Exact Inference Algorithms for
Probabilistic Reasoning;
BTE and CTE

L A

COMPSCI 276, Spring 2013
Set 6: Rina Dechter

(Reading: Primary: Class Notes (5,6)
Secondary: , Darwiche chapters 7,8)

‘L Probabilistic Inference Tasks

= Belief updating:
BEL(X.) = P(X. = x; | evidence)

* Finding most probable explanation (MPE)
x* = argmax P(x, e)
* Finding maximum a-posteriory hypothesis
. . P(x AC X :
(a1""’ak) =arg maax 2 (x,e) hypothesis variables
* Finding maximum-expected-utility (MEU) decision

* * _ . D C X: decision variables
(d,--.,dy) = arg max ; P(x,e)J(x) U(X): utility function

class3 huiji

1998 roadmap

Outline; Road Map

olving
Tasks - . MPE. near
‘ : Optimi- Belief | MAP | |lnear
_ CSP SAT : - MEU |gqualities/
Method! zation updating ihequalities
v directional ic || join-tree. |join-tree. | i -
adaptive e dynamic || JO J Ganssian/
liminati consistency ocramd| VE - SPL. | elim- [
elimination | <OF program-| V- elim-mpe | fourier
jom-tree ming elim-bel | elim-map dlimination
backiracking branch- branch-
.. . |backtracking| PAETACKIE and- and-
conditioning| ~ ceareh | (Davis- bound. bound.
Putnam) | best-first best-first
search search
elimination | cvele-cutset| DCDR, loop-
- BDR-DP cutset
. 1+ .- forward
conditioning] checking
approximate | I-consistency bounded mini- mini- mini-
alimination (directional) buckets || buckets | buckets
resolution
approximate greedylocal gradient|| stochastic| gradient
,ppl-‘- : EEMCh, GSAT descent|| simulatio descent
conditioning] (GSAT)
approximate| GSAT +
(elimination | partial Path-
1. .] consistency
conditioning /

i Agenda

= From bucket-elimination (BE) to bucket-tree elimination (BTE)
= From BTE to CTE, the join-tree algorithm

= Belief-propagation on acyclic probabilistic networks (poly-trees)
= The role of induced-width/tree-width

= Conditioning with elimination

@ Season o

Sprinkler (B) Rain GI‘G
6/ B %

A Bayesian Network Watering (8} éwm o &
rocessed by BE & oo >

(a) Directed acyclic graph (b) Moral graph

211

>-11 cket G: P(GIF) G=1

Bucket G: P(GIF) G=1
cket B: P(FIB,C) P(DIB.A) P(BIA)

Bucket D: P(DIB,A
cket C: P(CIA) AP(A,D,C,F)

Bucket F: P(FIB,C) AC(F)

cket D: AC(AD,F)

Bucket B: P(B/A) AP(B,A) AF(B.C)

cket F: AP(AF) A5(F)
Bucket C: P(CIA) ABeA,C) cket A: P(A) A"‘éA}
Bucket A: P(A) AC(A) p(l(;:{
I (a) M)
P(G=1)

['he bucket’s output when processing along dy = A, F, D, C, B, G
Figure 4.2: Bucket elimination along ordering dy = A,C, B, F, D, G.

Complexity exponential in w*_d >

From Bucket Elimination to Bucket-Tree
Elimination o

What if we want the marginal on B?

©)

Bucket G: P(G|F)

\

Bucket F: P(F|B,.C) “Ag_,p(F)

Bucket D: P(D |A,B)\A

Bucket C: P(C|A4) Ar_co(B,O)

Bucket B: P(B|4) Ao s (A) A (A B)
Bucket A: P(A4) ,\B_,{Ll; \

Observation 1: BE is a message propagation down a bucket-tree

From Bucket Elimination to Bucket-Tree

Elimination %}
¢ J
@

What If we want the marginal on B?

Bucket G: P(G|F) G

Bucket F: P(Fll?,})’),\c_)F(F) Aa ;F(/Fi/(P(GlF))
F
Bucket D: P(D|A,B) [P(F|B, C) j D
| /\F—r(?’(B7C'7) CP(D'A}B))
Bucket C: P(C|A4) Aroe (B, C) C Noon(A, B)
- - (Pccla)) N
Bucket B: P(B|4) Ap_.p(A,B)Xc_p(A, B) Ao (A BT~

A > (PmB14))

Bucket A: P(A4) AB%{“?
wdA—-F

‘77;A—>B(a) = P(A)a
P(B) =" P(B|A)P(A)A(B,C); (4, B)

From Bucket Elimination to
* Bucket-Tree Elimination TQ{é@

If we want the marginal on D?
Imagine combining Band A, D
d = ({AIDIB}ICIFIG)

