P(R, L P(R

(RD), _p,, PR),
O(R,L) O(R) iy, ch.2.5.5
* Gibbs Sampling:

— autocovariances are lower (less correlation
between samples)

—if X; and X; are strongly correlated, X;=0 <= X;=0,
only include one fo them into a sampling set

Vary{
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Blocking Gibbs Sampler vs. Collapsed

e Standard Gibbs:

P(x|y,z),P(y|x,z),P(z|x,y) (1)
* Blocking:

P(x|y,z),P(y,z|x) (2)
* Collapsed:

P(x| ), P(y| %) 3)

Faster
Convergence



Collapsed Gibbs Sampling

Generating Samples

Generate sample ct*! from ct:
t+1 4 4 t
C,=c" < P(c |c),CapennsCi»€)

t+1 t+1 ¢ t
C,=c, < P(c,|c,” ,Cs5eesCp 5 €)

t+1 t+1 4+l t+1
Cp,=cy < P(cplc, ,cy yisCris€)

In short, for i=1 to K:

C, =c*' < sampled from P(c, | c' \c, ,e)




Collapsed Gibbs Sampler

Input: CC X, E=e

Output: T samples {c'}

Fix evidence E=e, initialize c° at random
1. Fort=1toT (compute samples)

2 Fori=1to N (loop through variables)
3. ¢/t < P(C. | ct\c)
4. End For
5. End For



Calculation Time

* Computing P(c;/ ct\c,e) is more expensive
(requires inference)

* Trading #samples for smaller variance:
— generate more samples with higher covariance
— generate fewer samples with lower covariance

* Must control the time spent computing

sampling probabilities in order to be time-
effective!



Exploiting Graph Properties

Recall... computation time is exponential in the
adjusted induced width of a graph

* y-cutset is a subset of variable s.t. when they
are observed, induced width of the graph is w

 when sampled variables form a w-cutset,
inference is exp(w) (e.g., using Bucket Tree
Elimination)

e cycle-cutset is a special case of uw-cutset

Sampling w-cutset = w-cutset sampling!
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What If C=Cycle-Cutset ?

c” = {5}, E = {X,}

P(x,,Xs,Xq) — can compute using Bucket Elimination

—»

—»

=)

P(x,,Xs,Xg) — computation complexity is O(N)
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Computing Transition Probabilities
Compute joint probabilities:

BE : P(x, =0,x;,x,)
BE : P(x, =1,x;,x,)

Normalize:

a=P(x,=0,x,,x))+ P(x, =1,x;,x,)
P(x,=0|x;)=0P(x, =0,x,,x,)
P(x, =1|x;)=0P(x, =1,x;,x,)
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Cutset Sampling-Answering Queries

* Query: Vc €C, P(c, | e)=? same as Gibbs:

T
Plele)=— 3 Ple e \epe)
=1

computed while generating sample t
using bucket tree elimination

* Query: Vx. €X\C, P(x |e)="?

_ 1 T
Pxje)=— ¥ P(x;| ')
=1

\compute after generating sample t
using bucket tree elimination
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Cutset Sampling vs. Cutset Conditioning

Cutset Conditioning

P(x]|e) = P(x, |ce) ><
ED(C)

e Cutset Sampling
_ 1
Pixle)=— S P(x.|c',e
(x]e) TZ (x;|ce)

count(c)

P(x; | ce)x

I
=
s




Cutset Sampling Example

Estimating P(x, | e) for sampling node X, :

x; — P(x,| xg’x9) sample 1

Xy < P(x] xix) TPe?

