Building Bayesian Networks

COMPSCI 276, Fall 2013
Set 4: Rina Dechter

(Reading: Darwiche chapter 5)



@ Real-world applications, drawn from the domains of diagnosis,
reliability, genetics, channel coding, and commonsense
reasoning.

@ Specific reasoning problems which can be addressed by posing
a formal query with respect to a Bayesian network.

@ Constructing the required network.

@ ldentifying the specific queries that need to be applied.



The construction of a Bayesian network involves three major steps:

@ ldentify relevant variables and their possible values.
@ Build the network structure by connecting variables into DAG.

@ Define the CPT for each network variable.

Two issues:

@ The potentially large size of CPTs.

@ The significance of the specific numbers used to populate
them.

We present techniques for dealing with these issues.

Queries: Different queries may be relevant for different scenarios



Reasoning with Bayesian Networks
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Samlam available at http://reasoning.cs.ucla.edu/samiam/.

For other tools see class page



Query: Probability of Evidence
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The variables E = {X, D} are called evidence variables. The query
Pr(e) is known as a probability-of-evidence.

Other type of evidence: We may want to know the probability that the patient has either a
positive X-ray or dyspnoea, X =yes or D=yes.



Query: Probability of Evidence

Bayesian network tools do not usually provide direct support for
computing the probability of arbitrary pieces of evidence, but such
probabilities can be computed indirectly.

We can add an auxiliary node E, declare nodes X and D as the
parents of E, and use the following CPT for E:

X D E |Pr(elx,d)
yes yes yes
yes no  yes
no yes Yyes
no no yes

O =

Event E =yes is then equivalent to X =yes V D =yes.



Query: Prior and Posterior Marginals

Prior Marginals

o




Prior Marginals in the Asia Network
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Query: Posterior Marginals in the Asia Network
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Soft Evidence using Virtual Evidence (Noisy Sensor)
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Query: Most Probable Explanation (MPE)

Let Xi,...,X, be all network variables, and e be evidence. ldentify
an instantiation xi,..., X, that maximizes the probability
Pr(xi,...,xple). Instantiation xi, ..., X, is called a most probable
explanation given evidence e.

MPE cannot be obtained directly from posterior marginals.

/

so as to maximize the probability Pr(x;|e), then xq, ..., x, is not
necessarily an MPE.

If xX1....,X, Is an instantiation obtained by choosing each value x;
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Query: Most Probable Explanation (MPE)

MPE given a positive

X-ray and dyspnoea

A patient that made no
visit to Asia; is a
smoker; has lung
cancer and bronchitis;
but no tuberculosis.




Query: Most Probable Explanation (MPE)
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Choosing values with maximal probability, we get:
a: A=no, S=ves, I =no, C=no, B=no, P=no, X =yes, D =no.
Probability ~ 20.03% given evidence e: X =yes, D=no.



Query: Maximum a Posteriori Hypothesis (MAP)
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MAP has probability of ~ 50.74% given the evidence.



Query: Maximum a Posteriori Hypothesis (MAP)

A common method for approximating MAP is to compute an MPE
and then return the values it assigns to MAP variables. We say in
this case that we are projecting the MPE on MAP variables.




Query: Maximum a Posteriori Hypothesis (MAP)

A common method for approximating MAP is to compute an MPE
and then return the values it assigns to MAP variables. We say in
this case that we are projecting the MPE on MAP variables.

»

MPE given evidence X =yes, D =no:

A=no, S=no, T =no, C=no, B=no, P=no, X=yes, D=no
Projecting this MPE on MAP variables M = {A, S}, we get:

A=no, S=no,

with probability ~ 48.09% given the evidence.

MAP is A=no, S=yes with a probability of about 50.74%.



Modeling with Bayesian Networks

Bayesian networks will be constructed in three consecutive steps.

Define the network variables and their values. \

@ A query variable is one which we need to ask questions about, such
as compute its posterior marginal.

@ An evidence variable is one which we may need to assert evidence
about.

@ An intermediary variable is neither query nor evidence and is meant
to aid the modeling process by detailing the relationship between
evidence and query variables.

The distinction between query, evidence and intermediary variables
is not a property of the Bayesian network, but of the task at hand.



Modeling with Bayesian Networks

Bayesian networks will be constructed in three consecutive steps.

Define the network structure (edges).

We will be guided by a causal interpretation of network structure.

The determination of network structure will be reduced to
answering the following question about each network variable X:
what set of variables we regard as the direct causes of X7

What about the boundary strata?



Modeling with Bayesian Networks

Define the network CPTs. l

@ CPTs can sometimes be determined completely from the
problem statement by objective considerations.