<«

e

Bucket G: P(G/F)

G

Bucket F: P(F/B,FAZ(F) . /F(})
Bucket D: P(D/A,EN

Bucket C: P(C/A) _Z(B,C) lm .0)

g ,B)
Bucket B: ABJA) A, (A B) A.(A,B) \D(\L T
A(4,B
Bucket A: A(A) /IA(A) A /
TI_‘.‘{_-I,H{H-:I = P{Fﬂ & (A)

g pla,b) = p(bla) - ma_pla) - Ao 5(b)

bel(d) = HZ P(d|a.b) - mg_,pla.b).
a,b

From Bucket Elimination to Bucket-
Tree Elimination

If we want the marginal on D? >
Imagine combining B and A, D

d = ({AD,B},C/F,G)
Bucket G: P(G|F) G

Bucket F: P/F|mAG_)F(F) rar(AL(GIE)
F

Bucket D: P(D|4,B) | P(F|B.C)] D
hrc(B.C) (P(D|A,B)
BucketC:P(C[A} Aroc(B,0)

T Ap-g(4,B)
Bucket B: P(BH) Ap—p(A,B) A\c—p(A, B) .

Bucket A: P(4) Ag_,4(4) P(4) Agoa(A)

b
:

map(a) = P(A).

g pla,b) = p(bla) - ma_pla) - Ao 5(b)

bel(d) = HZ P(d|a,b) - mp_pla,b).
a.b

Idea of BTE
a

This example can be generalized. We can compute the belief for every variable by a
second message passing from the root to the leaves along the original bucket-tree, such
that at termination the belief for each variable can be computed locally consulting only

the functions in its own bucket. In the following we will describe the idea of message

~

in Bayesian networks. Given an ordering of the variables d the first step generates the
bucket-tree by partitioning the functions into buckets and connecting the buckets into
a tree. The subsequent fop-down phase is identical to general bucket-elimination. The
bottom-up messages are defined as follows. The messages sent from the root up to the
leaves will be denoted by 7. The message from B, to a child B; is generated by combining
(e.g., multiplying) all the functions currently in B; including the m messages from its
parent bucket and all the A\ messages from its other child buckets and marginalizing (e.g.,
summing) over the eliminator from B; to B;. By construction, downward messages are
generated by eliminating a single variable. Upward messages, on the other hand, may be

generated by eliminating zero, one or more variables.

BTE: Allows Messages Both Ways

Bucket G: A(G/F) P 78 (F) /©
Bucket F: P(F/B,FAQ(F) 7. (B,C) o ?
Bucket D: P(D/A,E)\ / wy (A,B) ©

oot e Bucket C: A(CIA) \, /(B.C) 7$(4,B)

marginal probability Bucket B: ABJA) Aﬁ(A,ﬂ A(A,B) 5(A)
Bucket A: A(A) A (4)~

G
; Ve

. c B B
K B.OW 15(c,a) = P(bla)Ap(a, b)m3 (a)
C g0 AB(A];%)M’B) 78 (a,b) = P(bla)\E(a,b)75(a,b)
P(Cl4))~ "B A m2(4,B) ’/T(E((b) =, P(cla)r$(a,b)
A B e 5 P(BlA) mG(f) =3, P(flb,c)mg(c,b)

<
P(A) — A’B (A)
IT(A)

i A Bucket Tree of a Bayesian Network

= he bucket-tree is the bucket-structure
connected into a tree:

= Nodes are the buckets. Each has functions
(assigned initially) and variables: itself+ induced-

parents
= There is an arc from AU/ to AU/ iff the function
created at bucket ZJ/ is placed at bucket £J/

= We have a separator and eliminator between two
adjacent buckets

Bucket-tree Generation from the Graph

1. Pick a (good) variable ordering, d.
2. Generate the induced ordered graph

3. From top to bottom, each bucket of X is
mapped to (variables,functions) pairs

4. The variables are the clique of X, the
functions are those placed in the bucket

5. Connect Bucket of X to earlier bucket of Y if
Y is closest node connected to X

!L BTE

Theorem: When BTE
terminates The product of
functions in each bucket is the
beliefs of the variables joint
with the evidence.

ALGORITHM BUCKET-TREE ELIMINATION (BTE)
Input: A problem M = (X,D,F,[]), ordering d. X ={Xy,.... X,,} and F' = {f1..... .}

Evidence E = e.

Output: Augmented buckets {B’;}, containing the original functions and all the 7 and A

functions received from neighbors in the bucket-tree.

L.

