Processing Probabilistic and Deterministic Graphical Models Rina Dechter DRAFT April 23, 2013 # Contents | 1 | Intr | roduction | 7 | |----------|------|---|----| | | 1.1 | Probabilistic vs Deterministic Models | 7 | | | 1.2 | Directed vs Undirected Models | 11 | | | 1.3 | General Graphical models | 14 | | | 1.4 | Overview of the book, chapter by chapter | 16 | | 2 | Wh | at are Graphical Models | 19 | | | 2.1 | General Graphical models | 19 | | | 2.2 | Constraint Networks | 22 | | | 2.3 | Cost Networks | 26 | | | 2.4 | Probability Networks | 29 | | | 2.5 | Mixed networks | 35 | | | | 2.5.1 Mixed Markov and Bayesian networks | 39 | | | | 2.5.2 Mixed cost networks | 39 | | | 2.6 | Summary and bibliographical comments | 39 | | 3 | Buc | cket-Elimination for Deterministic Networks | 41 | | | 3.1 | The case of Constraint Networks | 44 | | | 3.2 | Bucket elimination for Propositional CNFs | 51 | | | 3.3 | Bucket elimination for linear inequalities | 56 | | | 3.4 | Summary and bibliography notes | 59 | | | 3.5 | Exercises | 59 | | 4 | Buc | ket-Elimination for Probabilistic Networks | 61 | |---------------------------|--------|--|-----| | | 4.1 | Belief Updating and Probability of Evidence | 62 | | | | 4.1.1 Deriving BE-bel | 62 | | | | 4.1.2 Complexity of BE-bel | 68 | | | | 4.1.3 The impact of Observations | 73 | | | 4.2 | Bucket elimination for optimization tasks | 77 | | | | 4.2.1 A Bucket-Elimination Algorithm for mpe | 77 | | | | 4.2.2 An Elimination Algorithm for Map | 81 | | | 4.3 | Bucket-elimination for Markov Random Fields | 82 | | | 4.4 | Cost Networks and Dynamic Programming | 84 | | | 4.5 | Mixed Networks | 86 | | | 4.6 | The General Bucket Elimination | 91 | | | 4.7 | Combining Elimination and Conditioning | 91 | | | 4.8 | Summary and Bibliographical Notes | 95 | | | 4.9 | Exercises | 96 | | 5 | The | e Graphs of Graphical Models | 99 | | | 5.1 | Types of graphs | 100 | | | 5.2 | The induced width | 103 | | | 5.3 | Chordal graphs | 107 | | | 5.4 | From linear orders to tree orders | 109 | | | | 5.4.1 Elimination trees | 109 | | | | 5.4.2 Pseudo Trees | 109 | | | 5.5 | Tree-decompositions | 112 | | | 5.6 | The cycle-cutset and w-cutset schemes | 115 | | | 5.7 | Summary and Bibliographical Notes | 117 | | | 5.8 | Exrecises | 117 | | Bi | ibliog | graphy 1 | .18 | | $\mathbf{B}^{\mathbf{i}}$ | ibliog | graphy 1 | .18 | #### Notation \mathcal{R} a constraint network x_1, \ldots, x_n variables n the number of variables in a constraint network D_i the domain of variable x_i X, Y, Z sets of variables R, S, T relations r, s, t tuples in a relation $< x_1, a_1 > < x_2, a_2 >, ..., < x_n, a_n >$ an assignment tuple $\sigma_{x_1=d_1,\dots,x_k=d_k}(R)$ the selection operation on relations $\Pi_Y(R)$ the projection operation on relations $\lceil x \rceil$ the integer n such that $x \leq n \leq x+1$ ©Rina Dechter 5 # Chapter 1 # Introduction Over the last three decades, research in Artificial Intelligence has witnessed marked growth in the core disciplines of knowledge representation, learning and reasoning. This growth has been facilitated by a set of graph-based representations and reasoning algorithms known as graphical models. The term graphical models describes a methodology for representing information, or knowledge, and for reasoning about that knowledge for the purpose of making decisions or for accomplishing other tasks by an intelligent agent. What makes these models *graphical* is that the structure used to represent the knowledge is often captured by a graph. The primary benefits of graph-based representation of knowledge are that it allows compact encoding of complex information and its efficient processing. #### 1.1 Probabilistic vs Deterministic Models The concept of graphical models has mostly been associated exclusively with *probabilistic* graphical models. Such models are used in situations where there is uncertainty about the state of the world. The knowledge represented by these models concerns the joint probability distribution of a set of variables. An unstructured representation of such a distribution would be a list of all possible value combinations and their respective probabilities. This representation would require a huge amount of space even for a moderate number of variables. Furthermore, reasoning about the information, for example, calculating the probability that a specific variable will have a particular value given some evidence would be very inefficient. A Bayesian network is a graph-based and a far more compact representation of a joint probability distribution (and, as such, a graphical model) where the information is encoded by relatively small number of conditional probability distributions as illustrated by the following example based on the early example by Spigelhalter and Lauritsen [39]. This simple medical diagnosis problem focuses on two diseases: Lung Cancer and Bronchitis. There is one sympton dyspnoea (shortness of breath), that may be associated with the presence of either disease (or both) and test results from X-ray that may be related to either cancer, or smoking or both. Whether or not the patient is a smoker also affects the likelihood of a patient having the diseases and symptoms. When a patient presents a particular combination of symptoms X-ray results it is usually impossible to say with certainty whether he suffers from either disease, from both, or from neither; at best, we would like to be able to calculate the probability of each of these possibilities. Calculating these probabilities (as well as many others) requires the knowledge of the joint probability distribution of the five variables (Lung Cancer (L), Bronchitis (B), Dyspnea (D), Test of X-ray (T), and smoker (S)), that is, the probability of each of their 64 value combinations. Alternatively, the joint probability distribution can be represented more compactly by factoring the distribution into a small number of conditional probabilities. One possible factorization, for example, is given by $$P(S, L, B, D, T) = P(S)P(L|S)P(B|S)P(D|L, B)P(T|L)$$ This factorization corresponds to the directed graph in Figure 1.1 where each variable is represented by a node and there is an arrow connecting any two variables that have direct probabilistic (and may be causal) interactions between them, (that is, participate in one of the conditional probabilities). In addition to allowing a more compact representation of the joint probability distribution, the graph also represents a set of independencies that are true for the distribution. For example, it shows that the variables Lung cancer and Bronchitis are conditionally independent on the variable smoking, that is, if smoking status is known then knowing that Figure 1.1: A simple medical diagnosis Bayesian network. the patient has (or doesn't have) Lung cancer has no bearing on the probability that he has Bronchitis. However if it is also know that shortness of breath is present, Lung cancer and Bronchitis are no longer independent; knowing that the person has Lung cancer may explains away Bronchitis and reduces the likelihood of Dyspnea. Such independencies are very helpful for reasoning about the knowledge. While the term graphical models has mostly been used for probabilistic graphical models, the idea of using a graph-based structure for representing knowledge has been used with the same amount of success in situations that seemingly have nothing to do with probability distributions or uncertainty. One example is that of constraint satisfaction problems. Rather than the probability of every possible combination of values assigned to a set of variables, the knowledge encoded in a constraint satisfaction problem concerns their feasibility, that is, whether these value combination satisfy a set of constraints that are often defined on relatively small subsets of variables. This structure is associated with a constraint graph where each variable is represented by a node and two nodes are connected by an edge if they are bound by at least one constraint. A constraint satisfaction problem along its constraint graph is often referred to as a constraint network and is illustrated by the following example. Consider the map in Figure 1.2 showing eight neighboring countries and consider a set of three colors, red, blue, and yellow, for example. Each of the countries needs to be colored by one of the three colors so that no two countries that have a joint border have the same color. A basic question about this situation is to determine whether such a coloring scheme exists and, if so, to produce such a scheme. One way of answering these questions is to systematically generate all possible assignments of a color to a country and then Figure 1.2: A map of eight neighboring countries test each one to determine whether it satisfies the constraint. Such an approach would be very inefficient because the number of different assignments could be huge. The structure of the problem, represented by its constraint graph in Figure 1.3, could be helpful in accomplishing the task. In this graph each country is represented by a node and there is an edge connecting every pair of adjacent countries representing the constraint that prohibits that they be colored by the same color. Just as in the Bayesian network graph, the constraint graph reveals the independencies in the map coloring problem. For example, it shows that if a color is selected for France the problem separates into three smaller problems (Portugal - Spain, Italy - Switzerland, and Belgium - Luxembourg - Holland) which could be solved independently of one another. This kind of information is extremely useful for expediting the solution of constraint satisfaction problems. Figure 1.3: The map coloring constraint graph Whereas a Bayesian network is an example of a probabilistic graphical model, a constraint network is an