Sample 3
f < P(x) xsz’xo) i

) 0 ]
| P(x,| x5,x,)

P(x, B 3 + P(x)] x3,%5)

\

2
+ P(x,] x5,x,)
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Cutset Sampling Example
Estimating P(x; | e) for non-sampled node Xj:

Cl = {xé,xé}:P()% |X;,X;,X9)
02 = {x229x52}=>P(x3 |x229x529x9)

C3 = {xgaxg}:P('Xé |x§9x539x9)

| P(xy | X5, X5, %)
P(x3 |x9)=§ +P(X3 |x229x529x9)

+ P(x, |x§9x§9x9)




CPCS54 Test Results

CPCS54, n=54, [C|=15, |[E|=3 CPCS54, n=54, |C|=15, |[E|=3
—e— Cutset —a— Gibbs | —e— Cutset —m— Gibbs
0.004
0.0008
0.003 -
0.0006 A\
0.002 ~
0.0004
0.001 ~
0.0002
0 T T T T O
0 1000 2000 3000 4000 5000 0 5 10 15 20 25
# samples Time(sec)

MSE vs. #samples (left) and time (right)
Ergodic, |X|=54, D(X)=2, |C|=15, |E|=3

Exact Time = 30 sec using Cutset Conditioning



CPCS179 Test Results

0.012

0.01

0.008

0.006

0.004

0.002

CPCS179, n=179, |C|=8, |E|=35

| —e— Cutset —m— Gibbs |

S
100 500 1000 2000 3000 4000

#samples

0.012

0.01
0.008
0.006
0.004
0.002

CPCS179, n=179, |C|=8, |E|=35

—e— Cutset —m— Gibbs

PaN
4 \
o——9p—2o» s *
20 40 60
Time(sec)

MSE vs. #samples (left) and time (right)
Non-Ergodic (1 deterministic CPT entry)
|X| = 179, |C| = 8, 2<= D(X,)<=4, |E| = 35

Exact Time = 122 sec using Cutset Conditioning




CPCS360b Test Results

0.00016

0.00012

0.00008

0.00004

0

CPCS360b, n=360, |C|=21, |E|=36

| —&— Cutset —— Gibbs |

\

=

\-\.\._H

0

0\.-—-0——-0"\’_‘\‘_‘
200 400 600 800

# samples

1000

CPCS360b, n=360, |C|=21, [E|=36

—e— Cutset —m— Gibbs

0.00016

0.00012

0.00008

0.00004 -

0

1

2 3 5 10 20 30 40 50 60

Time(sec)

MSE vs. #samples (left) and time (right)
Ergodic, |X| = 360, D(X;)=2, |C| = 21, |E|] = 36

Exact Time > 60 min using Cutset Conditioning

Exact Values obtained via Bucket Elimination




Random Networks

0.0035
0.003
0.0025
0.002
0.0015
0.001
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RANDOM, n=100, |C|=13, |E|=15-20

—e— Cutset —m— Gibbs
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RANDOM, n=100, |C|=13, |E|=15-20

—e— Cutset —m— Gibbs
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Time(sec)

MSE vs. #samples (left) and time (right)
|X| = 100, D(X;) =2,|C| = 13, |E| = 15-20

Exact Time = 30 sec using Cutset Conditioning




Coding Networks

Cutset Transforms Non-Ergodic Chain to Ergodic

Coding Networks, n=100, |C|=12-14
01 = = = =

oRoRoRoRED: T
U T T ] T

0.001 r r r r r
0 10 20 30 40 50 60

MSE vs. time (right)
Non-Ergodic, |X]| = 100, D(X;)=2, |C| = 13-16, |E| = 50
Sample Ergodic Subspace U={U,, U,,...U, }

Exact Time = 50 sec using Cutset Conditioning
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Non-Ergodic Hailfinder

HailFinder, n=56, |C|=5, |E|=1

—e— Cutset —a— Gibbs

0.1
0.01
0.001 \_‘\’_‘\‘\sﬁq—
0.0001 . .
0 500 1000 1500

# samples

0.1

0.01

0.001

0.0001

HailFinder, n=56, |C|=5, |E|=1

—e— Cutset —a— Gibbs

2 3 4 5 6 7 8

Time(sec)