@ CPTs can be a reflection of subjective beliefs.

@ CPTs can be estimated from data.



Diagnosis |: Model from Expert

The flu is an acute disease characterized by fever, body aches and
pains, and can be associated with chilling and a sore throat. The
cold is a bodily disorder popularly associated with chilling and can
cause a sore throat. Tonsillitis is inflammation of the tonsils which
leads to a sore throat and can be associated with fever.

Our goal here is to develop a Bayesian network to capture this
knowledge and then use it to diagnose the condition of a patient
suffering from some of the symptoms mentioned above.

Variables? Arcs? Try it.



Diagnosis |: Model from Expert
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Variables are binary: values are either true or false. More refined
information may suggest different degrees of body ache. J




Diagnosis |: Model from Expert

The naive Bayes structure commits to the single-fault assumption. ]

(Tonsillitis?\/l ( Condition )

\ | \ }" ."'.‘
RN . / . - — . R

(Chl_llll]g/ \Bod\ Ache7 ) /Sone Thrmt’ ) \Feweﬂ\ (Chilhl]y Bocl\ Ache 7/ \Sone Thrmt’ ) Fe-\e_ﬂ:'

Suppose the patient is known to have a cold.

Naive Bayes structure

Fever and sore throat become independent as they are d-separated
by “Condition”

Original structure

Fever may increase our belief in tonsillitis, which could then
increase our belief in a sore throat.




Diagnosis |: Model from Expert
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If the only evidence we have is(body ache)we expect the
probability of flu to go up in both networks.

Naive Bayes structure

This leads to dropping the probability of cold or tonsillitis.

Original structure

These probabilities remain the same since both cold and tonsillitis
are d-separated from body ache.




CPTs can be obtained from medical experts, who supply this
information based on known medical statistics or subjective beliefs

gained through practical experience.

CPTs can also be estimated from medical records of previous patients

Case Cold?  Flu? Tonsillitis? ~ Chilling?  Bodyache?  Sorethroat?  Fever?

1 true false ? true false false false
2 false true false true true false true
3 ? ? true false ? true false

? indicates the unavailability of corresponding data for that patient.



Diagnosis |:

@ Tools for Bayesian network inference can generate a network
parameterization ©, which tries to maximize the probability of
seeing the given cases.

@ If each case is represented by event d;, such tools will
generate a parametrization © which leads to a probability
distribution Pr that attempts to maximize:

N
[ ] Pr(di).
=1

@ Term Pr(d;) represents the probability of seeing the case /.

@ [he product represents the probability of seeing all N cases
(assuming the cases are independent).




Diagnosis |l: Model from Expert

A few weeks after inseminating a cow, we have three possible tests to confirm
pregnancy. The first is a scanning test which has a false positive of 1% and a
false negative of 10%. The second is a blood test, which detects progesterone
with a false positive of 10% and a false negative of 30%. The third test is a
urine test, which also detects progesterone with a false positive of 10% and a
false negative of 20%. The probability of a detectable progesterone level is 90%
given pregnancy, and 1% given no pregnancy. The probability that insemination
will impregnate a cow is 87%.

Our task here is to build a Bayesian network and use it to compute
the probability of pregnancy given the results of some of these
pregnancy tests.

Try it: Variables and values? Structure? CPTs?



Diagnosis Il

Model from Expert
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Diagnosis |I: Model from Expert

We inseminate a cow, wait for a few weeks, and then perform the
three tests which all come out negative:

e: S=—ve, B=—ve, U=—ve.

Posterior marginal for pregnancy given this evidence:

P  Pr(Ple)
yes 10.21%
no 89.79%

Probability of pregnancy is reduced from 87% to 10.21%, but still
relatively high given that all three tests came out negative.



Sensitivity Analysis

A farmer is not too happy with this and would like three negative tests to drop
the probability of pregnancy to no more than 5%. The farmer is willing to
replace the test kits for this purpose, but needs to know the false positive and
negative rates of the new tests, which would ensure the above constraint.

This is a problem of sensitivity analysis in which we try to
understand the relationship between the parameters of a Bayesian
network and the conclusions drawn based on the network.

Read in the book.
We will not cover this.



Diagnosis |ll: Model from Design

A B
. Problem statement

K/ . Yy Given some values for the circuit primary
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Try it: Variables? Values? Structure?



Diagnosis IlI: Model from Design

A B
. | Problem statement
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P [ ’ inputs and output (test vector), decide if the
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IE

Evidence variables
Primary inputs and output of the circuit, A, B and E.




