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ﬁ Agenda

= Mini-clustering



Cluster Tree Elimination - properties

= Correctness and completeness: Algorithm CTE is
correct, i.e. it computes the exact joint probability of
a single variable and the evidence.

= Time complexity: O ( deg x (n+N) x d w*+1 )

= Space complexity: O(Nxd=er)
where  deg = the maximum degree of a node
n = number of variables (= number of CPTs)
N = number of nodes in the tree decomposition
d = the maximum domain size of a variable
w* = the induced width
sep = the separator size



Join-Tree Clustering
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ini-Clustering

Split a cluster into mini-clusters => bound complexity
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‘_h Mini-Clustering

= Correctness and completeness: Algorithm
MC-bel(/) computes a bound (or an
approximation) on the joint probability P(X,e)
of each variable and each of its values.

= Time & space complexity: O(n x hw* x k')

where hw* =max, [ {f | FN x(u) = ¢} |



Lower bounds and mean
approximations

+

We can replace max operator by
= min => |ower bound on the joint

= mean => approximation of the joint
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Absolute error

CPCS422 - Absolute error

CPCS 422, evid=0, w*=23, 1 instance
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Coding networks - Bit Error

ﬁ Rate

Bit Error Rate

Coding networks, N=100, P=4, sigma=.22, w*=12, 50 instances
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i Heuristic for partitioning

Scope-based Partitioning Heuristic. The scope-based partition
heuristic (SCP) aims at minimizing the number of mini-buckets in the
partition by including in each minibucket as many functions as
possible as long as the / bound is satisfied. First, single

function mini-buckets are decreasingly ordered according to their
arity. Then, each minibucket is absorbed into the left-most mini-
bucket with whom it can be merged.

The time and space complexity of Partition(B, /) , where B is the
partitioned bucket, using the SCP heuristic is O(/B/ log (/B/) + /B/
A2) and O(exp(i)), respectively.

The scope-based
heuristic is is quite fast, its shortcoming is that it does not consider
the actual information in the functions.
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Content-based heuristics
(Rollon and Dechter 2010)

1234
- Log relative error:

14/23 1/234 124/3 13724 12374 134/2 12/34

RE(f,h) = ¥, (log (f(¢)) — log (h(£)))

- Maz log relative error:
1723714 147213 1/24/3 137274 12/3/4 1/12i34

W MRE(f,h) = max,{log (f(t)) — log (h(t))}

1121314

Partitioning lattice of bucket {fi, f2, fs. f1}.

Use greedy heuristic derived from a distance function to decide which
functions go into a single mini-bucket
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i Agenda

= [terative Belief propagation
= Iterative-join-graph propagation
= Use of Mini-bucket for Heuristic search
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‘L Agenda

Iterative-join-graph propagation

= Belief Propagation and constraint propagation
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[terative Belief Proapagation

= Belief propagation is exact for poly-trees
= IBP - applying BP iteratively to cyclic networks

One step :
CTE -bel(U))

= No guarantees for convergence
= Works well for many coding networks

20



[JGP - Example

Belief network

Loopy BP graph

21



Absolute error

CPCS422 - Absolute error

CPCS 422, evid=0, w*=23, 1 instance
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MBE-mpe vs. IBP

BER

mbe - mpe 1s better on low - w *codes

[BP isbetter on randomly generated (high - w*)codes

Bit error rate (BER) as a function of noise (sigma):
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‘-L [terative Join Graph Propagation

= Loopy Belief Propagation
= Cyclic graphs
= Iterative
= Converges fast in practice (no guarantees though)
= Very good approximations (e.g., turbo decoding, LDPC codes, SAT
— survey propagation)

= Mini-Clustering(i)
= Tree decompositions
= Only two sets of messages (inward, outward)
¥ ABytimde behavior — can improve with more time by increasing the
i-boun

= We want to combine:
« Iterative virtues of Loopy BP

= Anytime behavior of Mini-Clustering(i)
24



‘-L IJGP - The basic idea

= Apply Cluster Tree Elimination to any join-graph

= We commit to graphs that are I-maps
= Avoid cycles as long as I-mapness is not violated

= Result: use minimal arc-labeled join-graphs

26



* Minimal arc-labeled join-graph

/
2 1 2 1
(e )—{c) (e)y~—eo) (se)reg
a) b) )]

Figure 1.17: a) A belief network; b) A dual join-graph with singleton labels; ¢) A dual
join-graph which is a join-tree

Figure 1.15: An arc-labeled decomposition 27



[JGP - Example

Belief network

Loopy BP graph
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* Arc- Mlnlmal J0|n -Graph

Arcs labeled with
any single variable
should form a TREE

29



Collapsing Clusters




Join- Graphs

GHI
FGHI

more accuracy

less complexity N



Message propagation

ABCDE
p(a), p(c), p(blac),
p(d\abe),p(e|b,c)
h(3,1)(bc)

h(s,z)(bc)

Minimal arc-labeled:
sep(1,2)={D,E}
elim(1,2)={A,B,C}

hsy(de) =) p(a)p(c)p(blac)p(d|abe)p(e|bec)h, (be)

a,b,c

Non-minimal arc-labeled: /1, (cde) = E pla)p(c)p(blac)p(d|abe)p(elbc)h;, (bc)
sep(1,2)={C,D,E} a,b

elim(1,2)={A,B} 32



Bounded decompositions

= We want arc-labeled decompositions such that:

