Bounded inference non-iteratively;
!'_ Mini-bucket elimination

COMPSCI 276, Spring 2013
Set 10: Rina Dechter

(Reading: Primary: Class Notes (10)
Secondary: , Darwiche chapters 14)

i Agenda

= Mini-bucket elimination

= Mini-clustering

= [terative Belief propagation

= Iterative-join-graph propagation

‘L Probabilistic Inference Tasks

= Belief updating:
BEL(X.) = P(X. = x; | evidence)

= Finding most probable explanation (MPE)
x* = argmax P(x, e)

= Finding maximum a-posteriory hypothesis
AC X

(a,,...,.a,) =arg maax 2 P(x,e) hypothesis variables

= Finding maximum-expected-utility (MEU) decision

* * _ . D C X: decision variables
(d,--.,dy) = arg max ; P(x,e)J(x) U(X): utility function

ueries

abili
function)

Pe= 3 [Pl z=ST[wiC)

X-var(e) i=

= Posterior marginal (beliefs):

n

P(x, | pa;)|,
P(xiae) _ X_V;)_Xi H ! !

He) [1PG, 1pa),
= Most Probable Explanation

x* = argmaxP(x, e)

of evidence (or partition

P(x;|e)=

Finding MPE = max P(x)

Algorithm elim-mpe (Dechter {996)

1sreplaced by max :
MPE = max P(a)P(c|a)P(b|a)P(d|a,b)P(e|b,c)

a,e,d,c,b
Inab X | F Elimination operator
— il

bucket B: P(b& P(d/b,a) P(elb, c)
bucket C: P(cla) *
\

ain. If the red x still
hen insert it again.

bucket D: h€ (a,d, e)

bucket E: e=O hD(a e)

bucket A: P(hE(a) W=4
' Y 2 “induced width”
MPE (max clique size)

* Generating the MPE-tuple

5. b’=argmaxP(bla’)x B: P(bla) P(db,a) P(eb.c)
« P(d'| b,a") x P(e'| b,c")

4. ¢'=argmaxP(c|a’)x C: P(cla) h®(a,d,c, e)
xh®(@’',d’',c,e")

Cc

3. d'=argm§xh°(a',d,e') D: h™(a,d,e)

2. e'=0 E: e=0 h°(ae)

1. a'=argmaaxP(a)-hE(a) A: P(a) h* (a)

Return (a’,b’',c’',d’,e")

Bucket Elimination
(A)

Query: P(ale=0)x P(a,e=0) Elimination Order: d,e,b,c

G P(a,e=0)= E P(a)P(b|a)P(c|a)P(d|a,b)P(e|b,c)

c,b,e=0,d

~ P(a)E P(c] a)Z P(b| a)z P(e| b, C)Z P(d | a,b)

Messages Bucket Tree
I (b)i= P(d b) 0 D,A,B E,B,C :
fo@b)y Pdle 7 (a.b) Leo
[/.0.0} Pe=0lb.e) Nl
[fs@0 } PGl f5@b)f; b0 — B')A'C
a,c
fel@ £ S Ple|a) fy(a,c) e
P(a,e=0)= p(4)f.(a) LA
fc(a)

+,
A

Time and space exp(w*) 7

i Approximate Inference

= Metrics of evaluation

= Absolute error: given e>0 and a query p=
P(x|e), an estimate r has absolute error e iff |
p-r|<e

= Relative error: the ratior/pin[1-e,1+¢€].

= Dagum and Luby 1993: approximation up to
a relative error is NP-hard.

s Absolute error is also NP-hard if error is less
than .5

i Mini-buckets: “local inference”

= Computation in a bucket is time and space
exponential in the number of variables involved

= Therefore, partition functions in a bucket
into “mini-buckets” on smaller number of variables

Mini-bucket approximation:
MPE task

Split a bucket into mini-buckets =>bound complexity

bucket (X) =
{ hl seeeshy shyyq 5., hyy }

Exponentia lcomplexity decrease:0(e") = O(e")+ 0(e"™")

10

Mini-Bucket Elimination

Mini-buckets

bucket B:

bucket C:

bucket D:

bucket E:

v bucket A:

mingZ ‘/\ ming 2

A A
-

- N N
F(a,b)F(b.c) F(b,d) F(b,e)

/

h®(a,c) F(ce) F(a.)

F(a,d) h&(d,e)

b

=0 hea) h°(ea)

g

h*(a)

We can generate

a solution s going
forward as before
U= F(s) 11

L = lower bound

Semantics of Mini-Bucket:
Splitting a Node

Variables in different buckets are renamed and duplicated
(Kask et. al., 2001), (Geffner et. al., 2007), (Choi, Chavira, Darwiche , 2007)

Before Splitting: After Splitting:

12

MYV

(a)

* Relaxed network example

B1: P(blla),P(d|bl,a)
B2: P(e|b2,c)

D:
E:
A.

