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Overview

1. Probabilistic Reasoning/Graphical models



Probabilistic Reasoning;
Graphical models

Graphical models:

Bayesian network, constraint networks, mixed network

Queries

Exact algorithm

using inference,
search and hybrids

Graph parameters:

tree-width, cycle-cutset, w-cutset



Queries

* Probability of evidence (or partition function)

P(e) = 2 ﬁP(xl. | pa)|, Z£= ZH%(CZ-)

X-var(e) i=1
* Posterior marginal (beliefs):
P(x; | pa;)|,
P(xl.,e) _ X_Va;)_)(i]]:l[ ' J

P(x;|e)= P(e)

n
HP(’X] |paj)|e
X-var(e) j=I1

 Most Probable Explanation

xX* = argmaxP(Xx, e)



Approximation

* Since inference, search and hybrids are too expensive when
graph is dense; (high treewidth) then:

 Bounding inference: (week 8)
* mini-bucket and mini-clustering
* Belief propagation

* Bounding search: (week 7)
* Sampling

 Goal: an anytime scheme



Overview

2. Importance Sampling



Outline

Definitions and Background on Statistics
Theory of importance sampling
Likelihood weighting

State-of-the-art importance sampling
techniques



A sample

* Given a set of variables X={X,...,X_}, a sample,
denoted by St is an instantiation of all
variables:

S' = (X] 5 X5 geees X )



How to draw a sample ?
Univariate distribution

 Example: Given random variable X having
domain {0, 1} and a distribution P(X) = (0.3,
0.7).
* Task: Generate samples of X from P.
* How?
— draw random number r € [0, 1]
— If (r < 0.3) then set X=0
— Else set X=1



How to draw a sample?
Multi-variate distribution

Let X={X,,..,X,,} be a set of variables
Express the distribution in product form
P(X)=P(X)xP(X,| X)x.xP(X | X,,..X )

Sample variables one by one from left to right,
along the ordering dictated by the product
form.

Bayesian network literature: Logic sampling



Sampling for Prob. Inference
Outline

Logic Sampling
Importance Sampling

— Likelihood Sampling
— Choosing a Proposal Distribution

Markov Chain Monte Carlo (MCMC)
— Metropolis-Hastings

— Gibbs sampling

Variance Reduction



Logic Sampling:
No Evidence (Henrion 1988)

Input: Bayesian network
X={X,,.... Xy}, N- #nodes, T - # samples
Output: T samples

Process nodes in topological order — first process the
ancestors of a node, then the node itself:

1. Fort=0toT
2. Fori=0to N
3. X. < sample x.' from P(x, | pa))



Logic sampling (example)

P(X, X,, X5, X,) = P(X))x P(X, | X)) x P(X5 | X)) x P(X, | X,, X;)

‘P (X)) No Evidence

% // generate sample k
1.Sample x, from P(x,)

PX, | X)) P(X;| X)) | 2.Sample x, from P(x, | X, = x,)

3.Sample x, from P(x, | X, = x,)

P(X4 |X2,X3) 4.Samplex4 from P(X4 X7 = X, Xq = xq)
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Logic Sampling w/ Evidence

Input: Bayesian network

X={X,,.... Xy}, N- #nodes

E —evidence, T - # samples

Output: T samples consistent with E
1. Fort=1toT
2. Fori=1toN
X. <— sample x.' from P(x; | pa))
If X. in E and X, = x,, reject sample:

Goto Step 1.

Lnobkhw



Logic Sampling (example)

@ence L X, =D

// generate sample &

1.Sample x, from P(x,)
2.Sample x, from P(x, | x,)

3.Sample x, from P(x, | x,)

At x, = 0, reject sample
P(x, [ x,,x,) d start from 1, otherwi

5.Sample x, from P(x, | x, x;)
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Expected value and Variance

Expected value: Given a probability distribution P(X)
and a function g(X) defined over a set of variables X =
{X, X,, ... X}, the expected value of g w.r.t. P 1s

E,[g(x)]=) g(x)P(x)

Variance: The variance of g w.r.t. P 1s:

Var,[g(0)]= ¥ [g(x) - E,[g(0)]] P(x)

X



Monte Carlo Estimate

* Estimator:
— An estimator is a function of the samples.