= the cluster size (internal width) is bounded by / (the
accuracy parameter)

= the width of the decomposition as a graph (external width)
is as small as possible

= Possible approaches to build decompositions:

= partition-based algorithms - inspired by the mini-bucket
decomposition

= grouping-based algorithms

33



Cﬁnstructing Join-Graphs
) P(G|F,E)

N

E: (EBF) ™(EF)

F: (FCD)™(BF) eeei .00 (P

D: \(DB)\‘ (ESZ
C: \(CAB)K‘ (CB)
~

B: (BA) “(AB) (B)

A: N (A)

a) schematic mini-bucket(i), i=3

b) arc-labeled join-graph decomposition
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Empirical evaluation

| = Measures:
= Algorithms: = Absolute error
= Exact = Relative error
= IBP = Kulbach-Leibler (KL) distance
= MC = Bit Error Rate
= IJGP = [ime

= Networks (all variables are binary):
= Random networks
= Grid networks (MxM)
=« CPCS 54, 360, 422
= Coding networks

35



Coding networks - BER

Coding, N=400, 1000 instances, 30 it, w*=43, sigma=.22 Coding, N=400, 500 instances, 30 it, w*=43, sigma=.32
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‘L CPCS 422 — KL Distance

KL distance

CPCS 422, evid=0, w*=23, 1instance
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ﬁ CPCS 422 — KL vs. Iterations

KL distance
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Coding networks - Time

10 1

Time (seconds)
N

Coding, N=400, 500 instances, 30 iterations, w*=43

—&— |JGP 30 iterations
—v— MC
—— IBP 30 iterations

/
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i Agenda

Iterative-join-graph propagation
= [JGP complexity
= Convergence and pair-wise consistency
= Accuracy when converged
= Belief Propagation and constraint propagation

40



i IJGP properties

IJGP(/) applies BP to min arc-labeled join-graph,
whose cluster size is bounded by /

On join-trees IJGP finds exact beliefs

IJGP is a Generalized Belief Propagation algorithm
(Yedidia, Freeman, Weiss 2001)

Complexity of one iteration:
= time:
= Space:

41



i Agenda

= Iterative-join-graph propagation

= Convergence and pair-wise consistency

42



‘-L Important IJGP properties

= [JGP achieves pairwise consistency if
converges

= If IJGP converges, the normalizing
constants are unique

43



*Join-graph decomposition

DEFINITION 1 (join-graph decompositions) A join-graph decomposition JG for M =<
X,D, F.Q, > is atriple JG =< G, \, ¢ >, where G = (V. E) is a graph, and x and i are
labeling functions which associate each vertex v € V- with two sets, x(v) C X and {(v) C F
such that:

L For each f € F, there is exactly one vertex v € V' such that f € 1)(v), and scope(f) C
X(v).

II. (connectedness) For each variable X; € X, the set {v € V|X; € x(v)} induces a

connected subgraph of GG. The connectedness requirement is also called the running
intersection property.

44



ﬁ Pairwise consistency

DerINITION 2 (Pairwise-consistency (pwc)) Given a join-graph decomposition JG =<
G,V > G = (V. E) of a graphical model M =< X, D, F >, then JG is pairwise-consistent
(pwc) relative to a set of messages H = {h, o, hyu|(u,v) € E}, iff for every (u,v) € K we
have:

S - [Ih= % - JIh (1)

x(w—x(uw)  h€Hu  x(v)—x(uw)  heH,

DEFINITION 3 (Beliefs) Given a JG =< G, \,¥ >, G = (V,E) of a graphical model
M =< X.D. F >, and a set of messages H for JG then we define the beliefs for every

ue G by:
b(xu) = Vu(2u) - H h(zy) (2)
heH,
butf(-ruv) — Z bu(:ru) (3)
X () =Xuw

45



* Pseudo marginals

DEFINITION 5 (p-marginal functions) Given a graphical model for M =< X. D, F >
the p-marginal function of M s the unnormalized probability distribution defined by

Px(z) = [ £(=y),

feF

The p-marginal for a scope S C X 15 defined by:

Ps(zs)= Y. Px(x)= Y T flzy) (7

(X—8) (X —8) feF

46



‘L Algorithm PWC-propagation

Algorithm 1: Algorithm Pairwise-Consistency (PWC)

Input: a Join-graph representation JG = (G, \,v), G = (V, E) of a graphical
model M =< X, D. F >. ¥, = [Trepw) f

Output: A set of messages H of JG and the corresponding augmented join-graph.
Initialize: h,_, < 1.

Repeat

For every u € G do

For every neighbor v of v in G, node u sends the message h,_,,(2,,) to v defined
by:

h‘-u—:r'u(xu-v) — Z J@{"u (-T-u) : H h‘-r—)*u.(x-ru) (9)
x(u)=x(uv) (rv)€B r#v
endfor
Until there is no change (the algorithm converged) or a time bound
Return: JG augmented by the messages H = {h,..|(u,v) € E'}.

Figure 1: Algorithm Pairwise Consistency (PWC)
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* The main theorem

THEOREM 2 The following hold.