*

C:

P(cla)

E=e
P(a)

(b)

13

MBE-mpe(i)

Input: i — max number of variables allowed in a mini-bucket
= Output: [lower bound (Probability of a sub-optimal solution), upper bound]

Example: approx-mpe(3) versus elim-mpe

Mini-buckets Max variables

. in a mini-bucket T
max, [) maxyl | .
P(elb,c)’ P(dla,b)P(bla) 3 P(elb,c) P(dla,b) P(bla)

|"‘ _

\ '1" ‘ T 4
P(cla) Hk2 (e,c) 3 P(cla) K° (a,/d,c,e)
/hB ("Il, a)\ 2 h° (a’d, e)

_ o E=0 #(ae)
E=0 Rk%ea) 2
p \//\ ¥ N \4
P(@) #E(@) KP(a) 1 P& k- (a)
e % RTE Iy
W MPE w" =

U = Upper bound (MPE)

|
(NS

(i,m) patitionings

Definition 7.1.1 ((i.m)-partitioning) Let H be a collection of functions hy, ..., hy de-
fined on scopes S,, ..., S;. respectively. We say that a function f is subsumed by a function
h if any argument of f is also an argument of h. A partitioning of h,. ..., h; is canonical
if any function f subsumed by another function is placed into the bucket of one of those
subsuming functions. A partitioning @ into mini-buckets is an (2, m)-partitioning if and
only if (1) it is canonical, (2) at most m non-subsumed functions are included in each
mini-bucket, (3) the total number of variables in a mini-bucket does not exceed i, and (})
the partitioning is refinement-maximal, namely, there is no other (i, m)-partitioning that
it refines.

15

i MBE(i,m), MBE(i)

Input: Belief network (P1,...Pn)
Output: upper and lower bounds
Initialize: (put functions in buckets)

Process each bucket from p=nto 1

= Create (i,m)-mini-buckets partitions

= Process each mini-bucket

(For mpe): assign values in ordering d

Return: mpe-tuple, upper and lower bounds

16

Algorithm mbe-mpe(i,m)
Input: A belief network BN = (G, P), an ordering o, evidence é.
Output: An upper bound U and a lower bound L on the M PE = max; P(%.é),
and a suboptimal solution #* that provides L = P(z°).
1. Imitialize: Partition P = {P,...., P} into buckets bucket,. ..., bucket,,
where bucket, contains all CPTs hy, ko, ..., hy whose highest-index variable is X,,.
2. Backward: for p=nto 2 do
o If X, is observed (X, = a), assign X, = a in each h; and put the result
in its highest-variable bucket (put constants in bucket,).
e Else for hy, ha, ... ke in bucket, do
Generate an (i, m)-mini-bucket-partitioning, Q" = {Q1....,Q, }.
for each Q; € Q' containing hy,. ...k, , do
compute h! = marxpl'[§=1h1 ; and place it in the bucket of the highest-index
variable in U} — U;=1 Sy, — {Xp}, where Sy, is the scope of by,
(put constants in bucket,).
3. Forward: for p=1 to n, given x{, ...,:r;_l, do
assign a value zj to X, that maximizes the product of all functions in bucket,,.
4. Return the assignment 7% = (z{, ..., %), a lower bound L = P(z%), and
an upper bound U = maz,, thebucken h? on the M PE = max; P(z,é).

Theorem 7.1.3 (mbe-mpe properties) Algorithm mbe-mpe(z, m) computes an upper
bound on the MPE. Its time and space complexity is O(n - exp(i)) where i < n.

* Partitioning refinements

Clearly, as the mini-buckets get smaller, both complexity and accuracy decrease.

Definition 7.1.4 Given two partitionings Q and Q" over the same set of elements, Q'

is a refinement of Q" if and only if for every set A € Q' there exists a set B € Q" such
that A C B.

It is easy to see that:

Proposition 7.1.5 If Q" is a refinement of Q' in buckety,, then h? < gg, < gg".

Remember that mbe-mpe computes the bounds on M PE = max; P(Z,), rather than
on M = max; P(z|e) = MPE/P(g). Thus
L U

P - = PE

Properties of MBE-mpe(i)

Complexity: O(exp(i)) time and O(exp(i)) space.
Accuracy: determined by upper/lower (U/L) bound.
As i increases, both accuracy and complexity increase.
Possible use of mini-bucket approximations:

= As anytime algorithms
= As heuristics in best-first search

19

=& Anytime Approximation

Algorithm anytime-mpe(e)

Input: Initial values of i and m, ig and mp; increments igep and mgiep,
and desired approximation error e.

Output: U and L

1. Initialize: i = ig, m = my.

2. do

3. run mbe-mpe(i,m)

4. U < upper bound of mbe-mpe(i,m)

5. L + lower bound of mbe-mpe(i,m)

6. Retain best bounds U, L, and best solution found so far
7. if 1 <U/L <1+ ¢, return solution

8. else increase i and m: @ < i + istep and m < M + Mstep
9. while computational resources are available
10. Return the largest L

and the smallest U found so far.

21

MBE for Belief Updating and
for probability of evidence

= Idea mini-bucket is the same:

S @@= 10T g
S f@eg@ =Y f(x)emax, g(X)

= So we can apply a sum in each mini-bucket, or better, one sum
and the rest max, or min (for lower-bound)

= MBE-bel-max(i,m), MBE-bel-min(i,m) generating upper and
lower-bound on beliefs approximates BE-bel

= MBE-map(i,m): max buckets will be maximized, sum buckets
will be sum-max. Approximates BE-map.

22

‘L Normalization

= mbe-bel computes upper/lower bound on the joint
marginal distributions.