Pre-processing: Partition functions to the ordered buckets as usual
and generate the bucket-tree.
Top-down phase: \ messages (BE) do
for i = n to 1. in reverse order of d process bucket B;:
The message A\;_;; from B; to its parent Bj, is:
Aisj & Z(lim(/._;j (O H;.-—:,,-hzuw Ak—i
endfor
bottom-up phase: T messages
for j =1 to n, process bucket B; do:
Bj; takes mj_,; received from its parent By, and computes a message m;_,; for
each child bucket B; by
Mj—si <= Z.uma‘m T U [Arosj

endfor
Output: and answering singleton queries (e.g., deriving beliefs).
/ / /
Output augmented buckets By, B,,. where each B, contains the original bucket functions

and the A and 7 messages 1t received.

Query answering

COMPUTING MARGINAL BELIEFS

. / /
Input: a bucket-tree processed by BTE with augmented buckets: By, ..., B

n

output: beliefs of each variable, bucket and probability of evidence.

bel(By) < [Lyep. f
bel(x;) <= ZBi—{X,'} erB'i !
P(evidence) <= > 5 [l ep, f

Figure 6.4: Query answering

BTE: Allows messages both ways

G

F /©
_— >
Initial buckets (PcFIB.C)) et D

Arc(B, C’)¢ P D/A ’B
+ messages C | Prorm.o) A,H”(A_B)i) 2
P(CIA) 1‘ . | @
Ac _>1;(‘?. B) B mBpD(A,B)

A i .c(AB) | P(BIA))

é—-—"‘
P(A) = Apsa(A)

TTBsA(A)
(a)

Output buckets =
P(GIF), muc(FD

F
—>F(F)
CP(F/B C), ,,2 (B.OY D
- (P(DIAB)75.p(A.B)
o (B.O)
[P(C/A) tBoc(A, B) B
Acp(A, B)
A P(BIA), /\l)an((z:)Bj

(P(A). Ap_a(A)

(b)

class3 huiji

* Explicit functions

Definition 6.1.4 (explicit function and explicit sub-model) Given a graphical model
M = (X,D,F.[]), and reasoning tasks defined by marginalization »_ and given a subset

of variables Y, Y C X, we define My, the explicit function of M over Y :

My = Z Hf, (6.4)

We denote by Fy any set of functions whose scopes are subsumed in Y over the same

domains and ranges as the functions in F. we say that (Y, Fy) is an explicit submodel of

M iff
II =My (6.5)

18

‘.L Properties of BTE

Theorem (correctness) 6.1.4 Algorithm BTE when applied to a Bayesian
or Markov network is sound. Namely, in each bucket we can exactly
compute the exact joint function of every subset of variables and the
evidence.

(follows from imapness of trees)

Theorem 6.1.5 (Complexity of BTE) Let w be the induced width of G
along ordering d, let r be the number of functions and k the maximum
size of a domain of a variable. The time complexity of BTE is O(r deg
k™Mw*+1}), where deg is the maximum degree in the bucket-tree.
The space complexity of BTE is O(n k" \w*,)

19

Asynchronous BTE:
* Bucket-tree Propagation (BTP)

BUuckET-TREE PrOPAGATION (BTP)
Input: A problem M = (X, D.F,[]), ordering d. X = {Xj,.... X, } and
F={f1.....f»}, E=e. An ordering d and a corresponding bucket-tree structure,
in which for each node X;, its bucket B; and its neighboring buckets are well defined.
Output: Explicit buckets.
1. for bucket B; do:
2. for each neighbor bucket B; do.
once all messages from all other neighbors were received. do
compute and send to B; the message
Ainsj <= Zezm(i,j) Vi - (Hk;ej ki)

3. endfor

Ainyj <= Zeﬁm{i,j} Vi + (] Lezj Ak—si)

‘L Complexity of BTE

Theorem 6.1.6 (Complexity of BTE) Let w* be the induced width of G along order-
ing d, of the primal graph of a graphical model M = (X, D,F,[[,>_), r be the number

of functions in F and k be the mazimum domain size. The time complezity of BTE

is O(r - deg - k" T1), where deg is the mazximum degree in the bucket-tree. The space
complezity of BTE is O(n - k¥").

class3 huiji

‘-L Agenda

From bucket-elimination (BE) to bucket-tree elimination (BTE)

From BTE to CTE, the join-tree algorithm

Belief-propagation on acyclic probabilistic networks (poly-trees)

The role of induced-width/tree-width

22

From buckets to superbucket

(A) (B) Allows time and (©)
/© space tradeoff

A,B,C

A super-bucket-tree is an i-map of the Bayesian network 23

i From a bucket-tree to a join-tree

Merge non-maximal buckets into maximal clusters.