[. If algorithm PWC' converged then its output JGy is PWC,

52



* Proof

Proof. Part a: If the algorithm converges then from Eq. 5 1t follows that the messages
satisty:

hu—m(muv) - Z U(Tu) H hr—m (I-ru)

x(u)—x(uv) rene(u),r#v

From this, multiplying both sides by h,_., we get

hu—w(lruv) : hv—}u(:rvu) - Z d’(-Tu) H hr—}u(:ﬂru} — Z bH(Iu) — bH(Tvu) (10)

yl(u)—x(uv) rene(u) Xu—Xu,v

Exchanging u and v everywhere we get also that

hv—}u(ﬁfuﬂ) . hu—w{xvu) = Z bH(Iu) = bH(Iuv) (11)

Xu—Xu,v

and therefore since the left handside of Equations 10and 10 are the same we get that:

bH (Tu‘u) = bH(Tvu)

which expresses the notion of PWC relative to JGg.
parts b and ¢ are well known.
O
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* Symmetry and pwc

DEFINITION 6 (Pairwise-consistency (pwc)) Given a join-graph decomposition JG =<
G,x.¥ > G = (V.E) of a graphical model M =< X,D.F >, then JGu s parwise-

consistent (pwec) relative to H = {hy_y(Tuy ), hysu(xou )| (w, v) € E}, iff for every (u,v) € E
we have:

Z ﬂlju{xu}' H h!-:—w'[Xku}: Z Uy (L) - H h‘k—m{Xfcu) [7}

x(u)—x{uv) k#(v) X (v)—x(uv) ke (u)
DEFINITION T (Symmetry) Given a join-graph decomposition JG =< G, x, ¥V >, G =

(V. E) of a graphical model M =< X, D, F >, then JGy s symmetric relative to H iff
V(u,v) € E.

be (Tuw) = husw(Tuw) - hﬂ—}ﬂ(rﬂﬂ} (8}
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* Fixed point iff symmetry

THEOREM 1 Given a join-graph decomposition 7G =< G, x, ¥V >, G = (V. E) of a graphical
model M =< X, D, F > and qen a set of messages H jq.

I. If a set of messages H is a fived point of algorithm PWC when applied to JG then
JGy is symmetric.

II. If we have a set of messages H ;o such that JGy s symmetric than Hjq is a fired
point of algorithm PWC.

57



* Symmetry --> pwc

ProrosiTiON 1 [f JGy s symmetric then JGy is pairunse consistent, but not vice-versa.
We can have a pairwise consistent JG i which is not symmetric.

Proof. It is trivial to show that symmetry implies pwe since by definition of equation 8
it is defined in a symmetric way for u and v. To show that the pwe does not imply symmetry
consider the graphical model having three variables XY, Z and two potentials that are
marginals of the same distribution, P(X,Y) and P(Y, Z). Assume constant messages h = 1
and a JG which is the dual graph of the graphical models (each function is a cluster). Clearly
JGyp 1s pwe relative to the dual graph since we have only two nodes and marginalizing over
X yield the same marginal. However JGy is clearly not symmetric since by (V) = P(Y) # 1.
L]
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PWC and Normalizing
constants

ProrosIiTioN 1 A joingraph is pwe relative to H iff we have:

Do (CEM,) = Z b., (Iu) = Z bv(T’fu) = byy (-Tvu) (4)

X (1) = Xuw X (V)= Xou

DEFINITION 4 (normalizing constant) Given a JG =< G, \,V >, G = (V. E), and a
set of messages H for JG then Yu € V' we define the belief s normalized constant by

() = X b 5
K(uv) = byp(u0) (6)
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PWC implies unique
normalizing constants

THEOREM 1 If JG =< G, x,V > is pwe relative to messages H then, ¥V, u, v, € V (u,v) € E
K(u) = K(v) = K(uv)
Proof. If G =< G, .V = is pwc relative to messages H then

K(u) = Z bu(zy) =
— Z Z bu(xy) =

ue Ey (u)—yluw]

and because of pwe holds

K(u) =Y bu(ry) = buulzw) =3 > bulz) = by(xy) = K(v)

IL'H

=
-
—

|
-
=]
=
=
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* Repatameterization

]_['LrEF 'bH I:I'L' }

Q(z)

- H{u__tr]EH h'u—}trlzl'uu} ] h'u—}u'['l'tru)
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‘L Agenda

= [terative-join-graph propagation
= Accuracy when converged



i More On the Power of Belief Propagation

= BP as local minima of KL distance

= BP’ s power from constraint propagation
perspective.
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ﬁ More On the Power of Belief Propagation

= BP as local minima of KL distance

64



The Kullback-Leibler Divergence

The Kullback-Leibler divergence (KL—divergence)

KL(Pr'(X|e), Pr(X|e)) = ZPI ) Pr/(x|e)

o KL(Pr'(X|e),Pr(X|e)) is non-negative

@ equal to zero if and only if Pr'(X|e) and Pr(X|e) are
equivalent.




The Kullback-Leibler Divergence

KL—divergence is not a true distance measure in that it is not
symmetric. In general:

KL(Pr'(X|e), Pr(X|e)) # KL(Pr(X|e), Pr'(X|e)).

o KL(Pr'(X|e),Pr(X|e)) weighting the KL—divergence by the
approximate distribution Pr’
@ We shall indeed focus on the KL—-divergence weighted by the

approximate distribution as it has some useful computational
properties.