Alternatively, let U; and L; be the upper bound and lower bounding functions on

P(X; = z;, €) obtained by mbe-bel-mazx and mbe-bel-min, respectively. Then,

L; L L;
Pe) < P(z;le) < P(e)

We sometime use normalization of the approximation, but then no guarantee.
The probable is that we have to approximate also the partition function.

23

Algorithm mbe-bel-max(i,m)

Algorithm mbe-bel-max(i,m)
Input: A belief network BN = (&, P), an ordering o, and evidence &.
Output: an upper bound on P(rq,€) and an upper bound on P(e).
1. Initialize: Partition P = {F;, ..., P, } into buckets buckety, ..., bucket,,
where buckety contains all CPTs hq, ha, ..., hy whose highest-index variable is X..
2. Backward: for k =n to 2 do
o If X is observed (X = a), assign X + a in each h; and put the result
in the highest-variable bucket of its scope (put constants in buckety).
o Else for hy. ho, ..., ke in buckety do
Generate an (i, m)-mini-bucket-partitioning, Q' = {Q1, 0 Qr }
For each Q; € @', containing hyy, by, do
If | = 1 compute h! = > ox, Wiy ha,
Else compute k! = maxy kaf:lhgj
Add A! to the bucket of the highest-index variable in U} + Uj;-:] ng —{ X},
(put constant functions in bucket,).
3. Return P'(71,¢) < —— the product of functions in the bucket
of X1, which is an upper bound on P(x1,€).
Plle) < — =3, . P'(71,¢e), which is an upper bound on probability of evidence.

24

Empirical Evaluation
(Dechter and Rish, 1997; Rish thesis, 1999)

+

= Randomly generated networks
= Uniform random probabilities
= Random noisy-OR

= CPCS networks
= Probabilistic decoding

Comparing MBE-mpe and anytime-mpe
versus BE-mpe

25

Methodology for Empirical

i Evaluation (for mpe)

U/L —accuracy
Better (U/mpe) or mpe/L
Benchmarks: Random networks

= Given n,e,v generate a random DAG

= For xi and parents generate table from uniform [0,1], or
NoIsy-or

Create k instances. For each, generate random
evidence, likely evidence

Measure averages

26

CPCS networks — medical diagnosis

(noisy-OR model)

Test case: no evidence

Anytime-mpe(0.0001)
U/L error vs time

3.8 |
34 —a— Cpcsé422b
4 —o— Cpcs360b
. 3.0 |
(]
g 26 -
= 22 |
S 18 .
o] AR
= 144
1.0 10 10
06 Li toiiinmniigiodnoy 1 ,
=1 10 100 =21 1000
Time and parameter i Time (ﬁec)
Algorithm cpcs360 cpcs422
elim-mpe 115.8 1697.6
anytime-mpe(g), ¢ = 10~* 70.3 505.2
anytime-mpe(€), & = 10~ 70.3 110.5

28

The effect of evidence

Frequency

More likely evidence=>higher MPE => higher accuracy (why?)

1000

900 |
800
700 |
600 -
500 |
400 -
300
200 |
100 -

0

log(U/L) histogram for i=10 on
1000 instances of likely evidence

e
01 2 3 4 5 6 7 8 9 10 11 12
log(U/L)

Frequency

1000

900 -
800
700
600 -
500
400 +
300
200
100

log(U/L) histogram for i=10 on

1000 instances of random evidence

0 2 4 6 8

log(U/L)

Likely evidence versus random (unlikely) evidence

10

12

29

* MBE-map

Process max buckets
With max mini-buckets
And sum buckets with sum
Mini-bucket and max
mini-buckets

Algorithm mbe-map(i,m)
Input: A belief network BN = (G, P), a subset of variables A = {Ay, ..., A},
an ordering of the variables, o, in which the A’s appear first, and evidence é.
Output: An upper bound U7 on the M AP and a suboptimal solution A = aj.
1. Initialize: Partition P = {Py. ..., P,} into buckets buckety, ..., bucket,
where bucket p contains all CPTs, hy, ..., hy whose highest index variable is X,.
2. Backward: for p=nto 1l do
o If X, is observed (X, = a). assign X, = a in each h; and put the result
in its highest-variable bucket (put constants in buckety).
e Else for hy, ko, ... hj in bucket, do
Generate an (i, m)-partitioning, @ of the matrices k; into mini-buckets Qy, ..., Q.
o If Xp & A /* not a hypothesis variable */
for each (Q; = Q', containing hy,. ..hy,, do
If | = 1. compute h' = Z.\‘p It hy,
Else compute k' = m.ar_\'pﬂlehll
Add R to the bucket of the highest-index variable in Uy — |Ji_; Si, — {Xp},
(put constants in bucket).
e Else (X, £ A) /* a hypothesis variable */
for each (Q; = Q’ containing hy,,...hj, compute K= ma_ltxpllle hy, and place it
in the bucket of the highest-index variable in U; — U:’zl S, —{Xp}.
(put constants in buckety).
3. Forward: for p=1to k, given Ay =af,....Ap_ = ay_ys
assign a value ay to Ap that maximizes the product of all functions in buckety.

4. Return An upper bound U = maza,] chucrer, #i 00 MAP, computed in the first bucket.

and the assignment ay = (af, ..., a}).

Figure 7.6: Algorithm mbe-map(i.m).