MSE vs. #samples (left) and time (right)

Non-Ergodic, |X]| = 56, |C| =5, 2 <=D(X;) <=11, |[E| =0

Exact Time = 2 sec using Loop-Cutset Conditioning




CPCS360b - MSE

cpcs360b, N=360, |E|=[20-34], w*=20, MSE
—a— Gibbs
0.000025 —=—IBP ]
n —a—|C|=26,fw=3
000002 ——|C|=48,fw=2[ |
0.000015
0.00001
0.000005
O T T T T T T T
0 200 400 600 800 1000 1200 1400 1600
Time (sec)
MSE vs. Time

Ergodic, |X| = 360, |C| = 26, D(X,)=2
Exact Time = 50 min using BTE



Cutset Importance Sampling
(Gogate & Dechter, 2005) and (Bidyuk & Dechter, 2006)

* Apply Importance Sampling over cutset C

ﬁ(e)_l a P(Ctae)_l 4 Wt
T4 Q) T4

where P(ct,e) is computed using Bucket Elimination

_ 1 Z
P(c.le)=a— Y O(c,,c' W
(c;|e) TZ(Z )

_ 1 Z
P(x. le)=a— > P(x.|c',e)n
(x; | e) TZ (x;| ¢ ,e)



Likelihood Cutset Weighting (LCS)

e /=Topological Order{C,E}
 Generating sample t+1:

ForZ,€Z do: - computed while generating
sample t
It Z, €L using bucket tree
S+ A=T elimination
Else

1 1 . « can be memoized for some
T e—PZ |z, z] i
Z; P12 s Zig number of instances K
based on memory available
End If ( y

End For
KL[P(C|e), Q(C)] < KL[P(X]e), Q(X)]
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Pathfinder 1

MSE

—a— | W
—8— LWLC
—e— | WLC-BUF

PathFinder 1, N=109, w*=6, |[LC|=9, |[E|=11
0.002

0.0016 —>— BP
0.0012
0.0008
0.0004
0
0 2 B 6 8 10 12
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Pathfinder 2

0.002

PathFinder2, N=135, |LC|=4, |[E|=17

Time (sec)

—a— W
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Link

MSE

Link, N=724, w*=15, |LC|=142, |E|=10
0.003

0.002

0.001

0.000

10

12
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Summary

Importance Sampling

i.i.d. samples

Unbiased estimator
Generates samples fast

Samples from Q
Reject samples with
zero-weight
Improves on cutset

Gibbs Sampling

Dependent samples

Biased estimator

Generates samples

slower
Samples from

W

P(X]e)

Does not converge in
presence of constraints

Improves on cutset



CPCS360b

MSE

1.E-02

1.E-03

1.E-04

1.E-05

cpcs360b, N=360, [LC[=26, w*=21, |E|=15

—a— W

—8— AIS-BN

—aA— Gibbs
A—LCS

IBP

e

Time (sec)

14

LW — likelihood weighting
LCS — likelihood weighting on a cutset
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CPCS422b

MSE

cpcsd22b, N=422,|LC|=47, w*=22, |E|=28 |—=—Lw
1.0E-02 —8— AIS-BN
—a— Gibbs
Bﬁ\' —4—LCS
1.0E-04 ‘\‘\‘\1§‘
X X X X X
1.0E-05 T T - - T
0 10 20 30 40 50 60

Time (sec)

LW — likelihood weighting
LCS — likelihood weighting on a cutset



Coding Networks

MSE

coding, N=200, P=3, |LC|=26, w*=21 | —=—LW
—a— AIS-BN
—a— Gibbs
=== 8 8 —~-ICS

1.0E-01

1.0E-02 -w -

1.0E-03

KK KKK XXX
| 0E-04 L EA %

1.0E-05 . . . -

Time (sec)

LW — likelihood weighting
LCS — likelihood weighting on a cutset