example of a deterministic graphical model. The graphs associated with the two problems are also different: Bayesian networks use directed graphs, indicating that the information regarding relationship between two variables is not symmetrical while constraint graphs are undirected graphs. Despite these differences, the significance of the graph-based structure and the way it is used to facilitate reasoning about the knowledge are sufficiently similar to place both problems in a general class of graphical models. Many other problem domains have similar graph based structures and are, in the view of this book, graphical models. Examples include propositional logic, integer linear programming, influence diagrams, and Markov networks. #### 1.2 Directed vs Undirected Models The examples in previous section illustrate the two main classifications of graphical models. The first of these has to do with the kind information represented by the graph, primarily on whether the information is deterministic or probabilistic. Constraint networks are, for example, deterministic; an assignment of values to variables is either valid or it is not. Bayesian networks and Markov networks, on the other hand, represent probabilistic relationships; the nodes represent random variables and the graph as a whole encodes the joint probability distribution of those random variables. The distinction between these two categories of graphical models is not clear-cut, however. Cost networks, which represent preferences among assignments of values to variables are typically deterministic but they are similar to probabilistic networks as they are defined by real-valued functions just like probability functions. The second classification of graphical models concerns how the information is encoded in the graph, primarily whether the edges in their graphical representation are directed or undirected. For example, Markov networks are probabilistic graphical models that have undirected edges while Bayesian networks are also probabilistic models but use a directed graph structure. Cost and constraint networks are primarily undirected yet some constraints are functional and can be associated with a directed model. For example, Boolean circuits encode functional constraints directed from inputs to outputs. Figure 1.4: undirected and directed deterministic relationships To make these classifications more concrete, consider a very simple example of a relationships between two variables. Suppose that we want to represent the logical relationship $A \vee B$ using a graphical model. We can do it by a constraint network of two variables and a single constraint (specifying that the relationship $A \vee B$ holds." The undirected graph representing this network is shown in (Figure 1.4(a)). We can add a third variable, C, that will be "true" if an only if the relation $A \vee B$ is "true," that is, $C = A \vee B$. This model may be expressed as a constraint on all three variables, resulting in the complete graph shown in Figure 1.4(b). Now consider a probabilistic version of the above relationships, where, the case of $C = A \vee B$ we might employ a NOISY-OR relationship. A noisy-or function is the nondeterministic analog of the logical OR function and specifies that each input variable whose value is "1" produces an output of 1 with high probability $1 - \epsilon$ for some small ϵ . This can lead to the following encoding. $$P(C = 1|A = 0, B = 0) = 0, \quad P(C = 1|A = 0, B = 1) = 1 - \epsilon_B,$$ $$P(C = 1|A = 1, B = 0) = 1 - \epsilon_A, \quad P(C = 1|A = 1, B = 1) = (1 - \epsilon_B)(1 - \epsilon_A)$$ This relationship is directional, representing the conditional probability of C for any given inputs to A and B and can parameterize the directed graph representation as in Figure 1.4(c). On the other hand, if we are interested to introduce some noise to an | | | | A | B | С | $P(A \vee B \vee C)$ | |---|---|---------------|---|---|---|----------------------| | | | | 0 | 0 | 0 | 0 | | A | B | $P(A \lor B)$ | 1 | 0 | 0 | 1/15 | | 0 | 0 | 0 | 0 | 1 | 0 | 1/15 | | 1 | 0 | 0.25 | 0 | 0 | 1 | 1/15 | | 0 | 1 | 0.25 | 1 | 1 | 0 | 2/15 | | 1 | 1 | 1/2 | 1 | 0 | 1 | 2/15 | | | | | 0 | 1 | 1 | 2/15 $6/15$ | | | | | 1 | 1 | 1 | 6/15 | Figure 1.5: parameterizing directed and undirected probabilistic relations undirected relation $A \vee B$ we can do so by evaluating the strength of the OR relation in a way that fits our intuition or expertise, making sure that the resulting function is normalized. We could do the same for the ternary relation. These probabilistic functions are sometime called potentials or factors which frees them from the semantic coherency assumed when we talk about probabilities. Figure 1.5 shows a possible distribution of the noisy two and three-variable OR relation, which is symmetrical. From an algorithmic perspective, the division between directed and undirected graphical models, is more salient and received considerable treatment in the literature [43]. Deterministic information seems to be merely a limiting case of nondeterministic information where probability values are limited to 0 and 1. Alternatively, it can be perceived as the limiting cost in preference description moving from 2-valued preference (consistent and inconsistent) to multi-valued preference, also called *soft constraints*. Yet, this book will be focused primarily on methods that are indifferent to the directionality aspect of the models, and be more aware of the deterministic vs non-deterministic distinction. The main examples used in this book will be constraint networks and Bayesian networks, since these are respective examples of both undirected and directed graphical models, and of Boolean vs numerical graphical models. ## 1.3 General Graphical models Graphical models include constraint networks [22] defined by relations of allowed tuples, probabilistic networks [43], defined by conditional probability tables over subsets of variables or by a set of potentials, cost networks defined by costs functions and influence diagrams [33] which include both probabilistic functions and cost functions (*i.e.*, utilities) [21]. Mixed networks is a graphical model that distinguish between probabilistic information and deterministic constraints. Each graphical model comes with its typical queries, such as finding a solution (over constraint networks), finding the most probable assignment or updating the posterior probabilities given evidence, posed over probabilistic networks, or finding optimal solutions for cost networks. The task for influence diagrams is to choose a sequence of actions that maximizes the expected utility. The use of any model of knowledge (and graphical models are no exception) involves two, largely independent activities, the construction of the model and the extraction of useful information from the model. In the case of our medical diagnosis problem, for example, model construction involves the selection of the variables to be included, the structure of the Bayesian network, and the specification of the conditional probability distributions needed to specify the joint probability distribution. *Information extraction* involves answering queries about the effect of evidence on the probability of certain variables and about the best (most likely) explanation for such evidence. In the case of the map coloring problem the models structure is largely determined by the map to be colored. Information extraction involves answering queries like whether the map can be colored using a given set of colors, finding the minimum number of colors needed to color it and, if a map cannot be colored by a given number of colors, finding the minimum number of colors the map. The construction of the graphical model, including learning its structure and parameters from data or from experts, depends very much on the specific type of problem. For example, constructing a Bayesian network would be a very different process from constructing an integer linear programming optimization problem. In contrast, the process of answering queries from graphical models, in particular when taking advantage of their graph-based structure, is more universal and common in many respects across many types of problems. We call such activity as *reasoning* or, query processing, that is, deriving new conclusions from facts or data represented explicitly in the models. The focus of this book is on the common reasoning methods that are used to extract information from given graphical models. Reasoning over probabilistic models is often referred to as *inference*. We, however attribute a more narrow meaning to inference as discussed shortly. Although the information extraction process for all the interesting questions posed over graphical models are computationally hard (i.e., NP-hard), and thus generally intractable, their structure invite effective algorithms for many graph structures as we show throughout the book. This includes answering optimization, constraint satisfaction, counting, and likelihood queries. And the breadth of these queries render these algorithms applicable to a variety of fields including scheduling, planning, diagnosis, design, hardware and software testing, bio-informatics and linkage analysis. Our goal is to present a unifying treatment in a way that goes beyond a commitment to the particular types of knowledge expressed in the model. In chapter two, we will define the framework of graphical models and will review the various flavors of models. But, as already noted, the focus of this book is on query processing algorithms which exploit graph structures primarily and are thus applicable across all graphical models. These algorithms can be broadly classified as either inference-based or search-based, and each class will be discussed separately, for they share different characteristics. Inference-based algorithms perform a deductive step repeatedly while maintaining a single view
of the model. Some example of inference-based algorithms are resolution, variable-elimination and join-tree clustering. These algorithms are exponentially bounded in both time and space by a graph parameter called *tree-width*. Search-based algorithms perform repeatedly a conditioning step, namely, fixing the value of a variable to a constant, and thus restrict the attention to a subproblem. This leads to a search over all subproblems that need to be solved eventually. Search algorithms can be executed in linear space, and this makes them attractive. These algorithms can be shown to be exponentially bounded by graph-cutset parameters that depend on the memory level the algorithm would use. When search and inference algorithms are combined they enable improved performance by flexibly trading off time and space. Previous books on graphical models focused either on probabilistic networks, or on constraint networks. The current book is therefore broader in its unifying perspective. Yet it has restricted boundaries along the following dimensions. We address only graphical models over discrete variables (no continuous variables), we cover only exact algorithms (a subsequent extension for approximation is forthcoming), we address only propositional graphical models (recent work on first-order graphical models is outside the scope of this book.) In addition, we will *not* focus on exploiting the local structure of the functions. what is knkoe the context-specific information. Such techniques are orthogonal to graph-based principles and can and should be combined with them. Finally, and as already noted, the book will not cover issues of modeling (by knowledge acquisition or learning from data) which are the two primary approaches for generating probabilistic graphical models. For this, and for more we refer the readers to the books in the area. First and foremost is the classical book that introduced probabilistic graphical models [43] and a sequence of books that followed amongst which are [42, 34]. In particular note the comprehensive two recent textbooks [1, 37]. For deterministic graphical models of Constraint networks see [22]. ## 1.4 Overview of the book, chapter by chapter The focus in this book is on query processing algorithms which exploit the graph structure and are therefore applicable across all graphical models. It is useful to distinguish two types of algorithms: inference-based and search-based. Algorithms within each class share different characteristics. Inference-based algorithms (e.g., variable-elimination, join-tree clustering) are time and space exponentially bounded by a graph parameter called *tree-width*. Their complexity bounds are well studied and understood for more than 2 decades now. Search-based algorithms on the other hand are attractive because they can be executed in linear space. Effective structure-based time bounds for search emerged only recently. By augmenting bounded ingerence ideas they can flexibly tradeoff time and space. Furthermore, search methods are more naturally poised to exploit the internal structure of the functions themselves, what is often called their *local structure*. The thrust of advanced reasoning schemes is in combining inference and search yielding a spectrum of memory-sensitive algorithms universally applicable across many domains. Chapter 2 presents the reader to the concepts of graphical models, provide definitions and the specific graphical models discussed throughout the book. Chapters 3-6 focus on inference algorithms, chapters 7-9 on search, while chapter 10 on hybrids of search and inference. Specifically, in the inference part, chapter 3 describes a variable-elimination scheme called bucket-elimination for constraint networks, chapter 4 use the motivation for graph parameters introduced in Chapter 3 to address and elaborate on graph properties that are relevant to the algorithms's design and analysis that will be exploited throughout the book. Then Chapter 5 focuses on bucket-elimination for probabilistic networks and chapter 6 shows how these variable elimination algorithms can be extended to tree-decompositions yielding the join-tree and junction-tree propagation schemes. Search is introduced through Chapter 7 and 8 through AND/OR decomposition. We conclude with chapter 10 giving hybrids of search an inference. # Chapter 2 # What are Graphical Models In this chapter, we will begin by introducing the general graphical model framework and continue with the most common types of graphical models, providing examples of each type: constraint networks [22], Bayesian networks, Markov networks [43] and cost networks. Another more involved example which we only briefly discuss is influence diagrams [33]. ## 2.1 General Graphical models Graphical models include constraint networks [22] defined by relations of allowed tuples, probabilistic networks [43], defined by conditional probability tables over subsets of variables or by a set of potentials, cost networks defined by costs functions and influence diagrams [33] which include both probabilistic functions and cost functions (*i.e.*, utilities) [21]. Mixed networks is a graphical model that distinguish between probabilistic information and deterministic constraints. Each graphical model comes with its typical queries, such as finding a solution (over constraint networks), finding the most probable assignment or updating the posterior probabilities given evidence, posed over probabilistic networks, or finding optimal solutions for cost networks. Simply put, a graphical model is a collection of *local* functions over subsets of variables that convey probabilistic, deterministic or preferential information and whose structure is described by a graph. The graph captures independency or irrelevance information inherent in the model that can be useful for interpreting the data in the model and, most significantly, can be exploited by reasoning algorithms. A graphical model is defined by a set of variables, their respective domains of values which we assume to be discrete and by a set of functions. Each function is defined on a subset of the variables called its *scope*, which maps any assignment over its scope, an instantiation of the scopes' variables, to a real value. The set of local functions can be *combined* in a variety of ways (e.g., by sum or product) to generate a *global function* whose scope is the set of all variables. Therefore, a *combination* operator is a defining element in a graphical model. As noted, common combination operators are summation and multiplication, but we also have *AND* operator, for Boolean functions, or the relational *join*, when the functions are relations. We denote variables or sets of variables by uppercase letters (e.g., X, Y, Z, S) and values of variables by lower case letters (e.g., x, y, z, s). An assignment ($X_1 = x_1, ..., X_n = x_n$) can be abbreviated as $x = (x_1, ..., x_n)$. For a set of variables S, D_S denotes the Cartesian product of the domains of variables in S. If $X = \{X_1, ..., X_n\}$ and $S \subseteq X$, x_S denotes the projection of $x = (x_1, ..., x_n)$ over S. We denote functions by letters f, g, h, etc., and the scope (set of arguments) of a function f by scope(f). The projection of a tuple x on the scope of a function f, can also be denoted by $x_{scope(f)}$ or, for brevity x_f . **Definition 2.1.1 (elimination operators)** Given a function h defined over a scope S, the functions $(\min_X h)$, $(\max_X h)$, and $(\sum_X h)$ where $X \subseteq S$, are defined over $U = S - \{X\}$ as follows: For every U = u, and denoting by (u, x) the extension of tuple u by the tuple X = x, $(\min_X h)(u) = \min_x h(u, x)$, $(\max_X h)(u) = \max_x h(u, x)$, and $(\sum_X h)(u) = \sum_x h(u, x)$. Given a set of functions $h_1, ..., h_k$ defined over the scopes $S_1, ..., S_k$, the product function $\Pi_j h_j$ and the sum function $\sum_j h_j$ are defined over $U = \bigcup_j S_j$ such that for every $u \in D_U$, $(\Pi_j h_j)(u) = \Pi_j h_j(u_{S_j})$ and $(\sum_j h_j)(u) = \sum_j h_j(u_{S_j})$. Alternatively, $(\Pi_j h_j)(u) = \Pi_j h_j(u_{h_j})$ and $(\sum_j h_j)(u) = \sum_j h_j(u_{h_j})$. The formal definition of a graphical model is give next. **Definition 2.1.2 (graphical model)** A graphical model \mathcal{M} is a 4-tuple, $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes \rangle$, where: - 1. $\mathbf{X} = \{X_1, \dots, X_n\}$ is a finite set of variables; - 2. $\mathbf{D} = \{D_1, \dots, D_n\}$ is the set of their respective finite domains of values; - 3. $\mathbf{F} = \{f_1, \dots, f_r\}$ is a set of positive real-valued discrete functions, defined over scopes of variables $\mathbf{S}_i \subseteq \mathbf{X}$. They are called local functions. - 4. \otimes is a combination operator. The combination operator can also be defined axiomatically as in [53]. (e.g., $\otimes \in \{\prod, \sum, \bowtie\}$ (product, sum, join)). But for the sake of our discussion we can define it explicitly. The graphical model represents a global function whose scope is **X** which is the combination of all its functions: $\bigotimes_{i=1}^r f_i$. Note that the local functions define the graphical model and are given as input. The global function provides the meaning of the graphical model but it cannot be computed explicitly (e.g., in a tabular form) due to its exponential size. Yet all the interesting reasoning tasks (called also 'problems' or 'queries') are defined relative to the global function. For instance, we may seek an assignment on all the variables (sometime called configuration, or a solution) having the maximum global value. Alternatively, we can ask for the number of solutions to a constraint problem, defined by a summation. We can therefore define a variety of reasoning queries using an additional operator called marginalization. For example, if we have a function defined on two variables, F(X,Y), a maximization query can be
specified by applying the max operator written as $\max_{x,y} F(x,y)$ which returns a function with no arguments, namely, a constant, or, we may seek the maximizing tuple $(x^*, y^*) = argmax_{x,y} F(x, y)$. Sometime we are interested to get $Y(x) = argmax_y F(x, y)$. Since the marginalization operator, which is max in the above examples, operates on a function of several variables and returns a function on their subset, it can be viewed as eliminating some variables from the function's scope to which it is applied. Because of that it is also called an elimination operator. Consider another example when we have a joint probability distribution P(X,Y) and we want to compute the marginal probability $P(X) = \sum_{y} P(X,y)$. In this case we use the sum marginalization operator to express our query. A formal definition of a reasoning task using the notion of a marginalization operator, is given next. We define marginalization by explicitly listing the specific operators we consider, but those can also be characterized axiomatically ([35, 53, 11]). **Definition 2.1.3 (a reasoning problem)** A reasoning problem over a graphical model $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes \rangle$ and a subset of variable $Y \subset \mathbf{X}$ is defined by a marginalization operator $\Downarrow_{\mathbf{Y}}$ explicitly as follows. If \mathbf{S} is the scope of function f then $\Downarrow_{\mathbf{Y}} f \in \{ \sum_{\mathbf{S}-\mathbf{Y}}^{\max} f, \sum_{\mathbf{S}-\mathbf{Y}}^{\min} f, \pi_{\mathbf{Y}} f, \sum_{\mathbf{S}-\mathbf{Y}}^{\sum} f \}$ is a marginalization operator. The reasoning problem $\mathcal{P}\langle \mathcal{M}, \Downarrow_{\mathbf{Z}} \rangle$ is the task of computing the function $\mathcal{P}_{\mathcal{M}}(\mathbf{Z}) = \Downarrow_{\mathbf{Z}} \otimes_{i=1}^{r} f_{i}$, where r is the number of functions in F. We will focus often on reasoning problems defined by $\mathbf{Z} = \{\emptyset\}$. Note that in our definition $\pi_{\mathbf{Y}} f$ is the relational projection operator and unlike the rest of the marginalization operators the convention is that it is defined by the scope of variables that are *not* eliminated. Every graphical model can be associated with several graph representations. We next define the most common graph representation called the *primal graph*. **Definition 2.1.4 (primal graph)** The primal graph of a graphical model is an undirected graph in which each vertex corresponds to a variable in the model and in which an edge connects any two vertices if the corresponding variables appear in the scope of the same local function. We will now describe several specific graphical models and show how they fit the general definition. ### 2.2 Constraint Networks Constraint networks provide a framework for formulating real world problems as satisfying a set of constraints among variables, and they are the simplest and most computationally tractable of the graphical models we will be considering. Problems in scheduling, design, planning and diagnosis are often encountered in real world scenarios and can be effectively rendered as constraint networks problems. Let's take scheduling as an example. Consider the problem of scheduling several tasks, where each takes a certain time and each have different options for starting time. Tasks can be executed simultaneously, subject to some precedence restriction between them due to certain resources that they need but cannot share. One approach to formulating such a scheduling problem is as a constraint satisfaction problem having a variable for each combination resource and time slice (e.g. the conference room at 3pm on Tuesday, for a class scheduling problem). The domain of each variable is the set of tasks that need to be scheduled, and