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i Outline

= Why uncertainty?

= Basics of probability theory and
modeling



Why Uncertainty?

= Al goal: to have a declarative, model-based, framework that
allow computer system to reason.

= People reason with partial information

= Sources of uncertainty:

= Limitation in observing the world: e.g., a physician see symptoms and not
exactly what goes in the body when he performs diagnosis. Observations
are noisy (test results are inaccurate)

= Limitation in modeling the world,
= maybe the world is not deterministic.



Example of common sense

i reasoning

= Explosive noise at UCI
= Parking in Cambridge
= The missing garage door

= Years to finish an undergrad degree in
college




ﬁ Shooting at UCI

what is the likelihood that there was a
criminal activity if S1 called?

What is the probability that someone will
call the police?

Someone
xcalls



i Why uncertainty

= Summary of exceptions

= Birds fly, smoke means fire (cannot enumerate all
exceptions.

= Why is it difficult?
= Exception combines in intricate ways

= e.g., we cannot tell from formulas how exceptions
to rules interact:

A->C
B->C

Aand B--> C



The problem

| men are mortal T )

All penguins are birds T
True
propositions

Socrates is a man D

Men are kind pl |

birds ﬂy : pz > Uncertain

T looks like a penguin propositions

Turn key —> car starts Pn |

Q: Does T fly? Logic?....but how we handle exceptions
P(Q)? Probability: astronomical



i Managing Uncertainty

= Knowledge obtained from people is almost always
loaded with uncertainty

Most rules have exceptions which one cannot afford
to enumerate

Antecedent conditions are ambiguously defined or
hard to satisfy precisely

First-generation expert systems combined
uncertainties according to simple and uniform
principle

Lead to unpredictable and counterintuitive results
Early days: logicist, new-calculist, neo-probabilist
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i Extensional vs Intensional Approaches

= Extensional (e.g., Mycin, Shortliffe,
1976) certainty factors attached to

rules and combine in different ways.
A->B:m

= Intensional, semantic-based,
probabilities are attached to set of

worlds.
P(A|B) = m
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‘-L Certainty combination in Mycin

If A then C (x) ®\
If B then C (y) /©—Z_'®
If C then D (2) y

1.Parallel Combination:

CF(C) = x+y-xy, if x,y>0

CF(C) = (x+y)/(1-min(X,y)), X,y have different sign
CF( C) = x+y+xy, if x,y<0

2. Series combination...

3.Conjunction, negation

Computational desire : locality, detachment, modularity
12



The limits of modularity

Deductive reasoning: modularity and detachment

P> Q P>Q P>Q
P K and P K>P
_____________ <
Q Q e
Q

Plausible Reasoning: violation of locality

Wet - rain wet = rain
Wet Sprinkler and wet

13



* Violation of detachment

Deductive reasoning Plausible reasoning
E; 8 Wet - rain
K Sprinkler >wet
________ Sprinkler
Q rain?
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* Burglery Example

oy

A->B
A more credible

B more credible

IF Alarm - Burglery
A more credible (after radio)
But B is less credible

Issue: Rule from effect to causes

15



i Probabilistic Modeling with Joint Distributions

= All frameworks for reasoning with
uncertainty today are “intentional”
model-based. All are based on the
probability theory implying calculus and
semantics.
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i Outline

= Why uncertainty?

= Basics of probability theory and
modeling
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Degrees of Belief

@ Assign a degree of belief or probability in [0, 1] to each world
w and denote it by Pr(w).
@ The belief in, or probability of, a sentence a:

Pr(«a) e ZPI‘(w).

wiEa
world | Earthquake Burglary Alarm  Pr(.)
w1 true true true  .0190
Wo true true false  .0010
w3 true false true  .0560
w4 true false false .0240
Wws, false true true  .1620
We false true false .0180
w7 false false true  .0072
wg false false false .7128




Properties of Beliefs

@ A bound on the belief in any sentence:

0 < Pr(a) <1 for any sentence «.
@ A baseline for inconsistent sentences:

Pr(a) =0 when « is inconsistent.
@ A baseline for valid sentences:

Pr(a) =1  when « is valid.



Properties of Beliefs
o
—

@ The belief in a sentence given the belief in its negation:

PI’(&) -+ PI’(—IQ) — 1.

Example

Pr(Burglary) = Pr(wi)+ Pr(ws) + Pr(ws) + Pr(we) = .2
Pr(—Burglary) = Pr(w3)+ Pr(ws) + Pr(w7) + Pr(ws) = .8




Properties of Beliefs

N
"/
AN

/

@ The belief in a disjunction:
Pr(a Vv 3) = Pr(a) + Pr(3) — Pr(a A 3).

o Example:

Pr(Earthquake)
Pr(Burglary) = Pr(wi1) + Pr(w2) + Pr(ws) + Pr(ws)

Pr(Earthquake A Burglary)

Pr(Earthquake Vv Burglary)



Properties of Beliefs

a - p
// >< \
- |

. X/

@ The belief in a disjunction:

Pr(aVv3) = Pr(a)+Pr(3) when « and 3 are mutually exclusive.