The Kullback-Leibler Divergence

Let Pr(X) be a distribution induced by a Bayesian network N having

families XU

The KL—divergence between Pr and another distribution Pr’ can be
written as a sum of three components:

KL(Pr'(X|e), Pr(X|e))
= —ENT'(X[e) — ) AVG'(log \e(X)Oxu) + log Pr(e).
XU

where

- ENT'(X|e) = = >, Pr'(x|e) log Pr(x|e) is the entropy of the
conditioned approximate distribution Pr’(X|e).

— AVG/(log Ae(X)Oxu) = > Pr(xule) log Ae(x)fyy is a set of
expectations over the original network parameters weighted by the
conditioned approximate distribution.




The Kullback-Leibler Divergence

A distribution Pr’(X|e) minimizes the KL-divergence

KL(Pr'(X|e), Pr(X|e)) if it maximizes

ENT'(X|e) + >~ AVG/(log Ae(X)©xu)
XU

Competing properties of Pr’(X|e) that minimize the KL—divergence:

@ Pr’(X|e) should match the original distribution by giving more
weight to more likely parameters Ae(x)fy, (i.e, maximize the
expectations).

@ Pr’(X|e) should not favor unnecessarily one network instantiation
over another by being evenly distributed (i.e., maximize the
entropy).



Optimizing the KL-Divergence

The approximations computed by IBP are based on assuming an
approximate distribution Pr/(X) that factors as follows:

Pr'(XUle)
XU [Tyey Pr'(Ule)

Pr'(X|e) =

@ This choice of Pr'(X|e) is expressive enough to describe distributions
Pr(X|e) induced by polytree networks N

@ In the case where N is not a polytree, then we are simply trying to fit

Pr(X|e) into an approximation Pr’(X|e) as if it were generated by a
polytree network.

@ The entropy of distribution Pr’(X|e) can be expressed as:

Pr’(xule
ENT'(X|e) = =) > Pr'(xule) |og1_[ (Pr,|(u)’e)
XU xu u~u



Optimizing the KL-Divergence

Let Pr(X) be a distribution induced by a Bayesian network N having families
XU. Then IBP messages are a fixed point if and only if IBP marginals
tty = BEL(u) and i, = BEL(xu) are a stationary point of:

ENT'(X|e) +Z AVG'(log Ae(X)Oxu)

= — Z Z Jxu |Og ,Uxu'“ o Z Z Jxu IOg )\e(X x|us
u

XU xu UN" XU xu

under normalization constraints:

Z flu = Z fixu = 1

u xu
for each family XU and parent U, and under consistency constraints:

D hxu = iy

xu~y

for each family instantiation xu and value y of family member Y € XU.




Optimizing the KL-Divergence

@ IBP fixed points are stationary points of the KL—divergence:
they may only be local minima, or they may not be minima.

@ When IBP performs well, it will often have fixed points that
are indeed minima of the KL—divergence.

@ For problems where IBP does not behave as well, we will next
seek approximations Pr’ whose factorizations are more
expressive than that of the polytree-based factorization.



Generalized Belief Propagation

If a distribution Pr’ has the form:

Ic Pr'(Cle)

N, 1
PrXIe) = T Pr(Sle)

then its entropy has the form:

ENT'(X[e) = ZENT (Cle) — ) ENT'(Sle).

When the marginals Pr’(C|e) and Pr’(S|e) are readily available,
the ENT component of the KL-divergence can be computed
efficiently.



Joingraphs

While a jointree induces an exact factorization of a distribution, a
joingraph G induces an approximate factorization:

. Pr'(C;
Pr/(x|e): HI 1,( Ile)
[1;; Pr'(Sile)

which is a product of cluster marginals over a product of separator
marginals. When the joingraph corresponds to a jointree, the
above factorization will be exact.



Joingraphs

Bayesian network dual joingraph

A dual joingraph G for network N is obtained as follows:
@ G has the same undirected structure of network N.

@ For each family XU in network N, the corresponding node i in joingraph
G will have the cluster C; = XU.

@ For each U — X in network N, the corresponding edge i— in joingraph
G will have the separator S; = U.



terative Joingraph Propagation

Computing cluster marginals yc, = Pr’(c;|e) and separator
marginals s, = P1’(sjj|e) that minimize the KL-divergence

between Pr’(X|e) and Pr(X|e)

This optimization problem can be solved using a generalization of
IBP, called iterative joingraph propagation (IJGP), which is a
message passing algorithm that operates on a joingraph.



lterative Joingraph Propagation

1JGP(G, ®)

input:
G: a joingraph
$: factors assigned to clusters of G

output: approximate marginal BEL(C;) for each node i in the joingraph G.

main:

l:t—o0

2: initialize all messages Myt- (uniformly)
3: while messages have not converged do
4: t—t+1

5 for each joingraph edge i— do
-1

6 Mj —n Xcinsy @i Tk M

. r—1
7 Mi —n sy 5 Tl Mg
3 end for
9: end while
10: return BEL(C;) — n &; [ [, Mf; for each node i



terative Joingraph Propagation

Let Pr(X) be a distribution induced by a Bayesian network N having families XU, and let C; and S; be the

clusters and separators of a joingraph for N.
Then messages M;; are a fixed point of IJGP if and only if IJGP marginals pe; = BEL(c;) and Ms; = BEL(s;j;) are

a stationary point of:

ENT'(X[e) + > AVG'(log ¢;)
C;

= - Z Z Hc; logﬂ'c, + Z Z Hsjj Iogl-‘su + Z Z Hc; log ®;(c;),

Sij Sij i

under normalization constraints:

ZI“'C,‘ = Z/—"S” =1
c; Sjj

for each cluster C; and separator Sj;, and under consistency constraints:

Z Hec; = Hs; = Z Hc;

NSU c; NSU

for each separator S;; and neighboring clusters C; and C;.
-




A spectrum of approximations.
IBP: results from applying IJGP to the dual joingraph.

Jointree algorithm: results from applying IJGP to a jointree (as a
joingraph).

In between these two ends, we have a spectrum of joingraphs and
corresponding factorizations, where IJGP seeks stationary points of
the KL—divergence between these factorizations and the original
distribution.



‘L Agenda

Iterative-join-graph propagation

= Belief Propagation and constraint propagation
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i More On the Power of Belief Propagation

= BP’ s power from constraint propagation
perspective.
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i Inference Power of Loopy BP

= Comparison with iterative algorithms in
constraint networks

s Zero-beliefs . inconsistent
assignments

s € -Small beliefs — experimental study
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Constraint networks

Variables:
Values:

Constraints:

A B

red green
red yellow
green red
green yellow
yellow green
yellow red

countries (A B C etc.)

colors (red green blue)

A;aD, D =E, efc.

Constraint graph
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Arc-consistency

A A<B
1 1 2
2 2 (3
3 @ <

= Sound /

= Incomplete A=

2 (3 A
= Always converges
(polynomial)

WIN|=|O
O
()
N\

W N = W

W[(N =

WIN R A

WIN|=|6O
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Relational Distributed Arc-
e Consistency

A B AB BC

1 1 AB 12(2 2 BC
2 2 2 3|3 3

3

A<B 3 2 3 ABJ B \BC 3 3
A/ TS \B
2|3 B=C
e 1] 1 AB AD BC DC
o 2 2 | 2 12[1 2 2 2(1 2
S 3|3 2 32 3 A C 3323
1 = 1 AD DC
2 2 e 2 1 2 2\ D
3 3 AD 6C S 3
AD DC
12(23
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Flattening the Bayesian Network

P(GID,F)
1
1
0

Belief network Flat constraint network
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Belief Zero Propagatlon = Arc-Consistency |
- J1u) b =72, (R;>(X ey )

\1L ] \

elim(1, j) {kEne; (i)}

1
hm h2 o
A B PBIA) iﬁh;{A} i@h,z(s) ﬁh,z(s) 5 A

>0 >0 >0 @

>0 >0 |[3: >0
Updated belief: Updated relation:

3: >0 3. >0 ;0
) ... 0

Bel(A,B)=P(B|A)-hl -h; -hi = R(A,B) = R(A,B)<I X< hj < b =




Flat Network - Example

R,

A C

P(C|A)

Rz

A B P@BA)

3

7

4

6

1

9

0
P(D|A,B)

O = s e

P(F|B,C)

1
1
0




IBP Example — Iteration 1

R A : PQA)
LR o
3 0
0
P(B|A)
1 R3
>0
A C PCA)
>0
1
1
1
0
...... 0
P(D|A,B) P(F|B,C)
1 1
1 1
1 0
1
0

D F G P@GDF

-

0




IBP Example — Iteration 2

A PA)
Rl
3 S0
0
Rz

A B P(BA)

g :
2 ! A C PCA)
...... 0
1
3 |
...... 0
R, R;

B C F P(FB,C)

SEE

0

D F G P@GDF

.

0




IBP Example — Iteration 3

A PA)
N K
3 S0
L0
R, .
A B P@BA)
3 1 R3
...... 0 RPN
1
3 1
...... 0
Rs

B C F P(FB,C)

SEE

0

D F G P@GDF

.

0




IBP Example — Iteration 4

A PA)
* Rl 1
——

Rz
A B P(BA)
3 1 R3
...... 0 RPN
!
5 |
...... 0
R
R, 5

B C F P(FB,C)

SEE

0

D F G P@GDF

.

0




IBP Example — Iteration 5

A

P(A)

R2
A B P@BA)
3 1

...... 0
R4
A B D PDAB)
P 3 - 1
......... 0

Belief

1

0

P(G|D,F)

1

0

R3

A C P(CA)
1

...... 0

RS

F P(FB,0O)

SEE

0




IBP — inference power for zero beliefs

= Theorem:

Trace of zero beliefs of Iterative Belief Propagation =
Trace of invalid tuples of arc-consistency on flat network

= Soundness:
= The inference of zero beliefs by IBP converges in a finite number of iterations
» all the inferred zero beliefs are correct

= Incompleteness:
= IBP may not infer all the true zero beliefs
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-l