assigning a task to a variable means that this task will begin at this resource at the specified time. In this model, various physical constraints can be described as constraints between variables (e.g. that a given task takes three hours to complete or that another task can be completed at most once). The constraint satisfaction task is to find a solution to the constraint problem, that is, an assignment of a value to each variable such that no constraint is violated. If no such assignment can be found, we conclude that the problem is inconsistent. Other queries include finding all the solutions and counting them or, if the problem is inconsistent, finding a solution that satisfies the maximum number of constraints. Definition 2.2.1 (constraint network, constraint satisfaction problem (CSP)) A constraint network (CN) is a 4-tuple, $\mathcal{R} = \langle \mathbf{X}, \mathbf{D}, \mathbf{C}, \bowtie \rangle$, where \mathbf{X} is a set of variables $\mathbf{X} = \{X_1, \ldots, X_n\}$, associated with a set of discrete-valued domains, $\mathbf{D} = \{D_1, \ldots, D_n\}$, and a set of constraints $\mathbf{C} = \{C_1, \ldots, C_r\}$. Each constraint C_i is a pair (\mathbf{S}_i, R_i) , where R_i is a relation $R_i \subseteq D_{\mathbf{S}_i}$ defined on a subset of variables $\mathbf{S}_i \subseteq \mathbf{X}$. The relation denotes all compatible tuples of $D_{\mathbf{S}_i}$ allowed by the constraint. The join operator \bowtie is used to combine the constraints into a global relation. When it is clear that we discuss constraints we will refer to the problem as a triplet $\mathcal{R} = \langle \mathbf{X}, \mathbf{D}, \mathbf{C} \rangle$. A solution is an assignment of values to all the variables, denoted $\mathbf{x} = (x_1, \ldots, x_n)$, $x_i \in D_i$, such that $\forall C_i \in \mathbf{C}$, $x_{\mathbf{S}_i} \in R_i$. The constraint network represents its set of solutions, $sol(\mathcal{R}) = \bowtie_i R_i$. We see that a constraint network is a graphical model $\mathcal{R} = \langle \mathbf{X}, \mathbf{D}, \mathbf{C}, \bowtie \rangle$ whose functions are relations and the combination operator is the relational join. We define the minimal domain of a variable X to be all its values that participate in any solution. Namely, $MinDom(X_i) = \pi_{X_i} \bowtie_j R_j$ The primary query over a constraint network is deciding if it has a solution. Other relevant queries are enumerating or counting the solutions. Namely, the primary reasoning tasks can be expressed as $\mathcal{P} = \langle \mathcal{R}, \pi, \mathbf{Z} \rangle$, when marginalization is the relational projection operator π . That is, $\psi_{\mathbf{Y}}$ is $\pi_{\mathbf{Y}}$. Therefore the task of finding all solutions is expressed by $\psi_{\emptyset} \otimes_i f_i = \pi_{\emptyset}(\bowtie_i f_i)$. (a) Graph coloring problem Figure 2.1: A constraint network example of a map coloring The primal graph of a constraint network is called a *constraint graph*. It is an undirected graph in which each vertex corresponds to a variable in the network and in which an edge connects any two vertices if the corresponding variables appear in the scope of the same constraint. **Example 2.2.2** The map coloring problem in Figure 2.1(a) can be modeled by a constraint network: given a map of regions and three colors {red, green, blue}, the problem is to color each region by one of the colors such that neighboring regions have different colors. Each region is a variable, and each has the domain {red, green, blue}. The set of constraints is the set of relations "different" between neighboring regions. Figure 2.1 overlays the corresponding constraint graph and one solution (A=red, B=blue, C=green, D=green, E=blue, F=blue, G=red) is given. The set of constraints are $A \neq B$, $A \neq D$, $B \neq D$, $B \neq C$, $B \neq G$, $D \neq G$, $D \neq F$, $G \neq F$, $D \neq E$. **Example 2.2.3** As noted earlier, constraint networks are particularly useful for expressing and solving scheduling problems. Consider the problem of scheduling five tasks (T1, T2, T3, T4, T5), each of which takes one hour to complete. The tasks may start at 1:00, 2:00 or 3:00. Tasks can be executed simultaneously subject to the restrictions that: - T1 must start after T3, - T3 must start before T4 and after T5, - T2 cannot be executed at the same time as either T1 or T4, and Figure 2.2: The constraint graph and constraint relations of the scheduling problem. #### • T4 cannot start at 2:00. We can model this scheduling problem by creating five variables, one for each task, where each variable has the domain $\{1:00, 2:00, 3:00\}$. The corresponding constraint graph is shown in Figure 2.2, and the relations expressed by the graph are shown beside the figure. Sometimes we express the relation R_i as a cost function $C_i(X_{i_1} = x_{i_1}, \dots, X_{i_k} = x_{i_k}) = 1$ if $(x_{i_1}, \dots, x_{i_k}) \in R_i$, and 0 otherwise. In this case the combination operator is a product. We will switch between these two views as needed. If we want to count the number of solutions we merely change the marginalization operator to be summation. If on the other hand we want merely to query whether the constraint network has a solution, we can let the marginalization operator be logical summation. We let $\mathbf{Z} = \{\emptyset\}$, so that the summation occurs over all the variables. We will get "1" if the constraint problem has a solution and "0" otherwise. **Propositional Satisfiability** One special case of the constraint satisfaction problem is what is called *propositional satisfiability* (usually referred to as SAT). Given a formula φ in *conjunctive normal form* (CNF), the SAT problem is to determine whether there is a truth-assignment of values to its variables such that the formula evaluates to true. A formula is in conjunctive normal form if it is a conjunction of *clauses* $\alpha_1, \ldots, \alpha_t$, where each clause is a disjunction of *literals* (propositions or their negations). For example, $\alpha = (P \vee \neg Q \vee \neg R)$ and $\beta = (R)$ are both clauses, where P, Q and R are propositions, and P, $\neg Q$ and $\neg R$ are literals.
$\varphi = \alpha \wedge \beta = (P \vee \neg Q \vee \neg R) \wedge (R)$ is a formula in conjunctive normal form. Propositional satisfiability can be defined as a constraint satisfaction problem in which each proposition is represented by a variable with domain $\{0, 1\}$, and a clause is represented by a constraint. For example, the clause $(\neg A \lor B)$ is a relation over its propositional variables that allows all tuple assignments over (A, B) except (A = 1, B = 0). ## 2.3 Cost Networks In constraint networks, the local functions are constraints, i.e., functions that assign a boolean value to a set of inputs. However, it is straightforward to extend constraint networks to accommodate real-valued relations using a graphical model called a *cost network*. In cost networks, the local functions represents cost-components, and the sum of these cost-components is the global cost function of the network. The primary task is to find an assignment of the variables such that the global cost function is optimized (minimized or maximized). Cost networks enable one to express preferences among local assignments and, through their global costs to express preferences among full solutions. Often, problems are modeled using both constraints and cost functions. The constraints can be expressed explicitly as being functions of a different type than the cost functions, or they can be included as cost components themselves. It is straightforward to see that cost networks are graphical model where the combination operator is summation. **Definition 2.3.1 (cost network, combinatorial optimization)** A cost network is a 4-tuple graphical model, $C = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \sum \rangle$, where \mathbf{X} is a set of variables $\mathbf{X} = \{X_1, \dots, X_n\}$, associated with a set of discrete-valued domains, $\mathbf{D} = \{D_1, \dots, D_n\}$, and a set of local cost functions $\mathbf{F} = \{f_1, \dots, f_r\}$. Each f_i is a real-valued function (called also cost-component) defined on a subset of variables $\mathbf{S}_i \subseteq \mathbf{X}$. The local cost components are combined into a global cost function via the \sum operator. Thus the cost network represents the function $$\mathcal{C}(x) = \sum_{i} f_i(x_{S_i})$$ which can also be written as $$C(x) = \sum_{f \in F} f(x_f)$$ where x_f is the projection of x on the scope of f. The primary optimization task (which we will assume to be a minimization, w.l.o.g) is to find an optimal solution for the global cost function $\mathcal{F} = \sum_i f_i$. Namely, finding a tuple x such that $\mathcal{F}(x) = \min_x \sum_i f_i(x)$. We can associate the cost model with its primal graph in the usual way. Like in the case of constraints, we will drop the \sum notation whenever the nature of the functions and their combination into a global function is clear from the context. Weighted Constraint Satisfaction Problems A special class of cost networks that has gained considerable interest in recent years is a graphical model called the Weighted Constraint Satisfaction Problem (WCSP) [11]. These networks extends the classical constraint satisfaction problem formalism with *soft constraints*, that is, positive integer-valued local cost functions. Formally, **Definition 2.3.2 (WCSP)** A Weighted Constraint Satisfaction Problem (WCSP) is a graphical model $\langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \sum \rangle$ where each of the functions $f_i \in \mathbf{F}$ assigns "0" (no penalty) to allowed tuples and a positive integer penalty cost to the forbidden tuples. Namely, $f_i : D_{S_i} \to \mathbb{N}$, where S_i is the scope of the function. More explicitly, $f_i : D_{X_{i_1}} \times ... \times D_{X_{i_t}} \to \mathbb{N}$, where $S_i = \{X_{i_1}, ..., X_{i_t}\}$ is the scope of the function. Many real-world problems can be formulated as cost networks and often fall into the weighted CSP class. This includes resource allocation problems, scheduling [7], bioinformatics [16, 57], combinatorial auctions [49, 22] and maximum satisfiability problems [15]. Figure 2.3: A cost network. **Example 2.3.3** Figure 2.3 shows an example of a WCSP instance with boolean variables. The cost functions are given in Figure 2.3(a), and the associated graph is shown in Figure 2.3(b). Note that a value of ∞ in the cost function denotes a hard constraint (i.e., high penalty). You should check that the minimal cost solution of the problem is 5, which corresponds to the assignment (A = 0, B = 1, C = 1, D = 0, E = 1). The task of MAX-CSP, namely of finding a solution that satisfies the maximum number of constraints (when the problem is inconsistent), can be formulated as a cost network by treating each relation as a cost function that assigns "0" to consistent tuples and "1" otherwise. Since all violated constraints are penalized equally, the global cost function will simply count the number of violations. In this case the combination operator is summation and the marginalization operator is minimization. Namely, the task is to