Connect clusters into a tree: each cluster to one with
which it shares a largest subset of variables.

Separators are the intersection of variables on the
arcs of the tree.

The cluster-tree is an i-map.

24

Tree-decompositions

A tree decomposition for a belief network BN =< X,D,G,P >1sa
triple< T, x,y >, where T = (V,E) is a tree and y and y are labeling
functions, associating with each vertex vEV two sets, y(v) € X and
w(v) C P satisfying :
1. For each function p, € P there 1s exactly one vertex such that
p, Ew(v) and scope(p,) C x(v)
2.For each variable X, € X the set{vEV|X, € y(v)}! forms a

connected subtree (running intersection property)

Definition 6.2.8 (treewidth, separator-width, eliminator) The treewidth [4] of a
tree-decomposition < T, x,1 > is maz,cy |x(v)| minus 1. Given two adjacent vertices u
and v of a tree-decomposition, the separator of u and v is sep(u,v) = x(u) N x(v), and
the eliminator of u with respect to v is elim(u,v) = y(u) — x(v). The separator-width is

the maxrimum over all separators.

(GF) ®© (GF) (GF)
F F F
F,B@
B.C

A,B,C

The general Message Passing
on a general tree-decomposition

CS\\.

‘.h 2

\/_\h(u,v)
X, u

Q_. ¢®
o

cluster(u) =y (u) U h(x,u), h(x,,u),...h(x, ,u),h(v,u)}

For max-product

Just replace)7

With rmax. Compute the message :

h(uﬂ V) = Eelim(u,v) HfEcluster(u)—{h(V,u)} f

Elim(u,v) = cluster(u)-sep(u,v)

Cluster-Tree Elimination

CLUSTER-TREE ELIMINATION (CTE)
Input: A tree decomposition < T, y, 1> > for a problem M =< X, D, F.][} >,
X ={Xy,...X0,,}, F={f1,.... f»}. Evidence E = ¢, ¥, = erw(u) f

Output: An augmented tree-decomposition whose clusters are all model explicit.

Namely, a tree decomposition < 7', y, 1 > where for u € T, x(u). % (u) is model explicit.

1. Initialize: Let m,_, denote the message sent from vertex u to vertex v.
2. Compute messages:
for every edge (u,v) in the tree, do
If vertex u has received messages from all adjacent vertices other
than v, then compute (and send to v)
My—y <= Zsep(u,v) Yy - Hren.ez'ghbor(v) My
endfor
Note: functions whose scopes do not contain any separator variable
do not need to be combined and can be directly passed on to the receiving vertex.
3. Return: The explicit tree-decomposition < T, .) >, where

L_’(l’) ~ 'Z‘;‘"“('lv’) UuEneighbor(v) {'nl'u—w}'

* Generating tree-decomposition

Proposition 6.2.12 If T is a tree-decomposition, then any tree obtained by merging ad-

jacent clusters is also a tree-decomposition.

29

GRAPH TRIANGULATION (FILL-IN) ALGORITHM: Tarjan
and Yannakakis [1984]

1.

Compute an ordering for the nodes, using a maximum cardinality
search, i.e., number vertices from 1 to | VI, in increasing order,
always assigning the next number to the vertex having the largest
set of previously numbered neighbors (breaking ties arbitrarily).

From n = IVl to n =1, recursively fill in edges between any two
nonadjacent parents of 2, i.e., neighbors of » having lower ranks
than »n (including neighbors linked to n in previous steps). If no
edges are added the graph is chordal; otherwise, the new filled
graph is chordal.

Given a graph G = (V, E) we can construct a join tree using the
following procedure.

ASSEMBLING A JOIN TREE

1. Use the fill-in algorithm to generate a chordal graph G’ (if G is
chordal, G =G").

2. Identify all cliques in G’. Since any vertex and its parent set
(lower ranked nodes connected to it) form a clique in G’, the
maximum number of cliques is | V1.

3. Order the cliques C,, C,,..., C, by rank of the highest vertex in each
clique.

-+, Form the join tree by connecting each C; to a predecessor C ; G<1)
sharing the highest number of vertices with C;.

30

Examples of tree-clustering

BN SN 0 > t

Tree-clustering and message-passing

Wifor}
WSap-Suc-San}

@ YSsr-Jer}
@ @ Wifus-Suct

Yifre} WSfsr-Src-Fup}

R Y m3,2(B,C) = Y. po(fas - fac - mass)

/‘ﬂl3 a(A,B) =37 pg(faB - fac -mas3)
4

ma3(A,B) =3 4g(fep - fap)

32

Cluster-Tree Elimination -
Properties

= Correctness and completeness: Algorithm CTE is correct, i.e. it
co_nc]putes the exact joint probability of a single variable and the
evidence.