Probabilistic decoding

Error-correcting linear block code

State-of-the-art:

approximate algorithm — iterative belief propagation (IBP)
(Pearl’ s poly-tree algorithm applied to loopy networks)

31

Figure 7.7: Belief network for a linear block code.

Example 7.3.1 We will next demonstrate the mini-bucket approximation for MAP on
an example of probabilistic decoding (see Chapter 2) Consider a belief network which de-
seribes the decoding of a linear block code. shown in Figure 7.7. In this network, U; are
information bits and X are code bits, which are functionally dependent on ;. The vee-
tor (U, X), called the channel input, is transmitted through a noisy channel which adds
Gaussian noise and results in the channel output vector ¥ = (Y. Y*) . The decoding
task is to assess the most likely values for the U7's given the observed values Y = (g, &%),
which is the MAP task where U is the set of hypothesis variables, and Y = (3", §*) is the
evidence. After processing the observed buckets we get the following bucket configura-
tion (lower case y's are observed \alues)

bucket(Xo) = P(y3| Xo), P(Xo|Us, Uy, Us),

bucket(Xy) = P(y{|Xy), P(Xq|Uy. l (3),

bucket(Xs) = P(y3| Xa), P(Xz|Us, Us, Uy),

buc-ket(Xg) = P(y§|4 3),P(X3|L'-3_.(}"-4,(-"-0), .

bucket(Xy) = P(yZ|Xs), P(X4|Us, Up, Uy), | Initial
bucket(Uy) = P(Us)., P(ys|Us), it i
bucket(Uy) = P(Uy), P(yy|Uh), partltlonlng
bucket(Us) = P(Us), P(ys|Us),

bucket(Us) = P(Us). P(y3|Us),

bucket(Uy) = P(Uy). P(yy|Uy).

<+

Processing by mbe-map({,1) of the first top five buckets by summation and the rest by
maximization, results in the following mini-bucket partitionings and function generation:

bucket(Xo) = {P(y’|Xo), (zYul[fo,l 1,[)}.

bucl:et(Xl) = {P(T|X1 , (X'll[’l,(')}.

bucket(X) = {P(|Xo) p(nglbo Us, U)}

bucket(Xg) = {P 213 |X3 P(z\'glbg,l 4,()}.

bucket(Xy) = {P(u} |X4) P(Xy|Uy . Up. U}

bucket(Us) =[{ (Un), P(u|Un). *° (Us, Uy L-'g)ﬂ,{h-\‘s (Us, Uy, U} [h""*(U,,Uo,Ul)}}
bueket(Uy) = TPTUL, PTor 0. (U, s, L3) RO U20T UL 0T,
bucket(Us) = {P(Us), P Y\ Us), hX2(Uy, Us, Uy), RV (U, 3)}

buecket(Us) = {P(Us), P(y¥|Us). A" (Us, Uy). h”l (U, [»4), hY2 (U, Uy},

bucket(Uy) = {P(Uy), P(y;‘|U4),h”l(Ud)thS(Ud)}.

The first five buckets are not partitioned at all and are processed as full buckets, since in
this case a full bucket is a (4,1)-partitioning. This processing generates five new functions,
three are placed in bucket Uy, one in bucket Uy and one in bucket U;. Then bucket Uy
is partitioned into three mini-buckets processed by maximization, creating two functions
placed in bucket I/; and one function placed in bucket U/3. Bucket U; is partitioned into
two mini-buckets. generating functions placed in bucket U and bucket /3. Subsequent
buckets are processed as full buckets. Note that the scope of recorded functions is bounded
by 3.

In the bucket of Uy we get an upper bound U satisfying IV > MAP = P(U, g*. &%)
where §* and .#" are the observed outputs for the [/'s and the X's bits transmitted.
In order to bound P(U|e), where & = (g*,#"). we need P(&) which is not available.
Yet, again, in most cases we are interested in the ratio P(U/ = wy|e)/P(U = uzle) for

competing hypotheses U = @; and I/ = i, rather than in the absolute values. Since
P(Ule) = P(U,e)/P(e) and the probability of the evidence is just a constant factor
independent of I/, the ratio is equal to P(Uy.&)/P(l;, €). 0

33

Complexity and tractability of

* MBE(i,m)

Theorem 7.6.1 Algorithm mbe(i,m) takes O(r - exp(i)) tame and space, where r 1s the
number of input functions®, and where |F| is the maxrimum scope of any input function,

\F| <i<n. Form =1, the algorithm is ttme and space O(r - exp(|F|)).

34

Belief propagation is easy on polytree:
Pearl’ s Belief Propagation

A polytree: a tree with A () =
Larger families P(z 1) l

A polytree decomposition

« Running CTE = running Pearl’ s BP over the dual graph
« Dual-graph: nodes are cpts, arcs connect non-empty
intersections. BP is Time and space linear

35

[terative Belief Proapagation

= Belief propagation is exact for poly-trees
= IBP - applying BP iteratively to cyclic networks

One step :
CTE -bel(U))

= No guarantees for convergence
= Works well for many coding networks

36

MBE-mpe vs. IBP

BER

mbe - mpe 1s better on low - w * codes

[BP isbetter on randomly generated (high - w*)codes

Bit error rate (BER) as a function of noise (sigma):

Structured (50,25) block code, P=7

10

o
1075
10~ ——8— 1BP(1)