Diagnosis Ill: Model from Design

A B
1 | ‘ Problem statement

X/ . y Given some values for the circuit primary
P I g inputs and output (test vector), decide if the
C— ‘ ‘ .. D circuit is behaving normally. If not, find the
NV most likely health states of its components.
\__‘Z__,../; .
IE

Evidence variables
Primary inputs and output of the circuit, A, B and E.

Query variables
Health of components X, Y and Z.




Diagnosis |ll: Model from Design

Problem statement

| =
';|
=

X y Given some values for the circuit primary
? b [ inputs and output (test vector), decide if the
C ‘ —D circuit is behaving normally. If not, find the
/ most likely health states of its components.
\Z/ .

Evidence variables
Primary inputs and output of the circuit, A, B and E.

Query variables
Health of components X, Y and Z.

Intermediary variables

Internal wires, C and D.




Diagnosis |ll: Model from Design

\ 4 Values of
J s circuit wires:
B |1) Y (z) /D low or high
17 N
.z / (E)
s '

Health states: ok or faulty

faulty is too vague as a component may fail in a number of modes.

@ stuck-at-zero fault: low output regardless of gate inputs.
@ stuck-at-one fault: high output regardless of gate inputs.

@ input-output-short fault: inverter shorts input to its output.

Fault modes demand more when specifying the CPTs.



Diagnosis Ill: Model from Design

Three classes of CPTs

@ primary inputs (A, B)
@ gate outputs (C, D, E)
@ component health (X, Y, 2Z)

CPTs for health variables depend on their values

X 9. X 0,
ok .99
ok .99
Eult 01 stuckatO | .005
Yl stuckatl | .005

Need to know the probabilities of various fault modes.



Diagnosis Ill: Model from Design

CPTs for component outputs determined from functionality. |
A X C Oc)ax
high ok high | 0
low ok high | 1
CPT for inverter X. high  stuckat0  high | 0
low stuckat0  high | 0
high  stuckatl  high 1
low stuckatl  high | 1




Diagnosis |ll: Model from Design

CPTs for component outputs determined from functionality. |
A X C Oc|a,x
high ok high | 0
low ok high | 1
CPT for inverter X. high  stuckat0  high | 0
low stuckat0  high | O
high  stuckatl  high 1
low stuckatl  high | 1

v
If we do not represent health states:

A X C 2
high ok high 0
low ok high 1
high  faulty  high 7
low faulty  high 7

cla,x

Common to use a probability of .50 in this case.




A Diagnosis Example

Given test vector e: A=high, B=high, E =low, compute MAP
over health variables X, Y and Z.




A Diagnosis Example

Given test vector e: A=high, B=high, E=low, compute MAP
over health variables X. Y and Z.

Network with fault modes gives two MAP instantiations:

MAP givene | X Y /
ok stuckatO0 ok each probability ~ 49.4%
ok ok stuckatO




A Diagnosis Example

Given test vector e: A=high, B=high, E =low, compute MAP
over health variables X, Y and Z.

Network with fault modes gives two MAP instantiations:

MAP givene | X Y /
ok stuckatO ok each probability ~ 49.4%
ok ok stuckatO

Network with no fault modes gives two MAP instantiations:
MAP givene | X Y /

ok faulty ok each probability ~ 49.4%
ok ok faulty




Integrating Time

Suppose we have two test vectors instead of only one. |
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Integrating Time

Suppose we have two test vectors instead of only one. ]

Additional evidence variables

A’ B and E’

Additional intermediary variables

C' and D’

Additional health variables on whether we allow intermittent faults

If health of a component can change from one test to another, we
need additional health variables X’, Y’ and Z’. Otherwise, the
original health variables are sufficient.

Variables? Values? Structure?



Integrating Time: No Intermittent Faults

Two test vectors

e : A=high, B=high, E=low

e: A=low, B=low, E =low.




Integrating Time: No Intermittent Faults

Two test vectors

e : A=high, B=high, E=low

e: A=low, B=Ilow, E =low.

MAP using second structure

MAP givene.e | X Y Z
‘ok ok faulty

with probability ~ 97.53%




Integrating Time: Intermittent Faults

(A) (B) Dynamic Bayesian network
\ WL (DBN)
I/ \‘__\ \7/1 -
\—/%/» '\\D g, ) - e—
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o/ P / VX\,} K T\/\ N N
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Persistence model for the health of component X

X X' Orr|x

ok ok 99

ok faulty | .01  healthy component becomes faulty
faulty ok 001 faulty component becomes healthy
faulty faulty | .999




Channel Coding

Four bits Uy, Uy, U3 and Uy are sent from a source S to a

destination D

over a noisy channel, where there is a 1% chance that a bit will be
inverted before it gets to the destination.