find $\psi_{\emptyset} \otimes_i f_i = \min_{\mathbf{X}} (\sum_i f_i)$. Formally, **Definition 2.3.4 (MAX-CSP)** A MAX-CSP is a WCSP $\langle \mathbf{X}, \mathbf{D}, \mathbf{F} \rangle$ with all penalty costs equal to 1. Namely, $\forall f_i \in \mathbf{F}, f_i : D_{S_i} \to \{0, 1\}, \text{ where } scope(f_i) = S_i$ Maximum Satisfiability In the same way that propositional satisfiability (SAT) can be seen as a constraint satisfaction problem over logical formulas in conjunctive normal form, so can the problem of maximum satisfiability (MAX-SAT) be formulated as a MAX-CSP problem. In this case, given a set of boolean variables and a collection of clauses defined over subsets of those variables, the goal is to find a truth assignment that violates the least number of clauses. Naturally, if each clause is associated with a positive weight, then the problem can be described as a WCSP. The goal of this problem, called *weighted* maximum satisfiability (Weighted MAX-SAT), is to find a truth assignment such that the sum weight of the violated clauses is minimized. Integer Linear Programs. Another well known class of optimization task is integer linear programming. It is formulated over variables that can be assigned integer values (finite or infinite). The task is to find an optimal solution to a linear cost function $F(x) = \sum_i \alpha_i x_i$ that satisfies a set of linear constraints $C_1, ... C_l$ where each constraint can be specified by a linear function. Namely a constraint C_i over scopes S_i a constraint $\sum_{x \in S_i} \lambda_x \cdot x \leq 0$. Formally, **Definition 2.3.5 (Integer linear programming)** A Integer Linear programming Problem (IP) is a graphical model $\langle \mathbf{X}, \mathbf{N}, \mathbf{F} = \{f_1, ...f_n, C, 1, ..., C_l\}, \sum \rangle$ having two types of functions. Linear cost components $f(x_i) = \alpha_i x_i$ for each variable X_i , where α_i is a real number. The constraints are of weighted csp type $$C_i(x_{S_i}) = \begin{cases} 0, & if \sum_{x_j \in S_i} \lambda_{i_j} \cdot x \leq \lambda_i \\ \infty & otherwise \end{cases}$$ or infinity otherwise. The marginalization operator is minimization or maximization. ## 2.4 Probability Networks As mentioned previously, Bayesian networks and Markov networks are the two primary formalisms for expressing probabilistic information via graphical models. A *Bayesian network* [43] is defined by a directed acyclic graph over vertices that represent random variables of interest (e.g., the temperature of a device, the gender of a patient, a feature of an object, the occurrence of an event). The arc from one node to another is meant to signify a direct causal influence or correlation between the respective variables, and this influence is quantified by the conditional probability of the child given all of its parents. Therefore, to define a Bayesian network, one needs both a directed graph and the associated conditional probability functions. To be consistent with our graphical models description we define Bayesian network as follows. **Definition 2.4.1 (Bayesian networks)** A Bayesian network (BN) is a 4-tuple $\mathcal{B} = \langle \mathbf{X}, \mathbf{D}, \mathbf{P}_G, \prod \rangle$. $\mathbf{X} = \{X_1, \dots, X_n\}$ is a set of ordered variables defined over domains $\mathbf{D} = \{D_1, \dots, D_n\}$, where $o = (X_1, \dots, X_n)$ is an ordering of the variables. The set of functions $P_G = \{P_1, \dots, P_n\}$ consist of conditional probability tables (CPTs for short) $P_i = \{P(X_i | \mathbf{Y}_i)\}$ where $\mathbf{Y}_i \subseteq \{X_{i+1}, \dots, X_n\}$. These P_i functions can be associated with a directed acyclic graph G in which each node represents a variable X_i and $\mathbf{Y}_i = pa(X_i)$ are the parents of X_i in the graph. That is, there is a directed arc from each parent variable of X_i to X_i . The Bayesian network \mathcal{B} represents the probability distribution over \mathbf{X} , $P_{\mathcal{B}}(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | x_{pa(X_i)})$. We define an evidence set e as an instantiated subset of the variables. The parent/child relations of a Bayesian network, regardless of whether they actually represent causal relationships, always yields a valid joint probability distribution which is consistent with its input CPTs. Namely, for each X_i and its parent set Y_i , it can be shown that $P_{\mathcal{B}}(X_i|Y_i) = P(X_i|Y_i)$. Therefore a Bayesian network is a graphical model, where the functions in F denote conditional probability tables and the scope of each function f_i is X_i and its parents in the directed graph G, where the combination operator is product, $\otimes = \prod$. The primal graph of a Bayesian network is called a moral graph and it connects any two variables appearing in the same CPT. The moral graph can also be obtained from the directed graph G by connecting the parents of each child node
and making all directed arcs undirected. **Example 2.4.2** [43] Figure 2.4(a) is a Bayesian network over six variables, and Figure 2.4(b) shows the corresponding moral graph. The example expresses the causal relationship between variables "season" (A), "the automatic sprinkler system is "on" (B), "whether it rains or does not rain" (C), "manual watering is necessary" (D), "the wetness of the pavement" (F), and "the pavement is slippery" (G). The Bayesian network is defined by six conditional probability tables each associated with a node and its parents. For example, the CPT of F describes the probability that the pavement is wet (F=1) for each status combination of the sprinkler and raining. Possible CPTs are given in Figure 2.4(c). The conditional probability tables contain only half of the entries because the rest of the information can be derived based on the property that all the conditional probabilities (a) Directed acyclic graph (b) Moral graph | B | C | F | P(F B,C) | |-------|-------|------|----------| | false | false | true | 0.1 | | true | false | true | 0.9 | | false | true | true | 0.8 | | true | true | true | 0.95 | | B | A = winter | D | P(D A,B) | |-------|------------|------|----------| | false | false | true | 0.3 | | true | false | true | 0.9 | | false | true | true | 0.1 | | true | true | true | 1 | | A | C | P(C A) | |--------|------|--------| | Summer | true | 0.1 | | Fall | true | 0.4 | | Winter | true | 0.9 | | Spring | true | 0.3 | | A | B | P(B A) | |--------|------|--------| | Summer | true | 0.8 | | Fall | true | 0.4 | | Winter | true | 0.1 | | Spring | true | 0.6 | | F | G | P(G F) | |-------|------|--------| | false | true | 0.1 | | true | true | 1 | (c) Possible CPTs that accompany our example Figure 2.4: Belief network P(G, F, C, B, A) = P(G|F)P(F|C, B)P(D|A, B)P(C|A)P(B|A)P(A) sum to 1. This Bayesian network expresses the probability distribution $$P(A, B, C, D, F, G) = P(A) \cdot P(B|A) \cdot P(C|A) \cdot P(D|B, A) \cdot P(F|C, B) \cdot P(G|F)$$. Next, we define the main queries over Bayesian networks: **Definition 2.4.3 (Queries over Bayesian networks)** Let $\mathcal{B} = \langle \mathbf{X}, \mathbf{D}, \mathbf{P}_G, \prod \rangle$ be a Bayesian network. Given evidence E = e the primary queries over Bayesian networks are to find the following quantities: 1. Posterior marginals, or belief. For every $X_i = x_i$ not in E the belief is defined by $bel(x_i) = P_{\mathcal{B}}(x_i|e)$. - 2. The Probability of evidence is $P_{\mathcal{B}}(e)$. - 3. The Most probable explanation (mpe) is an assignment $x^o = (x^o_1, ..., x^o_n)$ satisfying $P_{\mathcal{B}}(x^o) = \max_x P_{\mathcal{B}}(x|e)$. The mpe value is $\max_x P_{\mathcal{B}}(x|e)$. - 4. Maximum a posteriori hypothesis (map). Given a set of hypothesized variables $A = \{A_1, ..., A_k\}, A \subseteq X$, the map task is to find an assignment $a^o = (a^o_1, ..., a^o_k)$ such that $P(a^o) = \max_{\bar{a}_k} P(\bar{a}_k|e)$. The mpe query is sometime also referred to as map query. These queries are applicable to a variety of applications such as situation assessment, diagnosis, probabilistic decoding and linkage analysis, to name a few. To answer the above queries over $\mathcal{B} = \langle \mathbf{X}, \mathbf{D}, \mathbf{P}_G, \Pi \rangle$ we use as marginalization operators either summation or maximization. In particular, the query of finding the probability of the evidence can be expressed as $\psi_{\emptyset} \otimes_i f_i = \sum_X \prod_i P_i$. The belief updating task, when given evidence e, can be formulated using the summation as a marginalization operator, by $\psi_{\mathbf{Y}} = \sum_{\mathbf{X} - \mathbf{Y}} \mathbf{Y}$, where $\mathbf{Z}_i = \{X_i\}$. Namely, $\forall X_i, bel(X_i) = \psi_{X_i} \otimes_k f_k = \sum_{\{X - X_i | E = e\}} \prod_k P_k$. An mpe task is defined by a maximization operator where $\mathbf{Z} = \{\emptyset\}$, yielding $mpe = \psi_{\emptyset} \otimes_i f_i = \max_X \prod_i P_i$. If we want to get the actual mpe assignment we would need to use the argmax operator. Markov networks also called Markov Random Fields (MRF) are undirected probabilistic graphical models very similar to Bayesian networks. However, unlike Bayesian networks they convey undirectional information, and are therefore defined over an undirected graph. Moreover, whereas the functions in Bayesian networks are conditional probability tables of children given their parents in the directed graph, in Markov networks the local functions, called potentials, can be defined over any subset of variables. These potential functions between random variables can be thought of as expressing some kind of a correlation information. When a configuration to a subset of variables is likely to occur together their potential value may be large. For instance in vision scenes, variables may represent the grey levels of pixels, and neighboring pixels are likely to have similar grey values. Therefore, they can be given a higher potential level. Other applications of Markov Random fields are in Physics (e.g., modeling magnetic behaviors of crystals). Like a Bayesian network, a Markov network also represents a joint probability distribution, even though its defining local functions do not have a clear probabilistic semantics. In particular, they do not express local marginal probabilities (see [43] for a discussion). Markov networks are useful when the notion of directionality in the information is unnatural. Example applications are image analysis and spatial statistics. They convey symmetrical information and can be viewed as the probabilistic counterpart of constraint or cost networks, whose functions are symmetrical as well. **Definition 2.4.4 (Markov Networks)** A Markov network is a graphical model $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{H}, \prod \rangle$ where $\mathbf{H} = \{\psi_1, \ldots, \psi_m\}$ is a set of potential functions where each potential ψ_i is a non-negative real-valued function defined over a scope of variables \mathbf{S}_i . The Markov network represents a global joint distribution over the variables \mathbf{X} given by: $$P(\mathbf{x}) = \frac{1}{Z} \prod_{i=1}^{m} \psi_i(\mathbf{x})$$, $Z = \sum_{\mathbf{x}} \prod_{i=1}^{m} \psi_i(\mathbf{x})$ where the normalizing constant Z is