= Time complexity:
« O(deg x (n+N) xdw+1)

= Space complexity: O (N x d=eP)
where deg = the maximum degree of a node
n = number of variables (= number of CPTs)
N = number of nodes in the tree decomposition
d = the maximum domain size of a variable
w* = the induced width
sep = the separator size

class3 huiji

X)) ={4.B.C}
YO ={p(a).p(|a). p(c|a.b)}

@) 2()={B.C.D.F}
v ={p(d|5).p(f | c.d}

é 2(3)={B.E.F}
v ={plelb 1)}

1

1 Z(#)={E.F.G}
y@)={p(gle.N)}

(a) (®)

Figure 6.12: [Execution of CTE-BUJ: a) A belief network; b) A join-tree decomposition;
c)Execution of CTE-BU; no individual functions appear in this case (d) the explicit tree-

decomposition

37

X)) ={4.B.C}

1 YO ={p(a).p(|a). p(c|a.b)}

CZ x)={B.C.D.F}
v()={p(d|b).p(f|c.d}

é 2(3)={B.E.F}
v(3)={p(e|b./)}

X(@)={E.F.G}

Y v=tiele.n)
(a) (b)
1 ABC
hisa(b,c) = Zp(a) p(bla) - p(c|a,b)
hos1 = Ep d|b) p(fle.d) - hasa(b, f)
zcc
hasa(b, f) = Zp (d[b) - p(fle,d) - hasa(b,c
ha (b, f) = Zpelb) -hasale. f)
3| BEF
haale. f) = Zp(ew f)-hasa(b, f)

hasa(e, f) = P(G gele, f)
4 EFG

Figure 6.12: [Execution of CTE-BUJ: a) A belief network; b) A join-tree decomposition;

¢)Execution of CTE-BU; no individual functions appear in this case (d) the explicit tree-

decomposition

38

1 X)) ={4.B.C}
v () ={p(a). p(b|a). p(c|a.b)}

(2 x)={B.C.D.F}
Y2 ={p(d|b).p(f|c.d}

(3 2(3)={B.E.F}
vy =1{pe|b./)}

) FO=(EF.)
©) v =(plele.f)

(a) (b)

x(1) = {4, B,C}
ABC @ Vezp(1) = {p(a), p(bla), p(cla,b)}
hisa(bc) = Zp(a) -p(bla) - p(c|a,b)

(2

hasi =Y _p(dp)-p(fle,d)-hasa(b f) x(2) = {B.C,D,F}
ZE a7 \&) Weap(2) = {p(d|b). p(fle,d), ha 2, hs 2}

hasa(b, f) =Y pld|b) - p(fle.d) - hasa(b,c)

s sa(b.£) = 3 plelb. £) - haale.) (3) 105 B R
3| BEF . (3) 3) C 0ttt 1), e, o)
hasa(e, f) =Y plelb, f) - haa(b, f)
EF .
hasa(e, f) =p(G = gele, x(4) = {E,F,G}
4 EFG el s (@ 3200 G m
() (d)

Figure 6.12: [Execution of CTE-BUJ: a) A belief network; b) A join-tree decomposition;
¢)Execution of CTE-BU; no individual functions appear in this case (d) the explicit tree-

decomposition

39

Example

[ABC]
p(a), p(bla), p(cla,b)

A tree decomposition for a belief network BN =< X,D,G,P >1sa
BC

triple< T, x,y >, where T = (V,E) is a tree and y and y are labeling
functions, associating with each vertex vEV two sets, y(v) & X and [BCDF]

p(d\b), p(fic,d)

w(v) C P satisfying :
1. For each function p, € P there 1s exactly one vertex such that BF
p;, Ey(v) and scope(p,) € x(v)
2.For each variable X, € X the set {vEV|X. € y(v)}! forms a [p]?eﬁ,;)]
connected subtree (running intersection property) .

[EFG]

p(gley
Tree decomposition
40

Belief network

Minimal tree-decompositions do
Not clusters containing other clusters

CTE: Cluster Tree Elimination

H ABC

T

hooy(b,0) = pla) p(bla)- p(c|a,b)
BC

h(z,l)(bac) = Z p(d|b) p(f| C»d)'h(s,z) b, f)
’f
2| BCDF

h(2’3)(b,f) = 2 p(d|b) - p(f] Cad)'h(l,z)(boc)
BF c,

h(3,2)(bof) = 2 ple] b,f)-h(“)(e,f)
3| BEF
h(3,4)(eaf) = Z p(e|b,f)-h(2,3)(b,f)

hus(e f)=p(G=g,le f)