Channel Coding

Four bits Uy, Uy, U3 and U, are sent from a source S to a

destination D

over a noisy channel, where there is a 1% chance that a bit will be
inverted before it gets to the destination.

To improve the reliability of this process

we will add three redundant bits X7, X> and X3 to the message,
where X7 is the XOR of U; and Uz, X5 is the XOR of U> and Uy,
and X3 is the XOR of U; and Ujy.




Channel Coding

Four bits Uy, Uy, Uz and Uy are sent from a source S to a

destination D

over a noisy channel, where there is a 1% chance that a bit will be
inverted before it gets to the destination.

To improve the reliability of this process

we will add three redundant bits Xi, X2 and X3 to the message,
where Xi is the XOR of U; and Us, X5 is the XOR of U and Uy,
and X3 is the XOR of U; and Us,.

Given that we received a message containing seven bits at

destination D

our goal is to restore the message generated at the source S.

Try it: Variables, values, structure?



Channel Coding
In channel coding terminology

Ui, ..., Us are known as information bits;

Xi,...,X3 are known as redundant bits;

Ui, ..., Us, X1,..., X3 is known as the code word or channel input;
Y1i,..., Y7 is known as the channel output.




Channel Coding
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Goal to restore the channel input given some channel output. J
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In channel coding terminology

Ui, ..., Uy are known as information bits;
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Ui,..., Us, X1,..., X3 is known as the code word or channel input;
Yi,..., Y7 is known as the channel output.

Goal to restore the channel input given some channel output. |

Evidence variables are
Yi,..., Y7: bits received at destination D

Query variables are

Ui, ..., Us: bits originating at source S




Channel Coding

In channel coding terminology

Ui, ..., Uy are known as information bits;

Xi,...,X3 are known as redundant bits;

Ui,..., Us, X1,..., X3 is known as the code word or channel input;
Y1i,..., Y7 is known as the channel output.

Goal to restore the channel input given some channel output. |

Evidence variables are
Yi..... Y7: bits received at destination D

Query variables are

Ui, ..., Us: bits originating at source S

Bits X1..... X3 either query variables or intermediary variables.



Channel Coding

There are three CPT types in
the problem. J




Channel Coding

There are three CPT types in
the problem. J

O Uz Xa 0 s

1 1 1 0
CPT for each redundant bit, say X;: 1 0 1 1
0 1 1 1
0 0 1 0

Pr(xi|ui, uz) = 1 iff xy = u1 4 uz (% is the XOR function) J
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There are three CPT types in
the problem. J
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Channel Coding

There are three CPT types in
the problem. J

v v 2 v v ¥ i
CoN o o TN oY o) Mo

b)) () ) (B) () ()
U 7|6, |t
CPT for a channel output bit, say Yi: 1 0 | .01
0 1 .01

CPT captures the simple noise model given in the problem
statement.
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Channel Coding

) There are three CPT types in J

_Tx) the problem.

/Y\ l/Y\ / ~ /'\ I/ N 7N
\Jo) L) v/ \_/ G/ 8/ TV

h<

Ul Oul
CPT for information bits, such as U;: 1 5
0 5

Captures the distribution of messages sent out from the source S |

What queries should we use here?



MAP or Posterior-Marginal (PM) Decoders?

To restore the channel input given channel output

O Compute a MAP for the channel input Ui, .... U4, Xi,...,X3

/

given channel output Yi...., Y7.
@ Compute the PM for each bit U;/X; in the channel input,
given channel output Y7,.... Y7, and then select the value of

Ui/ Xi which is most probable.




MAP or Posterior-Marginal (PM) Decoders?

To restore the channel input given channel output

O Compute a MAP for the channel input Uy, .... U4, X1,...,X3

/

given channel output Yi...., Y7.
@ Compute the PM for each bit U;/X; in the channel input,
given channel output Y7,.... Y7, and then select the value of

Ui/ Xi which is most probable.

The choice between MAP and PM decoders is a matter of the J

performance measure one is interested in optimizing.

WER (word error rate), BER (bit error rate)

MAP (MPE) minimizes WER, PM minimize BER...
What do you think?



Noise Models and Soft Evidence

A more realistic and common noise model

Transmitting our code bits x; through a channel that adds
Gaussian noise, with mean x; and standard deviation o.

Channel output Y; is a continuous variable governed by

conditional density function f(y;|x;) = 2;02 o—(yi—xi)? /202




Noise Models and Soft Evidence

A more realistic and common noise model

Transmitting our code bits x; through a channel that adds
Gaussian noise, with mean x; and standard deviation o.