referred to as the partition function. The primary queries over Markov networks are the same as those of Bayesian network. That is, computing the posterior marginal distribution over all variables $X_i \in \mathbf{X}$, finding the mpe value and finding the partition function. It is not hard to see that this later query is mathematically identical to computing the probability of evidence. We see that as a graphical model, Markov networks are very similar to Bayesian networks, Markov networks are graphical models whose combination operator is the product operator, $\otimes = \prod$ and the marginalization operator can be summation, or maximization, depending on the query. **Example 2.4.5** Figure 2.5 shows a 3×3 square grid Markov network with 9 variables $\{A, B, C, D, E, F, G, H, I\}$. The twelve potentials are: $\psi_1(A, B)$, $\psi_2(B, C)$, $\psi_3(A, D)$, $\psi_4(B, E)$, $\psi_5(C, F)$, $\psi_6(C, D)$, $\psi_7(D, E)$, $\psi_8(D, G)$, $\psi_9(E, H)$, $\psi_{10}(F, I)$, $\psi_{11}(G, H)$ and $\psi_{12}(H, I)$. The Markov network represents the probability distribution formed by taking a product of these twelve functions and then normalizing. Namely, given that x = (a, b, c, d, e, f, g, h, i) $$P(x) = \frac{1}{Z} \prod_{i=1}^{12} \psi_i(x_{\psi_i})$$ Figure 2.5: (a) An example 3×3 square Grid Markov network (ising model) and (b) An example potential $H_6(D, E)$ where $$Z = \sum_{x} \prod_{i} \psi_{i}(x_{\psi_{i}})$$ is the partition function. Markov networks typicall are generated by starting with a graph model which describes the variables of interestand how they depend on each other, like in the case of image analysis whose graph is a grid. Then the user defines potential functions on the cliques of the graph. A well known example is the *ising model*. This model arize from statistical physics [?]. It was used to model the behavior of magnets. The structure is a grid, where the variables have values $\{-1, +1\}$. The potential express the desire to have neighboring variables have the same value. The resulting Markov network is called a Markov random field. Alternatively, like in the case of constraint networks, if the potential functions are specified with no explicit reference to a graph (perhaps representing some local probabilistic information or compatibility information) the graph emerges as the associated primal graph. Markov networks provide some more freedom from the modeling perspective, allowing to express potential functions on any subset of variables. This however comes at the cost of loosing semantic clarity. The meaning of the input local functions relative to the emerging probability distribution is not coherent. In both Bayesian networks and Markov networks the modeling process starts from the graph. In the Bayesian network case the graph restricts the CPTs to be defined for each node and its parents. In Markov networks, the potentials should be defined on the maximal cliques. For more see [43]. It is sometime convenient to represent potential as positive functions only (even when correlational information can be expressed also by negative numbers). In that case an exponential representation is common. This again, is motivated by work in statistical physics where using the following transformation into what is called energy function. $$\psi_{S_i}(x_{S_i}) = e^{-E(x_{S_i})}$$ we get that $$E(x_{S_i}) = -log\psi_i(x_{S_i})$$ and therefore $$P(x) = \frac{1}{Z} \prod_{i=1}^{m} \psi_i(\mathbf{x}) = \frac{1}{Z} e^{-\sum_i E(x_{S_i})}$$ We see that high probability states correspond to low energy states. Such models. known as **energy-based models**, are common in
Physics and Biochemistry and are particularly popular in machine learning. ### 2.5 Mixed networks In this section, we introduce the mixed network, a graphical model which allows both probabilistic information and deterministic constraints and which provides a coherent meaning to the combination. **Definition 2.5.1 (mixed networks)** Given a belief network $\mathcal{B} = \langle \mathbf{X}, \mathbf{D}, \mathbf{P}_G, \prod \rangle$ that expresses the joint probability $P_{\mathcal{B}}$ and given a constraint network $\mathcal{R} = \langle \mathbf{X}, \mathbf{D}, \mathbf{C}, \bowtie \rangle$ that expresses a set of solutions ρ , a mixed network based on \mathcal{B} and \mathcal{R} denoted $\mathcal{M}_{(\mathcal{B},\mathcal{R})} = \langle \mathbf{X}, \mathbf{D}, \mathbf{P}, \mathbf{C} \rangle$ is created from the respective components of the constraint network and a Bayesian network as follows: the variables \mathbf{X} and their domains are shared, (we could allow non-common variables and take the union), and the functions include the CPTs in \mathbf{P}_G and the constraints in \mathbf{C} . The mixed network expresses the conditional probability Alex is **likely** to go in bad weather Chris **rarely** does in bad weather Becky is indifferent, but **unpredictable** Figure 2.6: The part example, A Bayesian network (a), a constraint formula (b) and a mixed network (c) $$P_{\mathcal{M}}(\mathbf{X})$$: $$P_{\mathcal{M}}(\bar{x}) = \begin{cases} P_{\mathcal{B}}(\bar{x} \mid \bar{x} \in \rho), & if \ \bar{x} \in \rho \\ 0, & otherwise. \end{cases}$$ **Example 2.5.2** Consider a scenario involving social relationship between three individuals Alex (A), Becky (B) and Chris (C). We know that if Alex goes to a party Becky will go, and if Chris goes Alex goes. We also know the weather effects these three individuals differently and they will or will not go to a party with some differing likelihood. We can express the relationship between going to the party and the weather using a Bayesian network, while the social relationship using a propositional formula (see Figure 2.6). The mixed network have two types of functions, probabilistic local functions and constraints. This is a graphical model whose combination operator is product, when we assume that constraints have their cost-based representation. Belief updating, MPE and MAP queries over probabilistic networks can be extended to mixed networks straight-forwardly. They are well defined relative to the mixed probability distribution $P_{\mathcal{M}}$. Since $P_{\mathcal{M}}$ is not well defined for *inconsistent* constraint networks we always assume that the constraint network portion is consistent. Mixed networks give rise to a new query, which is to find the probability of a consistent tuple; namely, we want to determine $P_{\mathcal{B}}(\bar{x} \in sol(\mathcal{R}))$. We will call this a Constraint Probability Evaluation (CPE). Note that evidence is a special type of constraint. We will elaborate on this next. The problem of evaluating the probability of CNF queries over Bayesian networks has various applications. One example is network reliability: Given a communication graph with a source and a destination, one seeks to diagnose the failure of communication. Since several paths may be available between source and destination, the failure condition can be described by a CNF formula as follows. Failure means that for all paths (conjunctions) there is a link on that path (disjunction) that fails. Given a probabilistic fault model of the network, the task is to assess the probability of a failure [44]. There are many examples in modeling travel patterns of human and in natural language processing. [?, ?, ?]. [comment: either have citations or remove this last sentence] #### Definition 2.5.3 (queries on mixed networks) We consider the following 2 new queries: - Given a mixed network $\mathcal{M}_{(\mathcal{B},\mathcal{R})}$, where $\mathcal{B} = \langle \mathbf{X}, \mathbf{D}, \mathbf{G}, \mathbf{P} \rangle$ and $\mathcal{R} = \langle \mathbf{X}, \mathbf{D}, \mathbf{C} \rangle$ the constraint, Probability Evaluation (CPE) task is to find the probability $P_{\mathcal{B}}(\bar{x} \in sol(\mathcal{R}))$. If R is a CNF expression φ , the cnf probability evaluation seeks $P_{\mathcal{B}}(\bar{x} \in m(\varphi))$, where $m(\varphi)$ are the models (solutions of φ). - Belief assessment of a constraint or on a CNF expression is the task of assessing $P_{\mathcal{B}}(X|\varphi)$ for every variable X. Since $P(X_i|\varphi) = \alpha \cdot P(X_i \wedge \varphi)$ where α is a normalizing constant relative to X, computing $P_{\mathcal{B}}(X|\varphi)$ reduces to a CPE task over \mathcal{B} for the query $((X_i = x_i) \wedge \varphi)$. In other words we want to compute $P_{\mathcal{B}}(\bar{x}|X_i = x_i, \bar{x} \in m(\varphi))$. More generally, $P_{\mathcal{B}}(\varphi|\psi) = \alpha_{\varphi} \cdot P_{\mathcal{B}}(\varphi \wedge \psi)$ where α_{φ} is a normalization constant relative to all the models of φ . We conclude with some common alternative formulations of queries over mixed networks which contain both constraints and probabilistic functions. **Definition 2.5.4 (The Weighted Counting Task)** Given a mixed network $\mathcal{M} = \langle X, D, P_G, C \rangle$, where $P_G = \{P_1, ..., P_m\}$ the weighted counting task is to compute the normalization constant given by: $$Z = \sum_{\mathbf{x} \in Sol(\mathbf{C})} \prod_{i=1}^{m} P_i(\mathbf{x}_{\mathbf{S}_i})$$ (2.1) where $sol(\mathbf{C})$ is the set of solutions of the constraint portion \mathbf{C} . Equivalently, if we have a cost-based representation of the constraints in C as 0/1 functions, we can rewrite Z as: $$Z = \sum_{\mathbf{x} \in \mathbf{X}} \prod_{i=1}^{m} P_i(\mathbf{x}_{\mathbf{S}_i}) \prod_{j=1}^{p} C_j(\mathbf{x})$$ (2.2) We will refer to Z as **weighted counts** and we can see that mathematically, it is identical to the partition function. **Definition 2.5.5 (Marginal task)** Given a mixed network $\mathcal{M} = \langle X, D, F, C \rangle$, the marginal task is to compute the marginal distribution at each variable. Namely, for each variable X_i and $X_i \in D_i$, compute: $$P(x_i) = \sum_{\mathbf{x} \in \mathbf{X}} \delta_{x_i}(\mathbf{x}) P_{\mathcal{M}}(\mathbf{x}), \text{ where } \delta_{x_i}(\mathbf{x}) = \begin{cases} 1 & \text{if } X_i \text{ is assigned the value } x_i \text{ in } \mathbf{x} \\ 0 & \text{otherwise} \end{cases}$$ When we are given a probabilistic network that has zeros, we can extract a constraint portion from it, generating an explicit mixed network as we show below. **Definition 2.5.6 (Modified Mixed network)** Given a mixed network $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \mathbf{C} \rangle$, a modified mixed network is a four-tuple $\mathcal{M}' = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \mathbf{C}' \rangle$ where $\mathbf{C}' = \mathbf{C} \cup \{FC_i\}_{i=1}^m$ where $$FC_i(\mathbf{S}_i = \mathbf{s}_i) = \begin{cases} 0 & if \ F_i(\mathbf{s}_i) = 0\\ 1 & Otherwise \end{cases}$$ (2.3) FC_i can be expressed as a relation. It is sometimes called the flat constraints of the probability function. Clearly, the modified mixed network M' and the original mixed network M are equivalent in that $P_{\mathcal{M}'} = P_{\mathcal{M}}$. It is easy to see that the weighted counts over a mixed network specialize to (a) the probability of evidence in a Bayesian network, (b) the partition function in a Markov network and (c) the number of solutions of a constraint network. The marginal problem