— It produces an estimate of the unknown
parameter of the sampling distribution.

Giveni.i.d.samplesS',S”,...S" drawn from P,

the Monte carlo estimate of E ,[g(x)]1s given by :

~ 1 @r t
&= 2.8



Example: Monte Carlo estimate

* Given:
— A distribution P(X) = (0.3, 0.7).
— g(X) =40 if X equals O
=50 if X equals 1.
* Estimate E[g(x)]=(40x0.3+50x0.7)=47.

 Generate k samples from P: 0,1,1,1,0,1,1,0,1,0

40x# samples(X = 0) + 50x# samples(X =1)

#samples

§=

40x4+50x6
10

46
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Importance sampling: Main idea

* Express query as the expected value of a
random variable w.r.t. to a distribution Q.

* Generate random samples from Q.

e Estimate the expected value from the
generated samples using a monte carlo
estimator (average).



Importance sampling for P(e)

LetZ = X \E,
Let Q(Z) be a (proposal) distribution, satisfying
P(z,e)>0=0(2)>0

Then, we can rewrite P(e) as :

P(e) = EP(Z,e) ZP(z,e) 0C) _p [P (2,¢)

E
o) °| o) } oW

Monte Carlo estimate ;

P(e) = % i w(z'), where z' < O(Z)



Properties of IS estimate of P(e)

* Convergence: by law of large numbers

f’(e) = 1 Eil w(z')—2— P(e) for T — ®

 Unbiased. AT
E,[P(e)]= P(e)

 Variance:
1 _ Vary[w(z)]

Var, [Is(e)]= Var, [? Eil W(Zi)] -




Properties of IS estimate of P(e)

e Mean Squared Error of the estimator

MSE , P(e)]= (P(e) P(e))2

(P(e) E, [P(e)])2 + Var, [P(e)

= Var, [P(e)]
zero because the expected value of the
Var [W(X)] estimator equals the expected value of g(x)

T

This quantity enclosed in the brackets is




Estimating P(X | e)

Let o, (z)be a dirac - delta function, which is1if z contains x; and 0 otherwise.

0, (2)P(z,e)
P(x,,e) _ _ 0(z) }
P(e) EP(Z,e) E [P(z,e)]

Z °l 02)

Idea : Estimate numerator and denominator by IS.

>3, (2)P(z.0) EQ[

z

P(x; |e) =

P(x,e) & *
P(e) .
=]

Estimate 1s biased : El:lB (x, | e)];é P(x, |e)

Ratio estimate : P (x;|e)=



Properties of the IS estimator for P(X;]
e)

* Convergence: By Weak law of large numbers
P(x.|e)— P(x.|e)as T —
* Asymptotically unbiased

lim,_, E,[P(x,|e)] = P(x, | e)

T — o0
* Variance
— Harder to analyze

— Liu suggests a measure called “Effective sample
size”



Generating samples from Q

No restrictions on “how to”

Typically, express Q in product form:
— Q(2)=Q(Z,)xQ(Z, | Z,)X....xQ(Z. | Z,,..Z..;)
Sample along the order Z,,..,Z_
Example:

—2,€-Q(Z,)=(0.2,0.8)

—7,€ Q(z,|2,)=(0.1,0.9,0.2,0.8)

— Z3é Q(Z, | Z,,2,)=Q(Z;)=(0.5,0.5)



Outline

Definitions and Background on Statistics
Theory of importance sampling
Likelihood weighting

State-of-the-art importance sampling
techniques



Likelihood Weighting

(Fung and Chang, 1990; Shachter and Peot, 1990)

Is an instance of importance sampling!

“Clamping” evidence+
logic sampling+
weighing samples by evidence likelihood

Works well for likely evidence!

34



Likelihood Weighting: Sampling

Sample in topological order over X !

Bdiiay dy

Clamp evidence, Sample x. <—P(X./pa.), P(X./|pa.) is a
look-up in CPT!

35



Likelihood Weighting: Proposal Distribution

Q(X\E) = H‘P(Xi |pai9e)

Notice: Q is another Bayesian network
Example:

Given a Bayesiannetwork : P(X,, X,,X;) = P(X,)xP(X, | X,)xP(X, | X,,X,) and
Evidence X, =X,.