—&— 1BP(10)
. elim-mpe
p —e— approx-mpe(i), i=1 and 7
10

sigma

0.2 0.3 0.4 0.5 0.6 0.7

BER

Random (100,50) block code, P=4

10 °3

107"

1073

' 1BP(1)

1073 —=— 1BP(10)
—®— approx-mpe(l)
—©— approx-mpe(7)

e e s e A

0.2 0.3 0.4 0.5 0.6 0.7

sigma

i Mini-buckets: summary

= Mini-buckets — local inference approximation
= Idea: bound size of recorded functions

= MBE-mpe(i) - mini-bucket algorithm for MPE
= Better results for noisy-OR than for random problems
= Accuracy increases with decreasing noise in coding
= Accuracy increases for likely evidence
= Sparser graphs -> higher accuracy

= Coding networks: MBE-mpe outperforms IBP on low-
induced width codes

38

ﬁ Agenda

= Mini-clustering

39

Cluster Tree Elimination - properties

= Correctness and completeness: Algorithm CTE is
correct, i.e. it computes the exact joint probability of
a single variable and the evidence.

= Time complexity: O (deg x (n+N) x d w*+1)

= Space complexity: O(Nxd=er)
where deg = the maximum degree of a node
n = number of variables (= number of CPTs)
N = number of nodes in the tree decomposition
d = the maximum domain size of a variable
w* = the induced width
sep = the separator size 40

Join-Tree Clustering

1| ABC
L @)= p@:pla) plela.b)
BC a
h(z,l)(b,0)=;f p(d|b)-p(flc,d) hs,) (b, f)
2| BCDF
his (b, f) = 2 p(d|b)-p(flc,d) hy, (b,c)
BF
s 0 (b, 1) = E plelb,) hys (e f)
3| BEF e
EXACT algorithm . h“"”(e’f)=2 PElb 1) han(6:1)
Time and space: [heyef=pGog.lef
exp(cluster size)= 4| EFG
exp(treewidth) 41

ini-Clustering

Split a cluster into mini-clusters => bound complexity

r+17 9

19 9
APPROXIMATE
algorithm

19 9 r r+1’ ’
J

\ !

Exponential complexity decrease O(e") — O(e"™") + O(e""" ")
42

ABC

1 | P(@), p(Bla), p(cla)

BC

" BCD
pb), h ,(b,c)

N

CDF
_ P(flc,d)

)

BF l

BEF
3 | plebp,
h' ;5(b), B 5 5)(f)

|

EF

EFG
4 { pglef)

Mini-Clustering, i-bound=3

o

hiay(b,c) =Y pla)-p(bla)- p(c|a,b)

h(12,3) (b) = Ed p(d | b) 'h(ll,z) (b,c)
h(22,3)(f) = n}'c}ixp(f ¢, d)

APPROXIMATE algorithm

Time and space:
exp(i-bound)

Number of variables in @ mini-cluster

for mini-clustering

| Semantic of variable duplication

We can have a different duplication of nodes going up and
down. Example: going down (left) and up (right)

—
! A8C) Hy 5=z, (b)= 1 =tz ()=
M, =th' (b), Tpld b)h?. o (b,f)] max p(f” c,d”))
) hs;: II(C”
2 | BCDF 2'
—
7 o= thi b6 %Tf{hr”,[h,f))
SEmmm— Smmm—
3 | BEF 3| BEF
—
7 Hy .=th'. . (e, f) ﬁ:l_‘:rﬁ{.h}:;rl[e,f:l]
Smm— Smm—
4 | EFG 4| EFG
—/ S
(a) (b)

Figure 1.14: Node duplication semantics of MC: (a) trace of MC-BU(3); (b) trace of
CTE-BU.
50

‘_h Mini-Clustering

= Correctness and completeness: Algorithm
MC-bel(/) computes a bound (or an
approximation) on the joint probability P(X,e)
of each variable and each of its values.

= Time & space complexity: O(n x hw* x k')

where hw* =max, [{f | FN x(u) = ¢} |

51

Lower bounds and mean
approximations

+

We can replace max operator by
= min => |ower bound on the joint

= mean => approximation of the joint

52

ll‘

| Grid 15x15 - 10 evidence

NHD

Relative error

Grid 15x15, evid=10, w*=22, 10 instances

0.12 A

0.10 A

0.08 A

0.06 A

0.04 A

0.02 A

4 6 8 10 12 14 16

i-bound

Grid 15x15, evid=10, w*=22, 10 instances

0.10 A

0.08 A

0.06 A

0.04 A

0.02 A

i-bound

Absolute error

Time (seconds)

Grid 15x15, evid=10, w*=22, 10 instances

0.06
—e— MC
0.05 — BP
0.04
0.03
0.02
0.01
0.00 , , , , , , ,
0 4 6 8 10 12 14 16 18
i-bound
Grid 15x15, evid=10, w*=22, 10 instances
12
—e— MC
10 — IBP
8 -
6 -
4 -
2 -
0 1 e—s—s S ©°
0 2 4 6 8 10 12 14 16 18 57