Channel output Y; is a continuous variable governed by

1

conditional density function f(yi|x;) = e~ (vi—xi)*/20°

2mwo2

Can be implemented by interpreting

channel output y; as soft evidence on the channel input X; =0 with
- 2
a Bayes factor k = e(172vi)/20




Noise Models and Soft Evidence

A more realistic and common noise model

Transmitting our code bits x; through a channel that adds
Gaussian noise, with mean x; and standard deviation o.

Channel output Y; is a continuous variable governed by

conditional density function f(y;|x;) = 2;029—(y;—x,-)2/2az

Can be implemented by interpreting

channel output y; as soft evidence on the channel input X; =0 with
. 2
a Bayes factor k = e(1=2vi)/20

If 0 = .5 and channel output y; = .1, we interpret as a soft
evidence on channel input X; =0 with a Bayes factor k =~ 5.
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correspond to different methods for generating redundant bits.




Convolutional Codes

Convolutional and turbo codes
correspond to different methods for generating redundant bits.

Convolutional and turbo codes

provide examples of modeling systems with feedback loops using
dynamic Bayesian networks.




Convolutional Codes

Xok+1

X2k

An example convolutional encoder

Each node denoted with a “+" represents a binary addition, and
each box D; represents a delay where the output of D; is the input
of D; from the previous encoder state.




Convolutional Codes

G 5 G G
g § | Dynamic Bayesian network for
S

SO} S ) oS, ) :
v - 2 >~ a convolutional code. J
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Convolutional Codes

Y a convolutional code.

@12 ' @’3
)\/\ >\/ Dynamic Bayesian network for J
; oS, S

A sequence of replicated slices

where slice k is responsible for generating the codeword bits xox
and xpk1 for the information bit wy.




Convolutional Codes

Dynamic Bayesian network for
a convolutional code.

A sequence of replicated slices

where slice k is responsible for generating the codeword bits xo
and xpk41 for the information bit wy.

Each slice has a variable Sy representing the state of the encoder

This state is determined by the previous state variable S,_; and
the information bit Uy.
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Given four information bits ug, . ... us.



Turbo Codes

Given four information bits ug. ..., us.

In a convolutional code
we generate 4 redundant bits leading to an 8-bit codeword.




Turbo Codes

Given four information bits ug.. ... us.

In a convolutional code

we generate 4 redundant bits leading to an 8-bit codeword.

In a turbo code we apply a convolutional code twice

once on the original bit sequence ug, u1, us, uz, and another on
some permutation, say, uy. u3., us, ug. This leads to 8 redundant
bits and a 12-bit codeword.




Turbo Codes
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Lower network represents a convolutional code

for the bit sequence wup, ..., us.

Upper network represents a convolutional code

for the bit sequence uy, ... . uy.




Turbo Codes

Edges that cross between the networks

are meant to establish the bit sequence uy, ..., u7 (upper network)
as a permutation of the bit sequence u, ..., us (lower network).




Turbo Codes

CPTs for the bit sequence ug, ..., uy

9 1 it ue = uy;
uelui = 0, otherwise.

v

Establishes equivalence between Uy in the upper network and U; in



Turbo Codes

singly-connected: there is only one (undirected) path between any two
variables in the network.




Commonsense Knowledge
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Parameters based on a combination of sources

@ Statistical information such as reliabilities of sensors and battery.

@ Subjective beliefs relating to how often the wife goes out, guests are
expected, the dog has bowel trouble, etc.

@ Objective beliefs regarding the functionality of sensors.




Genetic Linkage Analysis

(AA) . -
G;: (A A) IMm? John G;: (a,a)
Gy (B.B) \__ G,: (b,b)
G;: (Aa) ' / \ Gy (a,a)
_ Jack Sue |
G,: (Bb) \"" ) Gy (bb)
Variables, values,
tructure? §
structure G, (Aa) l/L \I lg \]G (A,a)
Gy (bb) DN O Gy: (Bb)

A pedigree involving six individuals

Squares represent males, circles represent females. Horizontal
edges connect spouses, while vertical edges connect couples to
their children. For example, Jack and Sue are a couple with two
daughters, Lydia and Nancy.




Genetic Linkage Analysis

A pedigree

is useful in reasoning about heritable characteristics which are
determined by genes, where different genes are responsible for the
expression of different characteristics.




Genetic Linkage Analysis

The ABO gene

is responsible for determining blood type. This gene has three
alleles: A, B and O. Since each individual must have two alleles
for this gene, we have six possible genotypes in this case.




Genetic Linkage Analysis

The ABO gene

is responsible for determining blood type. This gene has three
alleles: A, B and O. Since each individual must have two alleles
for this gene, we have six possible genotypes in this case.