# of

tuples

ero and € -Small Beliefs

€ -small beliefs

true
ZEeros

LBP
ZEros

LBP
tuples g-small

true
g-small
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Coding Networks

mm Distribution of exact beliefs — Loopy BP Absolute Error

50% 0.05
45% T 1 1
40% 1
35%
30% T
25% 1
20% 1
15% 1
10% 1
5% +
0% -

T 0.04

+ 0.03

T 0.02

Percentage

T+ 0.01

Absolute Error

o 8 -~ 0 AN g (ep] g <t g o 8 ~ 0 (q\] g (49} g <t g

o . o Y9 5 S . o o ) o ¥

o © o © o © o © o o o o o o
noise =0.20 noise = 0.40

N=200, 1000 instances, treewidth=15
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10x10 Grids

50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

Percentage

mm Distribution of exact beliefs — Loopy BP Absolute Error
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evidence =0
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o
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0.35

0.4

0.45

—
o

0

~—

o

N
o

0.25
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o

0.35

evidence =10

0.4
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Yo}

~

o

N
o

0.25

@
o

0.35

evidence =20

0.4
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- 0.001

Absolute Error
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Random Networks

50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

Percentage

mm Distribution of exact beliefs — Loopy BP Absolute Error

To)
Q
o

—
o

PN R 28 IR ° 8 ey g2 ITE 8wy 9.g
s © 8 ©° s ° o s © s © s ° s ° s S © 5 ° 5 ° &
evidence =0 evidence =10 evidence = 20

N=80, 100 instances, w*=15

0.007
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- 0.005

- 0.004

- 0.003

- 0.002

Absolute Error

- 0.001
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CPCS 54, CPCS360

50%

45% T
40% T
35% —+
30% -+
25% T+
20%
15%
10% —+
5% T
0% -

Percentage

CPCS360: 5 instances, w*=20

mm Distribution of exact beliefs — Loopy BP Absolute Error

0.035

S8 3238333 F 8Ly ITYR 832383883 ¢%
o o o o o o S o o S o o o o o
cpcs360, evidence = 20 cpcs360, evidence = 30 cpcs54, evidence =10

-+ 0.030

+ 0.025

-+ 0.020

+ 0.015

+ 0.010

+ 0.005

- 0.000

CPCS54: 100 instances, w*=15

Absolute Error
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Experimental Results

pirically if the results for
zero beliefs extend to € -small beliefs (& > 0)

~. = Network types: = Measures: = Algorithms:
§ = Coding = Exact/IJGP = IBP
€ YES< = Linkage analysis* histogram = [JGP
2 = Grids* = Recall absolute
P No J Two-layer noisy-OR* error
® = CPCS54, CPCS360 = Precision absolute

error

* Instances from the UAIO8 competition



Networks with Determinism: Coding

L

50% -
45% +
40% T
35% +
30% +
25% +
20% +
15% +
10% +

5% T

0% -

Percentage

[ Exact Histogram HH |IBP Histogram —+ Recall Abs. Error —— Precision Abs. Error

noise =0.20 noise =0.40 noise = 0.60

N=200, 1000 instances, w*=15
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Absolute Error

o
o
=y
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Nets with Determinism: Linkage

Exact Histogram [l IJGP Histogram Recall Abs. Error —e— Precision Abs. Error

pedigree1, w* = 21
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* Some competition comparison
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Sum Score

IJGP on UAIO6 problems

40

35

30

25

20

15

10

Approximate Mar Problem Set uai06-mpe

I I I T I I I I T

T T o O A O o

| ] | | | | | ] 1

0

2 4 6 8 10 12 14 16 18 20
Time 1n minutes

| SampleSearch =—=jm— |JGP ===- EDBP :--3:- EPIS mufafun |
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Sum Score

[JGP on Set Relational

Approximate Mar Problem Set Relational

35 [ T I T I T I I T I ]

R VRV T U T VVTI TIPS e v e Yo WK
B L S AL A

3¢ X
o5 | wr

20 -

15 +

g-g-g-g-882-e-E

------

10 I-.-l-ﬂ--aﬂ"iiﬂ-g- ZTJE:;Z!'J-"'.'"."-"'."."".""."".

8- *

5 4

0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
Time in minutes
SampleSearch =—f— EDBP -3+ EPIS ---IT\
|JGP ==)¢-- TLSBP
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i Agenda

= Using Mini-bucket as heuristics for optimization

(did not go beyond this slides)
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Mini-Bucket can be used to guide
more than one solution

Mini-buckets
mingZ ‘/\‘ mingZ
A A

- N - N
o bucket B:  F(a,b)F(b,c) F(b,d) F(b,e)

/

bucket C:  h°(a,c) F(c.e) F(a,c)

' bucket D: F(a,d) h5(d,e)

G v l
Q bucketE: =0 h(e,a) h°(ea)

v bucketA: hE(a)

L = lower bound
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Basic Heuristic Search Schemes

Heuristic function f(xP) computes a lower bound on the best
extension of xP and can be used to guide a heuristic

search algorithm. We focus on:

1. Branch-and-Bound
Use heuristic function f(xP) to
prune the depth-first search tree

Linear space (or more)

Jof
ot

O

Ny
/N

f<L

2. Best-First Search

Always expand the node with
the highest heuristic value f(xP)
Needs lots of memory

@
IR
00 X O

O O
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Heuristic search

= Mini-buckets record upper- bound heurlstlcs
= The evaluation function over =

= Best-first: expand a node with maximal evaluation function
= Branch and Bound: prune if f <= upper bound