Absolute error

CPCS422 - Absolute error

CPCS 422, evid=0, w*=23, 1 instance

0.05
—e— MC
0.04 - — IBP
0.03 -
0.02 -
0.01 -
0-00 T T T T T T T
2 4 6 8 10 12 14 16

i-bound

evidence=0

18

Absolute error

CPCS 422, evid=10, w*=23, 1 instance

0.05
0.04 A —o— MC
— IBP
0.03 A
0.02 A
0.01 A
0-00 T T T T T T
2 6 8 10 12 14 16

i-bound

evidence=10

18

58

Coding networks - Bit Error

ﬁ Rate

Bit Error Rate

Coding networks, N=100, P=4, sigma=.22, w*=12, 50 instances

0.007

0.006 - —— MC
— IBP

0.005 A
0.004 -
0.003 A
0.002 A

0.001 A

0.000 A 9

sigma=0.22

Bit Error Rate

Coding networks, N=100, P=4, sigma=.51, w*=12, 50 instances

0.18

0.16

0.14 A

0.12 A

0.10 A

0.08 -

—e— MC
— IBP

0.06

sigma=.51

12

59

i Heuristic for partitioning

Scope-based Partitioning Heuristic. The scope-based partition
heuristic (SCP) aims at minimizing the number of mini-buckets in the
partition by including in each minibucket as many functions as
possible as long as the / bound is satisfied. First, single

function mini-buckets are decreasingly ordered according to their
arity. Then, each minibucket is absorbed into the left-most mini-
bucket with whom it can be merged.

The time and space complexity of Partition(B, /) , where B is the
partitioned bucket, using the SCP heuristic is O(/B/ log (/B/) + /B/
A2) and O(exp(i)), respectively.

The scope-based
heuristic is is quite fast, its shortcoming is that it does not consider
the actual information in the functions.

61

Content-based heuristics
(Rollon and Dechter 2010)

1234
- Log relative error:

14/23 1/234 124/3 13724 12374 134/2 12/34

RE(f,h) = ¥, (log (f(¢)) — log (h(£)))

- Maz log relative error:
1723714 147213 1/24/3 137274 12/3/4 1/12i34

W MRE(f,h) = max,{log (f(t)) — log (h(t))}

1121314

Partitioning lattice of bucket {fi, f2, fs. f1}.

Use greedy heuristic derived from a distance function to decide which
functions go into a single mini-bucket

62

‘-L Agenda

= [terative Belief propagation
= Iterative-join-graph propagation

63

i [terative Join Graph Propagation

= Loopy Belief Propagation
= Cyclic graphs
= [Iterative
= Converges fast in practice (no guarantees though)
= Very good approximations (e.g., turbo decoding, LDPC codes, SAT
— survey propagation)

= Mini-Clustering(i)
= Tree decompositions
= Only two sets of messages (inward, outward)
¥ ABytimde behavior — can improve with more time by increasing the
i-boun

= We want to combine:
« Iterative virtues of Loopy BP

= Anytime behavior of Mini-Clustering(i)
64

‘-L IJGP - The basic idea

= Apply Cluster Tree Elimination to any join-graph

= We commit to graphs that are I-maps
= Avoid cycles as long as I-mapness is not violated

= Result: use minimal arc-labeled join-graphs

66

* Minimal arc-labeled join-graph

/
2 1 2 1
(e)—{c) (e)y~—eo) (se)reg
a) b))]

Figure 1.17: a) A belief network; b) A dual join-graph with singleton labels; ¢) A dual
join-graph which is a join-tree

Figure 1.15: An arc-labeled decomposition 67

[JGP - Example

2
JV

Belief network

Loopy BP graph

68

* Arc- Mlnlmal J0|n -Graph

Arcs labeled with
any single variable
should form a TREE

69

Collapsing Clusters

Join- Graphs

GHI
FGHI

more accuracy

less complexity s

Message propagdation

ABCDE
p(@), p(c), p(blac), hs y(be)

p(d|abe),p(e|b,c) BC
h(3,1)(bc)

DE

Non-minimal arc-labeled: £, ,,(cde) = E pla)p(c)p(blac)p(d|abe)p(elbc)h;, (bc)
sep(1,2)={C,D,E} a,b

elim(1,2)={A,B} 72

Bounded decompositions

= We want arc-labeled decompositions such that:

= the cluster size (internal width) is bounded by / (the
accuracy parameter)

= the width of the decomposition as a graph (external width)
is as small as possible

= Possible approaches to build decompositions:

= partition-based algorithms - inspired by the mini-bucket
decomposition

= grouping-based algorithms

73

Cﬁnstructing Join-Graphs
) P(G|F,E)

N

E: (EBF) ™(EF)

F: (FCD)™(BF) eeei .00 (P

D: \(DB)\‘ (ESZ
C: \(CAB)K‘ (CB)
~

B: (BA) “(AB) (B)

A: N (A)

a) schematic mini-bucket(i), i=3

b) arc-labeled join-graph decomposition

74

i IJGP properties

IJGP(/) applies BP to min arc-labeled join-graph,
whose cluster size is bounded by /

On join-trees IJGP finds exact beliefs

IJGP is a Generalized Belief Propagation algorithm
(Yedidia, Freeman, Weiss 2001)

Complexity of one iteration:
= time:
= Space:

75

Empirical evaluation

| = Measures:
= Algorithms: = Absolute error
= Exact = Relative error
= IBP = Kulbach-Leibler (KL) distance
= MC = Bit Error Rate
= IJGP = [ime

= Networks (all variables are binary):
= Random networks
= Grid networks (MxM)
=« CPCS 54, 360, 422
= Coding networks