Q(X,X;)=P(X))xP(X; |X, X, =x,)

Weights :

Given a sample: x = (X, 5.5 X))

[], Pestpasax P 1)

P(x, e) XENE

Q(X) ]_[ X1 [jalae)

XEX\E

= Hp(ej |paj)
EjEE




Likelihood Weighting: Estimates

A 1 &
Estimate P(e): P(e)=—Y w"
(e): Ple) TEI

Estimate Posterior Marginals:

T

P(xi,e) _ A
P(e) S G
t=1

W(t)gXi (x(t))

P(x;| €)=

g. (x) =1if x. = x;and equals zero otherwise

37



Likelihood Weighting

* Converges to exact posterior marginals
* Generates Samples Fast

 Sampling distribution is close to prior
(especially if E C Leaf Nodes)

* Increasing sampling variance
=>Convergence may be slow
=Many samples with P(x{!)=0 rejected

38
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Bounds on the Absolute Error

of an estimate Av,(&)

is the absolute difference it has with the true probability Pr(«) we
are trying to estimate.

For any € > 0, we have

Pr(a)Pr(—«)

]P(|Av,,(&) — Pr(a)| < e) >1- ;

ne

The estimate Av,(&v) computed by direct sampling will fall within
the interval (Pr(a) — ¢, Pr(a) + €) with probability at least
1 — Pr(a)Pr(—a)/ne?



Bounds on the Absolute Error

A sharper bound which does not depend on the probability Pr(«)

Hoeffding's inequality

Let Av,(f) be a sample mean, where the function f has
expectation g and values in {0,1}. For any € > 0, we have:

]P><|Avn(f) — ,u| < 6) > 1 — 26—2n62

For any € > 0, we have:

IP)(|AVn(C\>?) — Pr(a)| < g) > 1 — De2n€

The estimate Av,(&) computed by direct sampling will fall within
the interval (Pr(a) — €, Pr(«) 4+ €) with probability at least
1 — 2e—2n62



Bounds on the Relative Error

For any € > 0, we have:

P(’AVn((\)’é) B P]_“(Oé)’ < E) > 1 26—2ne2l:’1‘(04)2
Pr(a) - /)~

Require the probability Pr(a) (or some lower bound on it).



Bounds on the Relative Error

of an estimate Av,(&)

|Av, (&) — Pr(a)

Pr(«a)

The bound on the absolute error becomes tighter as the probability of an
event becomes more extreme. Yet, the corresponding bound on the
relative error becomes looser as the probability of an event becomes more
extreme.

For an event with probability .5 and a sample size of 10000, there
is a 95% chance that the error is ~ 4.5%. However, for the
same confidence level, the relative error increases to ~ 13.4% if
the event has probability .1, and increases again to &~ 44.5% if the
event has probability .01
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Proposal selection

* One should try to select a proposal that is as
close as possible to the posterior distribution.

A Vi VA Z ?
ol M50
Pz.e) _ P(e) =0, tohave a zero - variance estimator
0(2)
P _
P 0(2)

.0(z)=P(z]e)



Perfect sampling using Bucket
Elimination

* Algorithm:

— Run Bucket elimination on the problem along an
ordering o=(Xy;,..,X;).

— Sample along the reverse ordering: (X,,..,Xy)

— At each variable X, recover the probability P(X |
X4,---,X; ) by referring to the bucket.



Bucket Elimination

Query: P(ale=0)x P(a,e=0) Elimination Order: d,e,b,c

(A)
@"G P(a,e=0)= E P(a)P(b|a)P(c|a)P(d|a,b)P(e|b,c)
b)) &

~ P(a)E P(c] a)Z P(b| a)z P(e| b, C)Z P(d | a,b)

Bucket Tree

Original Functions Messages

\D:/ P(d|a,b) IfD(a,b)%}a:P(dm,b)
\E:/ Plelb,e) || | folb.c) E Pe=0]b,c)
\ B/ P(b]a) |fB<a,c>I=ZP<b|a>fD<a,b>fE<b,c>
\ ¢/ Plela) fe(@ F X Plela)fy(a.c)
P(a) P(a,e=0) = p(A) f.(a)

Time and space exp(w™*) 51



bucket B:

bucket C:

bucket D:

bucket E:

bucket A:

Bucket elimination (BE)
Algorithm elim-bel (Dechter 1996)

21—[‘— Elimination operator
.