= Properties:
= an exact algorithm
= Better heuristics lead to more pruning
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Heuristic Function

Given a cost function

P(a,b,c,d,e) =P(a)  P(bla)  P(cla) * P(elb,c) * P(dlb,a)
Define an evaluation function over a partial assignment as the
probability of it” s best extension

f*(a,e,d) = max, . P(a,b,c,d.e) =
=P(a) * r&xb,c P(bla)  P(cla) * P(elb,c) * P(dla,/b)

—

\ —

=g(a,e,d) « H*(a,e,d)
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MBE Heuristics

9"@ Given a partial assignment xP, estimate the cost of the best
" extension to a full solution

0 = The evaluation function f(xP) can be computed using function
recorded by the Mini-Bucket scheme
Cost Network f(a,e,D))=g(a,e) + H(a,e,D )

4 B: F(EBC) F(DAB) F(BA)

\ ‘\
C:  F(CA) hE(EC)
7

D: / h5(D,A)
/ I
E: h<(E,A) v/
T
A:  F(A)  hE(A)  hP(A)

f(a,e,D) = F(a) + h®(D,a) + h(e,a)

g h — is admissible
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Properties

= Heuristic is consistent/monotone

= Heuristic is admissible

= Heuristic is computed in linear time
= IMPORTANT:

= Mini-buckets generate heuristics of varying strength
using control parameter — bound i

=« Higher bound -> more preprocessing ->
stronger heuristics -> less search

= Allows controlled trade-off between preprocessing
and search
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ﬁ Classic Branch-and-Bound

\ Upper Bound UB

Lower Bound LB

9™ B(n) = g(n) + h(n)

Prune if LB(n) = UB

» h(n) estimates
Optimal cost below n

OR Search Tree
128



Empirical Evaluation
of mini-bucket heuristics

% Solved Exactly
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AND/OR Branch-and-Bound
Search

=
. 0,

OR 5 (B)

or *© *+@® 20© 33
00 0o 1 00 00 2 0 2
o [1f 3 o 4 [1] o] 1] 3 [o] 4 [1]

OR 3 4 3 4
oo oo oo oo4 f(T’) => UB
o 1] |0 [1] of 1] |of [1]

Y
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Heuristic Evaluation Function

A B Cf,(ABC) |A B F f,(ABF) B D E f;(BDE)
ooo 2 ooo 3 000 6
001 5 00/1 5 001 4
010, 3 _ _o0ol10 1 o1/0 8
011 5 0011 4 0011 5
100 9 100 6 100 9
101 3 101 5 101 3
110 7 110 6 110 7
111 2 111 5 111 4

AND

OR
AND
OR

AND

OR 4@ 5 : tip nodes
6,~4 85 h(D,0) = 4
AND o 1 [ A (0:0)
f(T') = w(A,0) + w(B,1) + w(C,0) + w(D,0) + h(D,0) + h(F) =12 < f¥X(T')
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i Software & Competitions

= How to use the software

= http://graphmod.ics.uci.edu/group/Software
= http://mulcyber.toulouse.inra.fr/projects/toulbar2

= Reports on competitions

= UAI-2006, 2008, 2010 Competitions
=« PE, MAR, MPE tasks

= CP-2006 Competition
= WCSP task
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Toulbar2 and aolib

toulbar2
http://mulcyber.toulouse.inra.fr/gf/project/toulbar2

(Open source WCSP, MPE solver in C++)

aolib
http://graphmod.ics.uci.edu/group/Software

(WCSP, MPE, ILP solver in C++, inference and counting)

Large set of benchmarks
http://carlit.toulouse.inra.fr/cqgi-bin/awki.cqgi/Soft CSP

http://graphmod.ics.uci.edu/group/Repository
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i UAI-2006 Competition

= Team 1 (UCLA)
= David Allen, Mark Chavira, Arthur Choi, Adnan
Darwiche

= Team 2 (IET)

= Masami Takikawa, Hans Dettmar, Francis Fung,
Rick Kissh

= Team 5 (UCI)

=« Radu Marinescu, Robert Mateescu, Rina
Dechter

« Used AOBB-C+SMB(i) solver for MPE
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UAI-2006 Results

Rank Proportions (how often was each team a particular rank, rank 1 is best)

M Rank 1 O Rank 2 [0 Rank 3 E Fail

100% -
90%-
80%-
70%-
60% -
50% -
40%--
30% -
20%-
10% -

0%-

Rank Proportions

NENRNNANN

Team 1 Team 2 Team 5
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UAI-2008 Competition

= AOBB-C+SMB(i) — (i = 18, 20, 22)
= AND/OR Branch-and-Bound with pre-compiled mini-bucket heuristics (i-
bound), full caching, static pseudo-trees, constraint propagation

= AOBF-C+SMB(i) — (i = 18, 20, 22)
= AND/OR Best-First search with pre-compiled mini-bucket heuristics (i-
bound), full caching, static pseudo-trees, no constraint propagation

= Toulbar2

= OR Branch-and-Bound, dynamic variable/value orderings, EDAC consistency
for binary and ternary cost functions, variable elimination of small degree
(2) during search

= Toulbar2/BTD

= DFBB exploiting a tree decomposition (AND/OR), same search inside
clusters as toulbar2, full caching (no cluster merging), combines RDS and
EDAC, and caching lower bounds
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UAI-2008 Results

MPE : All
500 T T T T T T T T T

450-,,,,4-4/'_::' -
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UAI-2008 Results (contd.)