There are only four different blood types

Genotype  Phenotype
A/A Blood type A
A/B Blood type AB
A/O Blood type A
B/B Blood type B
B/O Blood type B
0O/0 Blood type O

If someone has the blood type A, they could have the pair of
alleles A/A or the pair A/ O for their genotype.
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The phenotype is not always determined precisely by the genotype. |
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A disease gene with two alleles H and D

Genotype | Phenotype
H/H healthy
H/D healthy
D/D ill with probability .9
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A disease gene with two alleles H and D

Genotype | Phenotype
H/H healthy
H/D healthy
D/D ill with probability .9

Penetrance

The conditional probability of observing a phenotype (e.g., healthy,
ill) given the genotype (e.g., H/H, H/D, D/D).




Genetic Linkage Analysis

The phenotype is not always determined precisely by the genotype. |

A disease gene with two alleles H and D

Genotype | Phenotype
H/H healthy
H/D healthy
D/D ill with probability .9

Penetrance

The conditional probability of observing a phenotype (e.g., healthy,
ill) given the genotype (e.g., H/H, H/D, D/D).

Penetrance is always 0 or 1 for the ABO gene.
Penetrance is .9 for the phenotype ill given the genotype D /D.




Recombination Events

Haplotype

The alleles received by an individual from one parent. Each
individual has two haplotypes, one paternal and another maternal.

Gy: (AA) /r» h? Jotn | G (@.a)
Gy (BB) \ ") G,: (b,b)
Gr (Aa) | (sw) O (@ Gene Gp has alleles A and a.
G, (B,b) ") Gy (bb)
Gene Gy has alleles B and b.
G,;: (A a) /‘\ / G, (Aa)
Gy (b.b) \Lydia) Laney) Gy (Bb)



Recombination Events

G (AA) ‘/\ John G (a,a)
G, (B,B) \ G,: (b,b)
G (Aa) /\ Gy (aa)
) Jack Sue
G, (B,b) O / G,: (b,b)
G;: (Aa) @d g\w G;: (Aa)
Gy (bb) . Y Gy (Bb)

@ Mary can pass only one
haplotype to her child
Jack: AB.

@ John can pass only one
haplotype to Jack: ab.

@ Jack can pass one of four
haplotypes to his children:
AB., Ab, aB, ab.



Genetic Linkage and Gene Maps

If two genes are inherited independently

the probability of a recombination is expected to be 1/2.

Genetic linkage

Two alleles which were passed in the haplotype from a grandparent

to a parent tend to be passed again in the same haplotype from
the parent to a child.

Goal of genetic linkage analysis
is to estimate the extent to which two genes are linked.




Genetic Linkage and Gene Maps

The extent to which genes G; and G»> are linked

iIs measured by a recombination fraction or frequency, 8, which is
the probability that a recombination between G; and G, will occur.

Genes that are inherited independently

are characterized by a recombination frequency ¢ = 1/2 and are
said to be unlinked. Linked genes on the other hand are
characterized by a recombination frequency 6 < 1/2.




Genetic Linkage and Gene Maps

s 91 . . .
 Gene2- Is related to their locations on
~ 0, a chromosome within the cell

—Gene 3 -~

nucleus. These locations are
typically referred to as loci
(singular: locus).




Genetic Linkage and Gene

- Genel Linkage between genes

s e] . . .
 Gene2< is related to their locations on

) B a chromosome within the cell

nucleus. These locations are
typically referred to as loci
(singular: locus).

For genes that are closely located on a chromosome

linkage is inversely proportional to distance between their locations.




Genetic Linkage and Gene Maps

Genel Linkage between genes

s 9] . . .
 Gene2 Is related to their locations on

) O a chromosome within the cell
nucleus. These locations are
typically referred to as loci
(singular: locus).

For genes that are closely located on a chromosome

linkage is inversely proportional to distance between their locations.

The recombination frequency can provide direct evidence

on the distance between genes on a chromosome.




From Pedigrees to Bayesian Networks
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A Bayesian network structure corresponding to a simple pedigree

involving three individuals numbered 1,2 and 3. Each individual
has three genes numbered 1,2 and 3, which are assumed to be in
this order on a chromosome.
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, Selector variables
)\ ] :
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Selector variables

—5Pj;: determines how
individual 7 inherits alleles of
gene j from his father
—SM;: determines how
individual 7 inherits alleles of
gene j from his mother

If SP;; = p then individual / will inherit the allele of gene j

that his father obtained from the grandfather.