Quantify uncertainty about a variable X using the notion of
entropy:

ENT(X) < —Zpl ) logy Pr(x).

where 0log 0 = 0 by convention.

Earthquake Burglary Alarm

true 1 2 2442
false 9 8 .7558
ENT(.) 469 722 802
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@ The entropy for a binary variable X and varying p = Pr(X).
@ Entropy is non-negative.

@ When p =0 or p =1, the entropy of X is zero and at a
minimum, indicating no uncertainty about the value of X.

@ When p = % we have Pr(X) = Pr(—X) and the entropy is at
a maximum (indicating complete uncertainty).
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Bayes Conditioning

Alpha and beta are events

Closed form for Bayes conditioning:

Pr(a A 3)

Pr(a|3) = Pr()

Defined only when Pr(/3) # 0.



Degrees of Belief

world | Earthquake Burglary Alarm  Pr(.)

W1 true true true  .0190
W9 true true false  .0010
w3 true false true  .0560
Wy true false false .0240
Ws false true true  .1620
Wwe false true false .0180
w7 false false true  .0072
wg false false false .7128

Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .1

Pr(Burglary) = .2

Pr(—Burglary) = .8

Pr(Alarm) = .2442



Belief Change

Burglary is independent of Earthquake

Conditioning on evidence Earthquake:

Pr(Burglary) = .2
Pr(Burglary|Earthquake) = .2
Pr(Alarm) = .2442
Pr(Alarm|Earthquake) ~ 7157

The belief in Burglary is not changed, but the belief in Alarm
Increases.



Belief Change

Earthquake is independent of burglary

Conditioning on evidence Burglary:

Pr(Alarm) = 2442
Pr(Alarm|Burglary) ~ .90517
Pr(Earthquake) = .1
Pr(Earthquake|Burglary) = .1

The belief in Alarm increases in this case, but the belief in
Earthquake stays the same.



Belief Change

The belief in Burglary increases when accepting the evidence
Alarm. How would such a belief change further upon obtaining
more evidence?

@ Confirming that an Earthquake took place:

Pr(Burglary|Alarm) ~ .741
Pr(Burglary|Alarm A Earthquake) ~ .253 |
We now have an explanation of Alarm.
@ Confirming that there was no Earthquake:
Pr(Burglary|Alarm) ~ .741
Pr(Burglary|Alarm A —=Earthquake) =~ .957

New evidence will further establish burglary as an explanation.



Conditional Independence

Pr finds a conditionally independent of (3 given -y iff
Pr(a|8 A ~v) = Pr(aly) or Pr(3A~vy)=0.

Another definition

Pr(a A B|v) = Pr(al|y)Pr(38|y) or Pr(y) = 0.




Variable Independence

Pr finds X independent of Y given Z, denoted Ip,(X,Z,Y), means

that Pr finds x independent of y given z for all instantiations X, y
and z.

X={A,B},Y={C}and Z={D,E}, where A,B,C,D and E
are all propositional variables. The statement Ip,(X,Z.,Y) is then a
compact notation for a number of statements about independence:

A A B is independent of C given D N E;
A N =B is independent of C given D A E;

—A A =B is independent of = C given =D A —E;

That is, Ipy(X,Z,Y) is a compact notation for 4 x 2 x 4 = 32
independence statements of the above form.




Conditional Entropy

To quantify the average uncertainty about the value of X after
observing the value of Y.

Conditional entropy of a variable X given another variable Y

> Pr(y)ENT(X|y).
y

ENT(X|Y) &

where

def

ENT(X]y) = =) Pr(xly)log, Pr(x|y).

@ Entropy never increases after conditioning:
ENT(X]Y) < ENT(X).

@ Observing the value of Y reduces our uncertainty about X.
e For a particular value y, we may have ENT(X|y) > ENT(X).
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Conditional Entropy

Burglary  Burglary|Alarm=true Burglary|Alarm=false
true 2 (41 .025
false .8 259 975
ENT(.) 722 825 169

The conditional entropy of Burglary given Alarm is then:

ENT(Burglary|Alarm)

= ENT(Burglary|Alarm =true)Pr(Alarm =true) +
ENT (Burglary|Alarm=false)Pr(Alarm =false)

— 329,

indicating a decrease in the uncertainty about variable Burglary.
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Further Properties of Beliefs

Chain rule

Pr(ai Aas A ... A ap)
= Pr(ai|aa A ... ANap)Pr(agjaz A... A ap)...Pr(ag).

Case analysis (law of total probability)

Pr(a) = ZPI‘(&: A Bi),
=1

where the events 3. ..., 3, are mutually exclusive and exhaustive.

o




Further Properties of Beliefs

Another version of case analysis

n
Pr(a) =Y Pr(alB)Pr(5),
i=1
where the events 31, ..., 3, are mutually exclusive and exhaustive.

Two simple and useful forms of case analysis are these:

Pr(a) = Pr(aAnp)+ Pr(aA—p)
Pr(a) = Pr(alB)Pr(8) + Pr(al-5)Pr(=5).