MPE : Linkage 2

10 T T T T T T T / & £ &
8 | " 7 " T < /.l. - " T T - " <" - dh
*— T — B - — SR S— S S— *—f
T
3]
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Q
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T
I i
c
-
2+ S ——— J— —— —— —— S
0 ’ | 1 1 | 1 1 1 1 |
0 2 4 6 8 10 12 14 16 18 20
Minutes

inra —— aobbl —¥%— aobb3 —#— aobf2
inra-mf —¥—  aobb2 —8—  aobfl —%—  gobf3 —&—
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UAI-2010 Competition

= Tasks
= PR: probability of evidence
= MAR: posterior marginals
= MPE: most probable explanation

= 3 tracks: 20 sec, 20 min, 1 hour

= PR, MAR - 204 instances; MPE - 442 instances

= CSP, grids, image alignment, medical diagnosis, object
detection, pedigree, protein folding, protein-protein interaction,
relational model, segmentation

= Exact and approximate solvers
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UAI-2010 Results

(Mateescu et al, JAIR2010),
= MAR task (Dechter et al, UAI2002)

« 15t place (20 min, 1 hour) — (impl. by Vibhav Gogate)
= Anytime IJGP(i) with randomized orderings and SAT based
domain pruning

= PR task
= 15t place (20 min, 1 hour) — (impl. by Vibhav Gogate)
=« Formula SampleSearch with IJGP(3) based importance

distribution, w-cutset sampling, minisat based search,
rejection control

(Gogate, Domingos and Dechter UAI2010)

(Marinescu and Dechter, A1J2009),
= MPE task (Otten and Dechter, ISAIM2010)

= 3" place (all tracks) — (impl. by Lars Otten)

= AND/OR BnB with mini-buckets, randomized min-fill based
pseudo tree, LDS based search for initial upper bound 143



iISCML 2012 — NIPS Workshop

Winning the PASCAL 2011 MAP
Challenge
with Enhanced AND/OR Branch-and-
Bound

Lars Otten, Alexander lhler,
Kalev Kask, Rina Dechter

Dept. of Computer Science
University of California, Irvine




verview

Placed 1st in all three MPE tracks.
« Close competition, congratulations to runner-ups!

Baseline: AND/OR Branch-and-Bound with mini-bucket
heuristic .
« 3rd place for MPE at UAI 2010 Evaluation.

Our solver DAOOPT is AOBB “on steroids”:
. Several enhancements / extensions.
- All useful in themselves, but hard to quantify.

Source code available online:
« http://github.com/lotten/daocopt



Mini-bucket heuristic for pruning.

!-| AND/OR Branch-and-Bound
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min ;3 4;, maxy(f;(X;, X)+ A;(X), Ai(X) ) \JJ

Cost-shifting (MPLP)
Re-parametrization

Tighter bounds by iteratively
solving linear programming
relaxations and message
passing on join graph.

Breadth-First
Subproblem Rotation

Improved anytime perfor-

mance through interleaved
processing of independent
subproblems.

Central Enhancements
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Competition Results

w 20 sec, 20 min, 1 hour categories
Score computed relative to a baseline/BP solution.

E(x) = = Xlog fi(x),

1st place in all three categories!

Score(x%) =

E(x%) — min{E(xbp), E(xdf)}

|min{E (x?P), E (x9/)}|

20 sec 20 min 1 hour
Category daoopt  ficolofo dfbbvemcs| daoopt dfbbvecms ficolofo daoopt  ficolofo  vns/ldstcp
CSP -0.9123 -0.8669 -0.8669 -0.8739 -0.7862 -0.7862 -0.8442 -0.6958 -0.6975
Deep belief nets - - - -1.6286 -1.6342 -1.6342 -5.0470 -5.1707 -5.1709
Grids -0.3403 -0.3210 -0.3174] -0.2437 -0.2241 -0.2241] -0.1721 -0.1590 -0.1589
Image alignment 0.0000 0.0000 0.0000, -0.0006 0.0000 -0.0006 -0.0006 -0.0006 -0.0006
Medical diagnosis | -0.0028 -0.0046 -0.0460 -0.0037 -0.0043 -0.0043 -0.0041 -0.0043 -0.0043
Object detection -4.8201 -4.8287 -4.8023| -4.8237 -4.8743 -4.8743 -1.9368 -1.9628 -1.9572
Protein folding -0.0308 -0.0308 -0.0308 -0.1135 -0.1187 -0.1187 -0.1146 -0.1183 -0.1183
Prot/prot inter. - - - -0.1341 -01317 -0.1317, -0.1681 -0.1744 -0.1735
Relational 0.0000 0.0000 0.0000f 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000
Segmentation -0.0300 -0.0300 -0.0298 -0.0300 -0.0300 -0.0300] -0.0338 -0.0338 -0.0338
Overall -6.3164 -6.0819 -6.0518 -7.8519 -7.8041 -7.8000 -8.3214 -8.3196 -8.3150