can express the posterior marginals in a Bayesian or Markov network. #### 2.5.1 Mixed Markov and Bayesian networks #### 2.5.2 Mixed cost networks We often have combinatorial optimization tasks that distinguish between local cost functions and local constraints. While constraints can be expressed as cost functions, maintaining them separate can invite specific constraint processing algorithms that would improve performance. #### Definition 2.5.7 (mixed cost and constraint networks) Given... A classical example is integer linear programs. ## 2.6 Summary and bibliographical comments The work on graphical models can be seen as originating from two communities. The one that centers on statistics, probabilities and aim at capturing probability distributions vs the one that centers on deterministic relationships, such as constraint networks and logic systems. Each represent an extreme point in a spectrum of models. Each went through the process of generalization and extensions towards the other; probablistic models were augmented with constraint processing and utility information (e.g., leading to influence diagrams), and constraint networks were extended to soft constraints and into fuzzy type information. The seminal work by Bistareli, Rossi and Montanari [11] titled semiring-based constraint satisfaction and optimization and the whole line of work that followed provides a foundational unifying treatment of graphical models, using the mathematical framework of semirings. Varoius semirings yield different graphical models, using the umbrealla name Soft Constraints. The work emerged from and generalizes the area of constraint networks. Constraint networks were distinguished as semirings that are *idempotent*. For a complete treatment see [10]. Another line of work rooted at probabilistic networks was introduced by Shenoy and Shafer providing an axiomatic treatment for probability and belief-function propagation [52, 53]. Their framework is focused on an axiomatic formulation of the two operators of combination and marginalization in graphical models. The work by Dechter [18, 20] focusing on unifying variable elimination algorithms across constraint networks, cost networks and probabilistic networks demonstrate that common algorithms can be applied across all these graphical models such as constraints networks,
cost-networks, propositional cnfs, influence diagrams and probabilistic networks. can be expressed using also the two operation of combination and marginalization [35]. This work is the basis of the exposition in this book. Other work that observe the applicability of common message-passing algorithms over certain restricted graphs beyond probabilistic networks only, or constraint networks only is the work by Srinivas and McEliece [3] titled the generalized distributive law. ## Chapter 3 # Bucket-Elimination for Deterministic Networks This chapter is the first of three chapters in which we introduce the bucket-elimination inference scheme. This scheme characterizes all inference algorithms over graphical models, where by inference we mean algorithms that solve queries by inducing equivalent model representations according to some set of inference rules. These are sometimes called reparameterization schemes because they generate an equivalent specification of the problem from which answers can be produced easily. We will see that the bucket elimination scheme is applicable to most, if not all, of the types of queries and graphical models we discussed in Chapter 2, but its general structure and properties are most readily understood in the context of constraint networks. Therefore, this chapter introduces bucket elimination in its application to constraint networks. In the following chapter, we will apply this scheme to probabilistic reasoning and combinatorial optimization. Bucket-elimination algorithms are *knowledge-compilation* methods: they generate an equivalent representation of the input problem from which various queries are answerable in polynomial time. In this chapter, the target query is whether or not an input constraint network is consistent. To illustrate the basic idea behind bucket elimination, let's walk through a simple constraints problem. Consider the graph coloring problem in Figure ??. The task is to assign one of two colors (green or red) to each node in the graph so that adjacent nodes Figure 3.1: A graph coloring example (a) and a schematic execution of adaptive-consistency (b,c) will have different colors. Here is one way to solve this problem: consider node E first. It can be colored either green or red. Since only two colors are available it follows that D and C must have identical colors; thus, C=D can be inferred, and we can add this as a new constraint in our network without changing its solutions set. We can ignore variable E from now on since we already summarized his impact on the rest of the problem when we added C=D. We focus on variable C next. Together, the inferred constraint C=D and the input constraint $C\neq B$ imply that $D\neq B$, and we add this constraint to the problem. Having taken into account the effect of C on the other variables in the network, we can ignore C also from now on. Continuing in this fashion with node D, we infer A=B. However, since there is an input constraint $A\neq B$ we have reached a contradiction and can conclude that the original set of constraints is inconsistent. The algorithm which we just executed, is known as *adaptive-consistency* in the constraint literature [23] and it can solve any constraint satisfaction problem. The algorithm works by processing and *eliminating* variables one by one, while deducing the effect of the eliminated variable on the rest of the problem. The elimination operation first joins all the relations that are defined on the current variable and then projects out the variable. Adaptive-consistency can be described using a data structure called buckets as follows: given an ordering of the variables, we process the variables from last to first. In the previous example, the ordering was d = A, B, D, C, E, and we processed the variables from E to A. Note that we will use this convention throughout: we assume that the inference algorithm process the variables from last to first w.r.t to a given ordering. The reason for that will be clear later. The first step is to partition the constraints into ordered buckets, so that the bucket for the current variable contains all constraints that mention the current variable and that have not been placed in a previous bucket. In our example, all the constraints mentioning the last variable E are put in a bucket designated as E0 bucket E1. Subsequently, all the remaining constraints mentioning E1 are placed in E2. The general partition rule given an ordering is that each constraint identifies the variable E3 in its scope that appears latest in the ordering, and then places the constraint in E3. After this initialization step, the buckets are processed from last to first. Processing a bucket means solving the subproblem defined by the constraints in the bucket and then inferring the constraint that is imposed by that subproblem on the rest of the variables excluding the bucket's variable. In other words, we compute the constraint that the bucket-variable induces on the variables that precede it in the ordering. As we saw, processing bucket E produces the constraint D = C, which is placed in $bucket_C$. By processing $bucket_C$, the constraint $D \neq B$ is generated and placed in $bucket_D$. While processing $bucket_D$, we generate the constraint A = B and put it in $bucket_B$. When processing $bucket_B$ inconsistency is discovered between the inferred $A \neq B$ and the input constraint A = B. The buckets' final contents are shown in Figure 3.1b. The new inferred constraints are displayed to the right of the bar in each bucket. Observe that at each step, one variable and all its related constraints are, in fact, solved, and a new constraint is inferred on all of the rest of the participating variables. Observe also that because the new added constraints are inferred, the problem itself does not change and with or without the added constraints, it has the same set of solutions. However, what is significant is that once all the buckets are processed, and if no inconsistencies were discovered, a solution can be generated in a so called backtrack-free manner. This means that a solution can be assembled by assigning values to the variables progressively, starting with the first variable in ordering d and this process is guaranteed to continue until all the variables are assigned a value from their respective domains, thus yielding a solution to the problem. The notion of backtrack-free constraint network relative to an ordering is central to the theory of constraint processing and will be defined shortly. The bucket-elimination algorithm illustrated above for constraints is applicable to general graphical models as we will show. The algorithm is applied to the given model (e.g., a Bayesian network or a cost network) for the given particular query. ### 3.1 The case of Constraint Networks We have presented an informal definition of the bucket elimination algorithm on constraint networks called adaptive-consistency. Here we will provide a formal definition of the algorithm, using the formalism of constraint networks introduced in the previous chapter and utilizing the the following operations: Definition 3.1.1 (operations on constraints: select, project, join) Let R be a relation on a set S of variables, let $Y \subseteq S$ be a subset of the variables, and let Y = y (or y) be an instantiation of the variables in Y. We denote by $\sigma_y(R)$ the selection of those tuples in R that agree with Y = y. We denote by $\Pi_Y(R)$ the projection of the relation R on the subset Y, that is, a tuple Y = y appears in $\Pi_Y(R)$ if and only if it can be extended to a full tuple in R. Let R_{S_1} be a relation on a set S_1 of variables and let R_{S_2} be a relation on a set S_2 of variables. We denote by $R_{S_1} \bowtie R_{S_2}$ the natural join of the two relations. The join of R_{S_1} and R_{S_2} is a relation defined over $S_1 \cup S_2$ containing all the tuples t, satisfying $t_{S_1} \in R_{S_1}$ and $t_{S_2} \in R_{S_2}$. Using the above operations, adaptive-consistency can be specified as in Figure 3.2. In step 1 the algorithm partitions the constraints into buckets whose structure depends on the variable ordering used. The main bucket operation is given in steps 4 and 5. ``` ADAPTIVE-CONSISTENCY (AC) Input: a constraint network \mathcal{R} = (\mathcal{X}, \mathcal{D}, \mathcal{R}), an ordering d = (x_1, \dots, x_n) output: A backtrack-free network, denoted E_d(\mathcal{R}), along d, if the empty constraint was not generated. Else, the problem is inconsistent Partition constraints into bucket_1, \ldots, bucket_n as follows: 1. for i \leftarrow n downto 1, put in bucket_i all unplaced constraints mentioning x_i. 2. for p \leftarrow n downto 1 do for all the constraints R_{S_1}, \ldots, R_{S_i} in bucket_p do 3. A \leftarrow \bigcup_{i=1}^{j} S_i - \{x_p\} 4. R_A \leftarrow \Pi_A(\bowtie_{i=1}^j R_{S_i}) 5. 6. if R_A is not the empty relation then add R_A to the bucket of the latest variable in scope A, 7. else exit and return the empty network return E_d(\mathcal{R}) = (X, D, bucket_1 \cup bucket_2 \cup \cdots \cup bucket_n) 8. ``` Figure 3.2: Adaptive-Consistency as a bucket-elimination algorithm Algorithm adaptive-consistency specifies that it returns a "backtrack-free" network along the ordering d. This concept is related to the search approach that is common for solving constraint satisfaction, and in particular, to backtracking search (for more see Chapter ??). Backtracking search assign values to the variables in a certain order in a depth-first manner, checking the relevant constraints, until an assignment is made to all the variables or a dead-end is reached where no consistent values exist. If a dead-end is reached, search will backtrack to a previous variable, change its value, and proceed again along the ordering. We say that a constraint network is backtrack-free along an ordering d of its variables if it is guaranteed that a dead-end will never be encountered