5}

i EFG
Time: O (exp(w+1))

Space: O (exp(sep)) For each cluster P(X|e) is computed, also P(e) 41

‘-L Agenda

From bucket-elimination (BE) to bucket-tree elimination (BTE)

From BTE to CTE, the join-tree algorithm

Belief-propagation on acyclic probabilistic networks (poly-trees)

The role of induced-width/tree-width

42

Acyclic-Networks:
ﬁ Belief Propagation is easy on

P(E)

P(B) P(E P(B|E)

P(A|B,E)
PRIE) P(CIA) P(R|E,A)

P(CIAR)

43

Polytrees and Acyclic networks

= Polytree: a BN whose undirected skeleton is a tree

= Acyclic network: A network is acyclic if it has a tree-
decomposition where each node has a single original CPT.

= Dual network: each scope-cpt is a node and each arc is
denoted by intersection.

= Acylic network (alternative definition): when the dual
graph has a join-tree

= BP is exact on an acyclic network.

= Tree-clustering converts a network into an acyclic one.

Definition 6.4.4 (belief propagation (BP)) Given a ploytree and a directed dual graph
which is a poly-tree decomposition, The belief propagation algorithm (BP) is algorithm

CTE, whose messages down the polytree-decomposition are called A\ and up are called 7.
44

A Glimpse into Pearl’s BP

Figure 4.18. (a) A fragment of a polytree and (b) the parents and chil-
dren of a typical node X.

EVIDENCE DECOMPOSITION

exy, stands for evidence contained in the subnetwork on the head side of the link
XY,

ey x stands for evidence contained in the subnetwork on the rail side of the link
U;-X.

Figure 4.19. Variables, messages, and evidence sets used in the derivation of
Ax (u,-).

Step 1 - Belief updating: When node X is activated, it simul-
taneously inspects the messages 7y (¥;), i =1,..., n communi-
cated by its parents and the messages kyj(x), j=1,.,m com-

municated by its children. Using this input, it updates its belief
measure to

BEL (x) = o A(x) t(x), (4.49)
where
Mx) =TI ij x), (4.50)
J
nx)= ¥ Plup..,u) Inyw;), (4.51)
Wy,..., U, :

and o is a normalizing constant rendering ¥ BEL (x) = 1.
X

Step 2 - Bottom-up propagation: Using the messages received,
node X computes new A messages to be sent to its parents. For
example, the new message Ay (¢;) that X sends to its parents U,
i1s computed by

Kx(u)_BZA(X) z P(xlul, ,u) l'I Ttx(uk) (4.52)

x U k#i

Step 3 - Top-down propagation: Each node computes new 7
messages to be sent to its children. For example, the new Ty (X)

message that X sends to its child Y; 1s computed by

TCyj(X) =0

I1 lyk(x)] Y Pxluy,. ,u,,)l'lnx(u)4.53)
k#j Uy Uy
BEL (x)
=0 .
A'yj (x)

SUMMARY OF PROPAGATION RULES
FOR POLYTREES

The steps involved in polytree propagation are similar to
those used with trees. We shall now summarize these steps
by considering a typical node X having m children,
Y,,..,Y,,and n parents, Uy,...,, U,, as in Figure 4.18b.

The belief distribution of variable X can be computed if
three types of parameters are made available:

The current strength of the causal support © contributed by
each incoming link U; —»X:

Ty (u;) = P (i Ie(}"x) . (447)
The current strength of the diagnostic support, A, contribut-
ed by each outgoing link X' — ¥;:

ij (x)=P (e,}yj Ix). (4.48)

The fixed conditional-probability matrix P (x lu,..., u,)
that relates the variable X to its immediate parents.

Belief propagation is easy on polytree:
Pearl’s Belief Propagation

A polytree: a tree with A () =
Larger families P(z 1) l

A polytree decomposition

Running CTE = running Pearl’s BP over the dual graph
Dual-graph: nodes are cpts, arcs connect non-empty
intersections.

BP is Time and space linear

50

From exact to approximate:
[terative Belief Propagation

= Belief propagation is exact for poly-trees
= IBP - applying BP iteratively to cyclic networks

One step :
update

= No guarantees for convergence
= Works well for many coding networks

51

* Dual graphs, join-graphs

Definition 6.4.5 (dual graphs, join dual graphs, arc-minimal dual-graphs) Given
a graphical model M =< X, D, F.] =.

e The dual graph Dz of the graphical model M, is an arc-labeled graph defined over
the its functions. Namely, it has a node for each function labeled with the func-
tion’s scope and a labeled arc connecting any two nodes that share a variable in the
function’s scope. The arcs are labeled by the shared variables.

e A dual join-graph is a labeled arc subgraph of D whose arc labels are subsets of the
labels of Dy such that the running intersection property, s satisfied.

e An arc-minimal dual join-graph is a dual join-graph for which none of its labels can
be further reduced while maintaining the connectedness property.