76

Coding networks - BER

Coding, N=400, 1000 instances, 30 it, w*=43, sigma=.22 Coding, N=400, 500 instances, 30 it, w*=43, sigma=.32
fe-14 0.00243 4
—o— IJGP [—
—v— MC 0.00242 4
102 —— IBP
‘/V\'\V\v 0.00241 1 — P
—e— 1JGP
o x
w 1e-3 q Wi 0.00240
m m
0.00239 4
1e-4 -
® ® ® ® ° 0.00238 -| L N
1e-5 T T T T T | 0.00237 " " " " T ,
0 2 4 6 8 10 12 0 2 4 6 8 10 12
i-bound i-bound
sigma=.22 sigma=.32
Coding, N=400, 500 instances, 30 it, w*=43, sigma=.51 Coding, N=400, 500 instances, 30 it, w*=43, sigma=.65
0.0785 -
0.0780 1 0.1914 4
0.0775 + 0.1912 4
— IBP — IBP
0.0770 4 e LGP 0.1910 4 e 1JGP
o o
W 0.0765 - W 0.1908
m m
0.0760 4 0.1906 4
0.0755 4 0.1904 4
0.0750 4 0.1902 4
0.0745 T T T T T) 0.1900 T T T T T)
0 2 4 6 8 10 12 0 2 4 6 8 10 12
i-bound i-bound

77

sigma=.51 sigma=.65

‘L CPCS 422 — KL Distance

KL distance

CPCS 422, evid=0, w*=23, 1instance

18

0.1 7

—e— |JGP 30 it (at convergence)

—v— MC

—— IBP 10 it (at convergence)
0.01 - '_'\/\ N
0.001 A
0.0001 T T T T T T T |

4 6 8 10 12 14 16
i-bound
evidence=0

KL distance

0.1 1

0.01 1

0.001 -

CPCS 422, evid=30, w*=23, 1instance

—&— |JGP at convergence

—e— MC
—— |IBP at convergence

0.0001

9 10 11 12 13 14 15 16

i-bound

evidence=30

78

ﬁ CPCS 422 — KL vs. Iterations

KL distance

0.1 1

0.01 4

0.001 A

CPCS 422, evid=0, w*=23, 1instance

—e— IJGP (3)
v - 1JGP(10)
—e— IBP

CPCS 422, evid=30, w*=23, 1instance

0.0001

5 10 15

20 25 30

number of iterations

evidence=0

1 -
—e— 1JGP(3)
v+ 1JGP(10)
—e— IBP
0.1 1
(0]
(8]
c
©
® 0.01
©
|
<
0.001
1 0.0001 T T T T T T T 1
35 0 5 10 15 20 25 30 35

number of iterations

evidence=30

79

Coding networks - Time

10 1

Time (seconds)
N

Coding, N=400, 500 instances, 30 iterations, w*=43

—&— |JGP 30 iterations
—v— MC
—— IBP 30 iterations

/

i-bound

80

i More On the Power of Belief Propagation

= BP as local minima of KL distance

= BP’ s power from constraint propagation
perspective.

83

ﬁ More On the Power of Belief Propagation

= BP as local minima of KL distance

84

The Kullback-Leibler Divergence

The Kullback-Leibler divergence (KL—divergence)

KL(Pr'(X|e), Pr(X|e)) = ZPI) Pr/(x|e)

o KL(Pr'(X|e),Pr(X|e)) is non-negative

@ equal to zero if and only if Pr'(X|e) and Pr(X|e) are
equivalent.

The Kullback-Leibler Divergence

KL—divergence is not a true distance measure in that it is not
symmetric. In general:

KL(Pr'(X|e), Pr(X|e)) # KL(Pr(X|e), Pr'(X|e)).

o KL(Pr'(X|e),Pr(X|e)) weighting the KL—divergence by the
approximate distribution Pr’
@ We shall indeed focus on the KL—-divergence weighted by the

approximate distribution as it has some useful computational
properties.

The Kullback-Leibler Divergence

Let Pr(X) be a distribution induced by a Bayesian network N having

families XU

The KL—divergence between Pr and another distribution Pr’ can be
written as a sum of three components:

KL(Pr'(X|e), Pr(X|e))
= —ENT'(X[e) —) AVG'(log \e(X)Oxu) + log Pr(e).
XU

where

- ENT'(X|e) = = >, Pr'(x|e) log Pr(x|e) is the entropy of the
conditioned approximate distribution Pr’(X|e).

— AVG/(log Ae(X)Oxu) = > Pr(xule) log Ae(x)fyy is a set of
expectations over the original network parameters weighted by the
conditioned approximate distribution.

The Kullback-Leibler Divergence

A distribution Pr’(X|e) minimizes the KL-divergence

KL(Pr'(X|e), Pr(X|e)) if it maximizes

ENT'(X|e) + >~ AVG/(log Ae(X)©xu)
XU

Competing properties of Pr’(X|e) that minimize the KL—divergence:

@ Pr’(X|e) should match the original distribution by giving more
weight to more likely parameters Ae(x)fy, (i.e, maximize the
expectations).

@ Pr’(X|e) should not favor unnecessarily one network instantiation
over another by being evenly distributed (i.e., maximize the
entropy).