If SPjj = m then individual / will inherit the allele of gene j

that his father obtained from the grandmother.
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i and gene j, the CPTs for genotype variables

For each
GPU and GM’J
are usually obtained from population statistics collected by

geneticists.
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For each individual / and gene j, the CPT for the phenotype P;;

may be deterministic or probabilistic as we have seen earlier.
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For each i and gene j, the CPTs for genotype

variables GP;; and GMj;

follow deterministically from the semantics of selector variables.
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if spjj
if spjj
otherwise.

p and gp;j = gpx;;
m and gpjj = gmy;;
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1, if spjj = p and gp;j = gpyj;
1, if spjj = m and gpj; = gmy;;
0, otherwise.

ngij |ngj »8Mij,SPjj —
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1, if spjj = p and gp; = gpy;;
Ogpyslapy.emig.sp; — § 1o if spjj = m and gp; = gmy;;
0, otherwise.

If SP;; = p then the allele GPj; for individual / and gene j

will be inherited from the paternal haplotype of his father k, GPy;
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1, if sp;j = p and gpj; = gpyj;
1, if sp;j = m and gpjj = gmy;;

ngij |8PKj - 8MkjSPij —
0, otherwise.

If SP;; = p then the allele GPj; for individual / and gene j

will be inherited from the paternal haplotype of his father k, GP;

If SP;; = m then the allele GPj; for individual / and gene j

will be inherited from the maternal haplotype of his father k, GM;
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CPTs of selector variables
host our hypotheses about recombination frequencies.
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Selectors of first gene SP31 and SM31 have uniform CPTs

This means that parents pass paternal or maternal alleles with
equal probability for this gene.
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Selectors of second gene SP3> and SM35 have CPTs

that are a function of recombination frequency 615

Selectors of third gene SP33 and SM33 have CPTs

that are a function of recombination frequency 6>3
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From Pedigrees to Bayesian Networks

CPT for selector variable SP35

encodes the recombination
frequency 615
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Given network that induces distribution Pr(.)

If g is evidence about the genotype and p is evidence about the
phenotype, then Pr(g, p) represents the likelihood of
recombination frequencies included in the network CPTs.
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phenotype, then Pr(g, p) represents the likelihood of
recombination frequencies included in the network CPTs.

By changing the CPTs for selector variables (which host the

recombination frequencies) and recomputing Pr(g, p)

we will be able to compute the likelihoods of competing
hypotheses about genetic linkage.




Putting the Network to Use

Given network that induces distribution Pr(.)

If g is evidence about the genotype and p is evidence about the
phenotype, then Pr(g, p) represents the likelihood of
recombination frequencies included in the network CPTs.

By changing the CPTs for selector variables (which host the

recombination frequencies) and recomputing Pr(g, p)

we will be able to compute the likelihoods of competing
hypotheses about genetic linkage.

For a given hypothesis 8;; the score log Pr% (g, p)/Pr>(g, p)

is typically used to quantify the support for this hypothesis, which
iIs meant to be normalized across different pedigrees.




Linkage analysis with pedigree data

GIVEN:

e A set of pedigrees, and some trait of interest.

e A set of DNA markers, with known genetic model
(genetic map, and allele frequencies).

e Data on trait(s) and at markers,
for some subset of the individuals. Trt?

QUES TION: Testing and estimation.

e Does any DNA on the chromosome of the
markers affect the trait? Hy: No.

e [T sO, what is the likely location of this DNA,
relative to markers.

M1
M2

M3

M4

M5

M6

M7
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Bayesian Network for Recombination

Locus 1

Locus 2

1-6
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0
- «9} wheretr € {m,f!

148



dlySIs.

LINKaye dii

3 markers

J

6 people




Dealing with Large CPTs

The size of a CPT

J

for binary variable E with binary parents Cq,..., C,

Number of Parents: n
2

3

6

10

20

30

Parameter Count: 2"
4

8

64

1024

1,048,576
1,073,741,824



Micro Model

A noisy-or circuit

A micro model

details the relationship between a variable E and its parents

C]_,...,Cn.

We wish to specify cpt with less parameters



Noisy-or Model

\\.*,
E!

@ Cause (; is capable of establishing effect E, except under some
unusual circumstances summarized by suppressor Q;.

@ When suppressor Q; is active, C; is no longer able to establish E.

@ The leak variable L represents all other causes of E which were not
modeled explicitly.

@ When none of the causes C; are active, the effect E may still be
established by the leak variable L.



Noisy—or Model

C, 0 GO0, C, 0,
L1 B
kw/l [\T/‘ LTJ The noisy-or model requires
n + 1 parameters. J




Noisy—or Model

Cl Ql C2 QZ C Q
RN
l\-_-/‘ N /I \TJ The noisy-or model requires
n + 1 parameters. J

To model the relationship between headache and ten different
conditions

@ 0, = Pr(Q;=active): probability that suppressor of C; is active.

