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Exact Inference Algorithms 
Bucket-elimination

COMPSCI 276, Spring 2013

Class  5: Rina Dechter

(Reading: class notes chapter 4 , Darwiche chapter 6)
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Belief Updating

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea

P (lung cancer=yes | smoking=no, dyspnoea=yes ) = ?





4

Probabilistic Inference Tasks
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evidence)|xP(X)BEL(X iii ==

� Belief updating: E is a subset {X1,…,Xn}, Y subset X-E, P(Y=y|E=e)

� P(e)?

Finding most probable explanation (MPE) 

� Finding maximum a-posteriory hypothesis

� Finding maximum-expected-utility (MEU) decision  
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Belief updating is NP-hard

�
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A simple network

� How can we compute P(D)?,  P(D|A=0)? P(A|D=0)?

� Brute force O(k^4)

� Maybe O(4k^2)

A DB CGiven: 









10

Belief updating: P(X|evidence)=?

“Moral” graph

A

D E

CB

P(a|e=0) ∝ P(a,e=0)=

∑
= bcde ,,,0

P(a)P(b|a)P(c|a)P(d|b,a)P(e|b,c)=

∑
=0e
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d
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B C
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Variable Elimination

P(c|a)∑
c
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A

D E

CB
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A

D E

CB
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A

D E

CB

Using a different
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A Bayesian network
ordering: C,B,E,D,G
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A Bayesian network
ordering: C,B,E,D,G
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A different ordering
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A Bayesian network
processed along 2 orderings
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Bucket elimination 
Algorithm BE-bel (Dechter 1996)

∑∏
b

Elimination operator

P(a|e=0)

W*=4
”induced width” 
(max clique size)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

e=0

B

C

D

E

A

e)(a,hD

(a)hE

e)c,d,(a,hB

e)d,(a,hC

A

D E

CB
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BE-BEL
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IntelligenceDifficulty

Grade

Letter

SAT

Job

Apply

Student Network example

� P(J)?
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E
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D

E

A
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Complexity of elimination

))((exp ( *
dwnO

ddw  ordering along graph moral of  widthinduced the)(*
−

The effect of the ordering:

4)( 1
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=dw“Moral” graph
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More accurately: O(r exp(w*(d)) where r is the number of cpts.
For Bayesian networks r=n. For Markov networks?

BE-BEL
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The impact of observations

G

B

C

D

F

A

G

B

C

D

F

A

G

B

C

D
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A

(a)
(b)

(c) (d)

G

B

C

D

F

A

Induced graph
Ordered graph Ordered conditioned graph
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Use the ancestral graph only

BE-BEL

“Moral” 
graph

A

D E

CB
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Probabilistic Inference Tasks

∑=
X/A

a

*

k

*

1 e),xP(maxarg)a,...,(a 

evidence)|xP(X)BEL(X iii ==

� Belief updating:

� Finding most probable explanation (MPE) 

� Finding maximum a-posteriory hypothesis

e),xP(maxarg*x
x

=

 variableshypothesis

: XA ⊆
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Finding
Algorithm BE-mpe

)xP(maxMPE
x
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∏
b

max
Elimination operator

MPE

W*=4
”induced width” 
(max clique size)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

e=0

B

C

D

E

A

e)(a,hD

(a)hE

e)c,d,(a,hB

e)d,(a,hC

Finding
Algorithm elim-mpe  (Dechter 1996)
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:
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=
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A

D E
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Generating the MPE-tuple

C: 

E: 

P(b|a)   P(d|b,a)   P(e|b,c)B: 

D:

A: P(a)

P(c|a)
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Finding MAP
Algorithm BE-map

),|(),|()|()|()(max
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D E
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Algorithm 
BE-MAP
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Variable ordering:
Restricted: Max buckets should
Be processed after sum buckets



BE for Markov networks queries
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More accurately: O(r exp(w*(d)) where r is the number of cpts.
For Bayesian networks r=n. For Markov networks?

O(nexp(w*+1)) and O(n exp(w*)), respectively
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Finding small induced-width

� NP-complete

� A tree has induced-width of ?

� Greedy algorithms:

� Min width

� Min induced-width

� Max-cardinality

� Fill-in (thought as the best)

� See anytime min-width (Gogate and Dechter)



Type of graphs
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The induced width
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Min-width ordering

Proposition: algorithm min-width finds a min-width ordering of a graph



Greedy orderings heuristics
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Theorem: A graph is a 
tree iff it has both width 
and induced-width of 1.
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Different Induced-graphs
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Induced-width for chordal graphs

� Definition: A graph is chordal if every cycle of length at least 4 
has a chord

� Finding w* over chordal graph is easy using the max-
cardinality ordering: order vertices from 1 to n, always 
assigning the next number to the node connected to a largest 
set of previously numbered nodes. Lets d be such an ordering

� A graph along max-cardinality order has no fill-in edges iff it is 
chordal. 

� On chordal graphs width=induced-width.
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Max-cardinality ordering

What is the complexity of min-fill? Min-induced-width?



K-trees
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Which greedy algorithm is best?

�



Recent work in my group

� Vibhav Gogate and Rina Dechter. "A Complete Anytime
Algorithm for Treewidth". In UAI 2004.

� Andrew E. Gelfand, Kalev Kask, and Rina Dechter. 
"Stopping Rules for Randomized Greedy Triangulation Schemes" 
in Proceedings of AAAI 2011.

� Potential project
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