The main value of case analysis is that, in many situations,
computing our beliefs in the cases is easier than computing our
beliefs in av. We shall see many examples of this phenomena in
later chapters.



Further Properties of Beliefs

Bayes rule

Pr(3|a)Pr(a)
Pr(5)

Pr(a

3) =

@ Classical usage: « is perceived to be a cause of (3.
@ Example: a is a disease and (3 is a symptom—
@ Assess our belief in the cause given the effect.

@ Belief in an effect given its cause, Pr(/3|«), is usually more

readily available than the belief in a cause given one of its
effects, Pr(alj3).



Probabilistic Maodeling with Joint Distribution

Difficulty: Complexity in model construction and inference

m In Alarm example:

m 31 numbers needed,
m Quite unnatural to assess: e.g.

PB=y E=y, A=y J=y, M=y)

m Computing P(B=y|M=y) takes 29 additions.
m In general,

m P(X1, X5,...,X,) needs at least 2" — 1 numbers to specify the joint
probability. Exponential model size.

m Knowledge acquisition difficult (complex, unnatural),

m Exponential storage and inference.

Mevin L. Zhang (HKUST) Bavesian MNetworks Spring 2007 8/54 %5



Conditional Independence and Factorization

Chain Rule and Factorization

Overcome the problem of exponential size by exploiting conditional independence

m [he chain rule of probabilities:

P(X1,X2) = P(X1)P(X2|X1)
P(X1, X2, X3) = P(X1)P(Xo|X1)P( X3 X1, X2)

P(X1, Xay. ., Xs) = PX)PIX1) ... P(XalXe, .o Xp1)

= HP(X”X]_,.”qXF—l)'
i=1

m No gains yet. The number of parameters required by the factors is:
pn—1pon-1 4 +1=2"-1.

Mevin L. Zhang (HKUST) Bavesian MNetworks Spring 2007 10 / 54 8



Conditional Independence and Factorization

Conditional Independence

m About P(X;|X1,...,Xi—1):

m Domain knowledge usually allows one to identify a subset
pa(X;) € {X1,...,Xi_1} such that

m Given pa(X;), X; is independent of all variables in
{Xi,..., Xi—1}\ pa(Xi), i.e.

P(Xi|X1,..., Xi—1) = P(Xi|pa( X))
m [hen

P(X1, Xa. ... Xn) = ] P(Xi|pa(X;))
i=1

m Joint distribution factorized.

m [he number of parameters might have been substantially reduced.

Mevin L. Zhang (HKUST) Bayvesian MNetworks Spring 2007

11 /54 4



* Example

P(B,E,A,J,M)="

50



Conditional Independence and Factorization

Example continued

P(B,E.A,J, M)
= P(B)P(E|B)P(AB,E)P(J|B.E,A)P(M|B,E,A,J)
= P(B)P(E)P(A|IB,E)P(J|A)P(M|A)(Factorization)

m pa(B) = {}, pa(E) = {}.pa(A) = {B. E}, pa(J) = {A},pa(M) = {A}.
m Conditional probabilities tables (CPT)

E PiE
B _P(B] — EIE) A B E P(A|B, E)
¥ 01 Y .02
. . 68 T ¥ ¥ .25
N -98 " N ¥ Y .05
T ¥ N .24
N ¥ N L0
N | .95 N N .99
Mevin L. Zhang (HKUST) Bavesian MNetworks Spring 2007

12 /54 4



Conditional Independence and Factorization

Example continued

m Model size reduced from 31 to 1+14+4+4+2+2=10

m Model construction easier

m Fewer parameters to assess.
m Parameters more natural to d55855.€.8,

P(B=Y),P(E=Y),P(A=Y|B=Y.E=Y)

P(J=Y|A=Y),P(M=Y|A=Y)

m Inference easier.Will see this later.

Mevin L. Zhang (HKUST) Bavesian MNetworks Spring 2007 13 / 5‘4_,2



Bavesian Metworks

From Factorizations to Bayesian Networks

Graphically represent the conditional independency relationships:

m construct a directed graph by drawing an arc from X; to X iff X; € pa(X;)

pa(B) = {}, pa(E) = {}, pa(A) = (B, E}, pa(J) = {A}, pa(M) = {A},

¢ e T PIB) < _E > P(E)

» 3 P(A|B, E)

1 D p@am M pm|A)

m Also attach the conditional probability (table) P(X;|pa(X;)) to node X;.

m What results in is a Bayesian network.Also known as belief network,
probabilistic network.

Mevin L. Zhang (HKUST) Bayvesian MNetworks Spring 2007 15 / 5‘4_,3



A Bayesian network is:
m An directed acyclic graph (DAG), where
m Each node represents a random variable

m And is associated with the conditional probability of the node given its
parents.




* Bayesian Networks: Representation

P(S)

P(CIS)

P(X]C,S)

P(S, G B, X, Dy P(S) P(C|S) P(B|S) P(X|C.S) P(D|C,B)

Conditional Independencies == Efficient Representation
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