@ ¢ = Pr(L=active): probability that leak is active.




Noisy-or Model

@ Let /, be the indices of causes that are active in «.



Noisy-or Model

@ Let /, be the indices of causes that are active in «.
o If

«: (1 =active, (o =active, (3 =passive, (4 = passive, (5 = active,

then [, = {1,2,5}.



Noisy-or Model

@ Let /, be the indices of causes that are active in «.

o If
«: (1 =active, (o = active, (3 =passive, (34 =passive, Cg = active,
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@ We then have

(]- - 9/) H 9‘7/

i€la
Pr(E =active|a) = 1 — Pr(E=passive|a).

Pr(E = passive|a)



Noisy-or Model

@ Let /, be the indices of causes that are active in «.

o If
«: (1 =active, (o =active, (3 =passive, (4 = passive, (5 = active,

then [, = {1,2,5}.
@ We then have

(1-6)]]

i€y
Pr(E =active|a) = 1 — Pr(E =passive|a).

Pr(E = passive|a)

The full CPT for variable E, with its 2" parameters, can be
induced from the n 4+ 1 parameters of the noisy-or model.
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Noisy-or Model

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis (T).

If we assume that S is related to its causes by a noisy-or model

we can then specify the CPT for S by the following four probabilities:
@ T he suppressor probability for cold, say .15
@ [ he suppressor probability for flu, say, .01
@ [he suppressor probability for tonsillitis, say .05

@ T[he leak probability, say .02




Noisy-or Model

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis (T).




Noisy-or Model

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis ( T).

The CPT for sore throat is then determined completely as follows:

C F T S Os|c.f t
true true true true 0.9999265 | 1 — (1 —.02)(.15)(.01)(.05)
true true false true 0.99853 1 —(1—.02)(.15)(.01)
true false true true 0.99265 1 —(1—.02)(.15)(.05)

false false false true .02 1—-(1-.02)
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Figure 11: the ¢pes network for diagnosis of internal discases. The network contains 448 nodes,
906 links.



Independence of Causal Influence
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Figure 10: Independence of causal influence
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If-Then Rules

A CPT for variable E can be represented using a set of if-then

rules of the form

If «j then Pr(e) = pj, for each value e of variable E, where «; is a
propositional sentence constructed using the parents of variable E.




If-Then Rules

A CPT for variable E can be represented using a set of if-then

rules of the form

If «j then Pr(e) = pj, for each value e of variable E, where «; is a
propositional sentence constructed using the parents of variable E.

If =1 then Pr(E=1)=0.0
It GG=0N =1 then Pr(E=1)=0.9
If G;=0AG=0A(C3=1 then Pr(E=1)=0.3
|f C1:O/\C2:O/\C3:O/\C4:]. then Pl(E ].) 0.6
|f C1=O/\C2:O/\C3:O/\C4:0 then Pr(E 1) 0.8
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A CPT for variable E can be represented using a set of if-then

rules of the form

If «j then Pr(e) = pj, for each value e of variable E, where o is a
propositional sentence constructed using the parents of variable E.




If-Then Rules

A CPT for variable E can be represented using a set of if-then

rules of the form

If «j then Pr(e) = p;, for each value e of variable E, where «; is a
propositional sentence constructed using the parents of variable E.

For the rule-based representation to be complete and consistent

@ The premises or; must be mutually exclusive. That is, a; A «;
Is inconsistent for / # j. This ensures that the rules will not
conflict with each other.

@ The premises cv; must be exhaustive. That is, \/. a; must be
valid. This ensures that every CPT parameter 6, is implied
by the rules.




Deterministic CPTs

A deterministic, or functional CPT

is one in which every probability is either 0 or 1

A deterministic CPT for variable E with values e, ..., en

can be represented by a set of propositional sentences of the form:
[, <— E=g¢.

where we have one rule for each value e; of E, and the premises [;
are mutually exclusive and exhaustive.

The CPT for variable E is then given by

0 _ { 1, if parent instantiation « is consistent with [;;
e,-|o:

0, otherwise.




Deterministic CPTs

A X C 0cla,x
high ok high 0
low ok high 1
high stuckatO high 0
low stuckatO high 0
high stuckatl high 1
low stuckatl high 1

We can represent this CPT as follows

(X =0k A A=high) vV X =stuckat0 <= C=low
(X=0ok AN A=low) V X =stuckatl <= C=high




Generalized linear models

(see Koller 5.4.2)

Let Y be a binary-valued variable with parents the X i's that can take a numerical value (discrete).
The CPT P(Y|X_1,...X_n)is a logistic CDT if there are w’s such that

sigmoid(z)= elz /1+elz
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