P(B|A) P(D|B,A) P(e[B.C)

P(CIA) nB(A,D,C,e)
\/
h(A,D,e)

h" (A,e)
P Hea)
d a
/

P(e)

P2

53



Sampling from the output of BE

(Dechter 2002)

Set A =a,D =d,C = cin the bucket
Sample: B=b < Q(B|a,e,d) «x P(B|a)P(d |B,a)P(e|b,c)

bucket B: P(B|A) P(D[B,A) P(¢|B,C)

Set A = a, D = d in the bucket

bucket C: P(C/A) h®B(A,D,C,e)

Sample:C =c < Q(C|a,e,d) «x P(C|A)-h"(a,d,C,e

Set A = a in the bucket

bucket D:  p°(A,D,e) c
Sample:D=d < Q(D|a,e) x h~(a,D,e)

bucket E:  h°(A,e) Evidence bucket :ignore

bucket A: P(A)  hE(a) Q(A) =« P(A)xh®(A)
Sample : A =a <— Q(A)

SP2 54



Mini-buckets: “local inference”

 Computation in a bucket is time and space
exponential in the number of variables

involved

* Therefore, partition functions in a bucket
into “mini-buckets” on smaller number of

variables

 Can control the size of each “mini-bucket”
vielding polynomial complexity.

-



Mini-Bucket Elimination

Mini-buckets Space and Time constraints:

/\ Maximum scope size of the new
N} | Il

function generated should be

I ——"~—_ bounded by 2
bucket B: P(e|B,C) R(B|A) P(D|B,A)

N

. P(C|A) hB(C,e
bucket C: (\l ) ( ]

BE generates a function having scope

size 3. So it cannot be used.
bucket D: hB(A,D)

bucket E: h€(A,e)

/
bucketA: P(A)  hE(A) hP(A)

— _/
~

Approximation of P(e)
56



Sampling from the output of MBE

bucket B:

bucket C:

bucket D:

bucket E:

bucket A:

P(e|B,C) || P(BJA) P(D|B,A)

P(C|A) hB(C,e)

h8(A,D)

h¢(A,e)

hE(A) hP(A)

SP2

Sampling is same as in BE-sampling
except that now we construct Q
from a randomly selected “mini-
bucket”

57 57



1JGP-Sampling
(Gogate and Dechter, 2005)

Iterative Join Graph Propagation (1JGP)

— A Generalized Belief Propagation scheme (Yedidia
et al., 2002)

1JGP yields better approximations of P(X|E)
than MBE

— (Dechter, Kask and Mateescu, 2002)

Output of IJGP is same as mini-bucket
“clusters”

Currently the best performing IS scheme!



Current Research question

* Given a Bayesian network with evidence or a
Markov network representing function P,
generate another Bayesian network representing
a function Q (from a family of distributions,

restricted by structure) such that Q is closest to
P.

* Current approaches
— Mini-buckets
— ljigp
— Both

* Experimented, but need to be justified
theoretically.



Algorithm: Approximate Sampling

1) Run IJGP or MBE

2) At each branch point compute the edge
probabilities by consulting output of IJGP or
MBE

* Rejection Problem:

— Some assignments generated are non solutions



Adaptive Importance Sampling

Initial Proposal=Q'(Z) = QZ)xQ(Z, | pa(Z,))x..xO(Z | pa(Z)))
P(E=¢)=0
Fori1=1tok do

Generatesamples z',...,z" from Q*

) ) | & |

PE=¢)=P(E=¢)+— ) w (2
(E=¢)=P( ) N Z (2)

Update Q' = 0" +5(k)|0* - 0]
End

f’(E =¢)

Return



Adaptive Importance Sampling

General case

Given k proposal distributions

Take N samples out of each distribution

Approximate P(e)

Is(e) =

1
k

i[/lvg — weight — jth — proposal ]
=l



Estimating Q'(z)

Q(2)=0'(Z)xQ'(Z,| pa(Z,))x..x0'(Z,| pa(Z,))
where each Q'(Z. | Z,,..,Z. )

1s estimated by importance sampling




Overview

3. Markov Chain Monte Carlo: Gibbs Sampling