Optimizing the KL-Divergence

The approximations computed by IBP are based on assuming an
approximate distribution Pr/(X) that factors as follows:

Pr'(XUle)
XU [Tyey Pr'(Ule)

Pr'(X|e) =

@ This choice of Pr'(X|e) is expressive enough to describe distributions
Pr(X|e) induced by polytree networks N

@ In the case where N is not a polytree, then we are simply trying to fit

Pr(X|e) into an approximation Pr’(X|e) as if it were generated by a
polytree network.

@ The entropy of distribution Pr’(X|e) can be expressed as:

Pr’(xule
ENT'(X|e) = =) > Pr'(xule) |og1_[(Pr,|(u)’e)
XU xu u~u

Optimizing the KL-Divergence

Let Pr(X) be a distribution induced by a Bayesian network N having families
XU. Then IBP messages are a fixed point if and only if IBP marginals
tty = BEL(u) and i, = BEL(xu) are a stationary point of:

ENT'(X|e) +Z AVG'(log Ae(X)Oxu)

= — Z Z Jxu |Og ,Uxu'“ o Z Z Jxu IOg)\e(X x|us
u

XU xu UN" XU xu

under normalization constraints:

Z flu = Z fixu = 1

u xu
for each family XU and parent U, and under consistency constraints:

D hxu = iy

xu~y

for each family instantiation xu and value y of family member Y € XU.

Optimizing the KL-Divergence

@ IBP fixed points are stationary points of the KL—divergence:
they may only be local minima, or they may not be minima.

@ When IBP performs well, it will often have fixed points that
are indeed minima of the KL—divergence.

@ For problems where IBP does not behave as well, we will next
seek approximations Pr’ whose factorizations are more
expressive than that of the polytree-based factorization.

Generalized Belief Propagation

If a distribution Pr’ has the form:

Ic Pr'(Cle)

N, 1
PrXIe) = T Pr(Sle)

then its entropy has the form:

ENT'(X[e) = ZENT (Cle) —) ENT'(Sle).

When the marginals Pr’(C|e) and Pr’(S|e) are readily available,
the ENT component of the KL-divergence can be computed
efficiently.

Joingraphs

While a jointree induces an exact factorization of a distribution, a
joingraph G induces an approximate factorization:

. Pr'(C;
Pr/(x|e): HI 1,(Ile)
[1;; Pr'(Sile)

which is a product of cluster marginals over a product of separator
marginals. When the joingraph corresponds to a jointree, the
above factorization will be exact.

Joingraphs

DA
@ () @ ®
/ l“. .4 ".:B\}Q\ B
/ \ A A\
- : (ac) (a8D)
g v @ @)
\ / c D
. CDE
\E) _/
Bayesian network dual joingraph

A dual joingraph leads to the factorization used by IBP.

Joingraphs

jointree joingraph

The jointree induces the following factorization, which is exact:

Pr'(ABC|e)Pr'(ABD|e)Pr (ABCD|e)Pr'(CDE|e)
Pr/(ABC|e)PY(ABD|e)Pr'(CDle)

Pr/(X|e) =

Joingraphs

jointree joingraph

The joingraph induces the following factorization:

Pr/(ABC|e)Pr'(ABD|e)Pr'(ACD|e)Pr'(CDE|e)
Pr’'(B|e)Pr/(AC|e)Pr/(AD|e)Pr’'(CD|e)

Pr'(X|e) =

terative Joingraph Propagation

Computing cluster marginals yc, = Pr’(c;|e) and separator
marginals s, = P1’(sjj|e) that minimize the KL-divergence

between Pr’(X|e) and Pr(X|e)

This optimization problem can be solved using a generalization of
IBP, called iterative joingraph propagation (IJGP), which is a
message passing algorithm that operates on a joingraph.

lterative Joingraph Propagation

1JGP(G, ®)

input:
G: a joingraph
$: factors assigned to clusters of G

output: approximate marginal BEL(C;) for each node i in the joingraph G.

main:

l:t—o0

2: initialize all messages Myt- (uniformly)
3: while messages have not converged do
4: t—t+1

5 for each joingraph edge i— do
-1

6 Mj —n Xcinsy @i Tk M

. r—1
7 Mi —n sy 5 Tl Mg
3 end for
9: end while
10: return BEL(C;) — n &; [[, Mf; for each node i

terative Joingraph Propagation

Let Pr(X) be a distribution induced by a Bayesian network N having families XU, and let C; and S; be the

clusters and separators of a joingraph for N.
Then messages M;; are a fixed point of IJGP if and only if IJGP marginals pe; = BEL(c;) and Ms; = BEL(s;j;) are

a stationary point of:

ENT'(X[e) + > AVG'(log ¢;)
C;

= - Z Z Hc; logﬂ'c, + Z Z Hsjj Iogl-‘su + Z Z Hc; log ®;(c;),

Sij Sij i

under normalization constraints:

ZI“'C,‘ = Z/—"S” =1
c; Sjj

for each cluster C; and separator Sj;, and under consistency constraints:

Z Hec; = Hs; = Z Hc;

NSU c; NSU

for each separator S;; and neighboring clusters C; and C;.
-

A spectrum of approximations.
IBP: results from applying IJGP to the dual joingraph.

Jointree algorithm: results from applying IJGP to a jointree (as a
joingraph).

In between these two ends, we have a spectrum of joingraphs and
corresponding factorizations, where IJGP seeks stationary points of
the KL—divergence between these factorizations and the original
distribution.