52

ﬁ Dual join-graphs examples

() ()
/ 2 N 2 1
b e
a) b) c)

Figure 6.13: a) A belief network; b) A dual join-graph with singleton labels; ¢) A dual

join-graph which is a join-tree

Proposition 6.4.6 The dual graph of any Bayesian network has an arc-minimal dual
join-graph where each are is labeled by a single variable.

53

Iterative Belief propagation

Algorithm IBP
Input: An arc-labeled dual join-graph DJ = (V,E.L) for a graphical model M =<
X,D,F] =.
Output: An angmented graph whose nodes include the original functions and the messages
received from neighbors. Denote by: hj, the message from u to v; ne(u) the neighbors of u in
Viney(u) = ne(u) — {v}; lye the label of (u.v) € E; elim(u,v) = scope(u) — scope(v).
e One iteration of IBP
For every node u in DJ in a topological order and back, do:
1. Process observed variables
Assign evidence variables to the each p; and remove them from the labeled arcs.
2. Compute and send to v the function:

hy = Z (Pu - H hi)

elim(u,v) {RY ieneu(u)}

Endfor
e Compute approximations of P(Fjle), P(X;le):
For every X; € X let u be the vertex of family F; in DJ,

P(Rle) = Q'(Hh;‘.u-Ene(z) h:‘) " Pu;
P(.\’gle) = ZSCO}E(U)—{.\"} P(F.le).

54

ﬁ Agenda

Conditioning with elimination (Chapter 4, class notes)

55

i The Idea of Cutset-Conditioning

We observed that when variables are assigned connectivity reduces.
The magnitude of saving is reflected through the “conditioned-induced graph”

Cutset-conditioning exploit this in a systematic way:

Select a subset of variables, assign them values, and solve the conditionined
problem by elimination.

Repeat for all assignments to the cutset.

Algorithm VEC

56

‘-L Exact Reasoning by Search

= Enumeration in VEC can be done by dfs
= In the extreme we can do only search

57

The Principle of Cutset Conditioning

Enumeration in VEC can be done by dfs
In the extreme we can do only search, we

For example, we can compute expression below for the probability of evidence in
the network of Figure 2.4 by traversing the search-tree in Figure 4.18 along the
ordering, from first variable to last variable.

Bel(A = Y P(g|f)P(fIb,c)P(d|a,b)P(cla)P(bla)P(a)

eb, f.d,g

= P(a)) P(cla)Y P(bla) Y _ P(flb,c)) P(db,a)) P(glf), (6.1)
c b I d g

58

Conditioning generates
the probability tree

+

P(a,e =0) = P(a)z P(b| a)E P(c| a)Z P(d | a,b)E P(e|b,c)

=u > e=0
=1 0 e=0

-
Pdlab) Plelbey P@P(bla)P(cla)P(dia,b)P(elb.c)

Complexity of conditioning: exponential time, linear space

59

¢ Algorithm VEC (Variable-elimination with conditioning)

ALGORITHM V EC-EVIDENCE
Input: A belief network B =< X.D.G.P >, an ordering d =
(x1,...,7,) : evidence e over E., a subset €' of conditioned vari-
ables:
output: The probability of evidence P(e)
Initialize: A = 0.
1. For every assignment €' = ¢, do
e \{ + The output of BE-bel with ¢ U e as observations.
e \ — A+ A (update the sum).

2. Return P(e) = a - A (a is a normalization constant.)

Conditioning+Elimination

A
MA)

Idea:

P(a,e=0)=P(a)y P(b| a)E P(c| a)Z P(d | a,b)Z P(e|b,c)

B C E

P(bla) P(cla) P(dla,b) P(elb,c) P(a.e=0| b=0,c=0)

sum P(a.e=0/b=0)
-
pi@fa) __— =0 b=0,c=0
- -
prowy B O
P(110,1
m& ') P(a.e=0/b=1)

Pilla m ——

e

conditioning until w™* of a (sub)problem gets small

62

* Loop-cutset decomposition

= You condition until you get a polytree

F@‘ — f;[’/

P(B|F=0) = P(B, A=0|F=0)+P(B,A=1|F=0)

Loop-cutset method is time exp in loop-cutset size
and linear space. For each cutset we can do BP

63

* Conditioning and Cycle cutset

Cycle cutset = {A,B,C}

°¢,° g
® 9 _c
O o

Search over the Cutset (cont)

Graph Inference may require too much memory

Coloring

problem e Condition on some of the variables

w-cutset algorithms

i Variable elimination with conditioning;

s VEC-bel:
= Identify a w-cutset, c_w, of the network

= For each assignment to the cutset solve by
CTE or BE the conditioned sub-problem

= Aggregate the solutions over all cutset
assignments.

= [ime complexity: exp(|C_w/|+w)
= Space complexity: exp(w)

66

Time vs Space for w-cutset

(Dechter and El-Fatah, 2000)
(Larrosa and Dechter, 2001)
(Rish and Dechter 2000)

- Random Graphs (50 nodes, 200 edges, average degree 8, w*~23)

60
— Branch and bound

50 T

40 A

Bucket
30 A « elimination

W+c(w)

20 T

time 10 -

0
N T SN S, W S S R S 1

W-cutset time O(exp(w+cutset-size)) w Space
Space O(exp(w))

67

Hybrid of Variable-elimination and
conditioning-Search

4

= [radeoff space and time

68

Search Basic Step:
ﬁ Conditioning

69

Search Basic Step:
ﬁ Conditioning

- Select a variable

70

Search Basic Step:
‘L Conditioning

X1<_a Emmmnn X1<—c
X,< b

71

Search Basic Step:
* Variable Branching by Conditioning

Q @ General principle:
a Condition until tractable
Then solve sub-problems
@ @ efficiently

X1<_a Emmmnn X1<—c
X,< b

72

+

Search Basic Step:
Variable Branching by Conditioning

@‘ Example: solve subproblem
@ @ by inference, BE(i=2)

The Cycle-Cutset Scheme:
Condition Until Treeness

» Cycle-cutset
* i-cutset

» C(i)-size of i-cutset

Space: exp(i), Time: O(exp(i+c(i))

74

‘L Eliminate First

v

75

‘L Eliminate First

v

76

‘L Eliminate First

Solve the rest of the problem
by any means

77

* Hybrids Variants

= Condition, condition, condition ... and then
only eliminate (w-cutset, cycle-cutset)

= Eliminate, eliminate, eliminate ... and then
only search

= Interleave conditioning and elimination (elim-
cond(i), VE+C)

78

Interleaving Conditioning and Elimination
(Larrosa & Dechter, CP'02)

79

ﬁ Interleaving Conditioning and Elimination

A/

80

ﬁ Interleaving Conditioning and Elimination

A/

81

ﬁ Interleaving Conditioning and Elimination

A/

82

ﬁ Interleaving Conditioning and Elimination

A/

83

ﬁ Interleaving Conditioning and Elimination

A/

84

ﬁ Interleaving Conditioning and Elimination

S AN Ahe 4

85

i What hybrid should we use?

= W=17 (loop-cutset?)

= w=07? (Full search?)

= w=w* (Full inference)?
= W in between?

= depends... on the graph

= What is relation between cycle-cutset
and the induced-width?

87

Properties of conditioning
| +elimination

Definition 5.6.1 (cycle-cutset.w-cutset) Given a graph G. a subset of nodes is called
a w-cutset iff when removed from the graph the resulting graph has an induced-width less
than or equal to w. A minimal w-cutset of a graph has a smallest size among all w-cutsets

of the graph. A cycle-cutset is a 1-cutset of a graph.

A cycle-cutset 13 known by the name a feedback vertexr set and it 1s known that finding
the minimal such set 18 NP-complete [41]. However, we can always settle for approx-

mmations, provided by greedy schemes. Cutset-decomposition schemes call for a new

optimization task on graphs:

Definition 5.6.2 (finding a minimal w-cutset) Given a graph G = (V. E) and a con-
stant w, find a smallest subset of nodes U, such that when removed, the resulting graph

has induced-width less than or equal w.

88

Tradeoff between cutset and elimination

[t can be shown that the size of the smallest cycle-cutset (1-cutset), ¢f and the smallest
induced width, w*, obey the mequality ¢ = w® — 1. Therefore, 1 + ¢] = w*. In general,

if], 15 the size of a mimimal w-cutset then,

Theorem 5.6.3

l+ci>2+c> . .bt+c,.>w +c,. =w

89

Time vs Space for w-cutset

(Dechter and El-Fatah, 2000)
(Larrosa and Dechter, 2001)
(Rish and Dechter 2000)

- Random Graphs (50 nodes, 200 edges, average degree 8, w*~23)

60
— Branch and bound

50 T

40 A

Bucket
30 A « elimination

W+c(w)

20 T

time 10 -

0
N T SN S, W S S R S 1

W-cutset time O(exp(w+cutset-size)) w Space
Space O(exp(w))

90