by backtrack search. We next define the notion of backtrack-free network. It is based on the notion of a partial solution. **Definition 3.1.2 (partial solution)** Given a constraint network \mathcal{R} , we say that an assignment of values to a subset of the variables $S = \{X_1, ..., X_j\}$ given by $\bar{a} = (\langle X_1, a_1 \rangle, \langle X_2, a_2 \rangle, ..., \langle X_j, a_j \rangle)$ is consistent relative to \mathcal{R} iff it satisfies every constraint whose scope is subsumed in S. The assignment \bar{a} is also called a partial solution of \mathcal{R} . **Definition 3.1.3 (backtrack-free search)** A constraint network is backtrack-free relative to a given ordering $d = (X_1, ..., X_n)$ if for every $i \le n$, every partial solution over $(X_1, ..., X_i)$ can be consistently extended to include X_{i+1} . We are now ready to state the main property of adaptive-conistency. Theorem 3.1.4 (Correctness and Completeness of Adapative-consistency) [23] Given a set of constraints and an ordering of variables, adaptive-consistency decides if a set of constraints is consistent and, if it is, the algorithm always generates an equivalent representation that is backtrack-free along the input variable ordering. □ Proof: See exercises **Example 3.1.5** Consider the graph coloring problem depicted in Figure ?? (modified from example ?? with colors represented by numbers). The figure shows a schematic execution of adaptive-consistency using the bucket data structure for the two orderings $d_1 = (E, B, C, D, A)$ and $d_2 = (A, B, D, C, E)$. The initial constraints, partitioned into buckets for both orderings, are displayed in the figure to the left of the double bars, while the constraints generated by the algorithm are displayed to the right of the double bar, in their respective buckets. Let's focus first on ordering d_2 : as shown in 3.4, adaptive-consistency proceeds from E to A and imposes constraints on the parents of each processed variable, which are those variables appearing in its bucket. To process $bucket_E$ all three constraints in the buckets are solved and the set of solutions is projected over D, C, and B, recording the ternary constraint R_{DCB} which is placed in $bucket_C$ (see Figure 3.4 for details). Next, the algorithm processes $bucket_C$ which contains $C \neq A$ and the new constraint R_{DCB} . Joining these two constraints and projecting out C yields a constraint R_{DB} that is placed in the bucket of D, and so on. In our case $R_{DB} \equiv D = B$ and its generation is depicted in two steps of Figure 3.4. Notice that adaptive-consistency along ordering d_1 generates a different set of constraints, and in particular it generates only binary constraints, while along ordering d_2 the algorithm generates a ternary constraint. Notice also that for the ordering d_1 , the constraint $B \neq E$ generated in the bucket of D is displayed for illustration only in the bucket of B (in parentheses), since there is already an identical original constraint. Indeed the constraint is redundant. Example 3.1.6 An alternative graphical illustration of the algorithm's performance using d_2 is given in Figure 3.4. The figure shows, through the changing graph, how constraints are generated in the reverse order of $d_2 = A, B, D, C, E$, and how a solution is created in the forward order of d_2 . The first step is processing the constraints that mention variables E. These are all joined to create a relation over EDBC and then E is projected out, yielding a constraint on DBC whose relation is explicitly given in the figure. The relation is added to the set of constraints and is depicted as an added clique over the 3 nodes. Then E is removed, yielding the 3rd graph that includes only nodes A, D, B, C. The next variable to be processed is C. the constraints that include C are the original constraint $B \neq C$ and the new constraint over DBC. Joining both yields a constraint on DBC as depicted, and projecting out C from this relation yields a constraint on DB whose meaning is the equality constraint. variable D is eliminated next and then B, yielding the last variable A with two values $\{1, 2\}$. Subsequently, the reverse process of generating a solution starts at A. Since it has 2 legitimate values, we can select any of those. The value A=1 is selected. The next value satisfying the inequality constraint is B=2, then D=2 (satisfying D=B), then C=3 (satisfying $C \neq B$). To assign a value for E we look at the constraint on EDBC which only allows E=1 to extend the current partial solution A=1, B=2, D=2, C=3. yielding a full solution. What is the complexity of adaptive-consistency? It is clearly linear in the number of buckets and the time to process each bucket. However, since processing a bucket amounts to solving a constraint-satisfaction subproblem (generating the join of all relations) its complexity is exponential in the number of variables mentioned in a bucket. Conveniently, the number of variables appearing in a bucket along a given ordering, can be obtained using the *induced-width* of the graph along that ordering. The induced-width is an important graph parameter that is instrumental to all bucket-elimination algorithms, and we define it next. **Definition 3.1.7 (Induced graph and induced width)** Given an undirected graph G = (V, E), where $V = \{v_1, ..., v_n\}$ is the set of nodes, E is a set of arcs over V, an ordered graph is a pair (G, d), where $d = (v_1, ..., v_n)$ is an ordering of the nodes. The nodes adjacent to v that precede it in the ordering are called its parents. The induced graph of an ordered graph (G, d) is an ordered graph (G^*, d) where G^* is obtained from G as follows: the nodes of G are processed from last to first (top to bottom) along d. When a node v is processed, all of its parents are connected. The induced width of an ordered graph, (G, d), denoted $w^*(d)$, is the maximum number of parents a node has in the the induced ordered graph (G^*, d) . The induced width of a graph, w^* , is the minimal induced width over all its orderings. **Example 3.1.8** Generating the induced-graph for $d_1 = E, B, C, D, A$ and $d_2 = A, B, D, C, E$ leads to the two graphs in Figure 3.5. The broken lines are the newly added arcs. The induced width along d_1 and d_2 are 2 and 3 respectively. They suggest different performance bounds for adaptive-consistency because the number of variables in a bucket is #### Ordering d_1 Bucket(A): $A \neq D$, $A \neq B$ Bucket(D): $D \neq E \mid \mid R_{DB}$ Bucket(C): $C \neq B$ $C \neq E$ Bucket(B): $B \neq E \mid \mid R_{BE}^1$, R_{BE}^2 Bucket(E): $|| R_E$ Ordering d_2 Bucket(E): $E \neq D$, $E \neq C$, $E \neq B$ $Bucket(c): C \neq B \mid\mid R_{DCB}$ $Bucket(D): D \neq A \mid\mid R_{DB}(=D=B)$ $Bucket(B): B \neq A \mid\mid R_{AB}(=R \neq B)$ Bucket(A): $|| R_A$ Figure 3.3: A modified graph coloring problem bounded by the number of parents of the corresponding variable in the induced ordered graph which is equal to its induced-width. \Box **Theorem 3.1.9** The time and space complexity of Adaptive-Consistency is $O((r+n)k^{w^*(d)+1})$ and $O(n \cdot k^{w^*(d)})$ respectively, where n is the number of variables, k is the maximum domain size and $w^*(d)$ is the induced-width along the order of processing d and r is the number of the problems' constraints. **Proof:** Since the total number of input functions plus those generated is bounded by r + n and since the computation in a bucket is $O(r_i k^{w^*(d)+1})$, where r_i is the number of functions in bucket i, the total over all buckets is $O((r+n)k^{w^*(d)+1})$ The above analysis suggests that problems having bounded induced width $w^* \leq b$ for some constant b can be solved in polynomial time. In particular, observe that when the graph is cycle-free its width and induced width are 1. Consider, for example, ordering d = (A, B, C, D, E, F, G) for the tree in Figure 3.6. As demonstrated by the schematic execution along d in Figure 3.6, adaptive-consistency generates only unary relationships Figure 3.4: A schematic variable-elimination and solution genration process is backtrack-free (comment: change the order of d_2) Figure 3.5: The induced width along the orderings: $d_1 = A, B, C, D, E$ and $d_2 = E, B, C, D, A$ in this cycle-free graph. We note that on trees the algorithm can be accomplished in a distributed manner as a message passing algorithm which converges to exact solution. We will come back to this point in a later chapter. ## 3.2 Bucket elimination for Propositional CNFs Since propositional CNF formulas, discussed in Chapter 2, are a special case of constraint networks, we might wonder what adaptive consistency looks like when applied to them. Propositional variables take only two values $\{true, false\}$ or "1" and "0." We denote propositional variables by uppercase letters P, Q, R, \ldots , propositional literals (i.e., P = "true" or P = "false") by P and $\neg P$ and disjunctions of literals, or clauses, are denoted by α, β, \ldots A unit clause is a clause of size 1. The notation $(\alpha \vee T)$, when $\alpha = (P \vee Q \vee R)$ is shorthand for the disjunction $(P \vee Q \vee R \vee T)$. $(\alpha \vee \beta)$ denotes the clause whose literal appears in either α or β . The resolution operation over two clauses $(\alpha \vee Q)$ and $(\beta \vee \neg Q)$ results in a clause $(\alpha \vee \beta)$, thus eliminating Q. A formula φ in conjunctive normal form (CNF) is a set of clauses $\varphi = \{\alpha_1, \ldots, \alpha_t\}$ that denotes their conjunction. The set of models or solutions of a formula φ is the set of all truth assignments to all its symbols Figure 3.6: Schematic execution of adaptive-consistency on a tree network. D_X denotes unary constraints over X . that do not violate any clause in φ . Deciding if a formula is satisfiable is known to be NP-complete [31]. It
turns out that the join-project operation used to process and eliminate a variable by adaptive-consistency over relational constraints translates to pair-wise resolution when applied to clauses [26]. **Definition 3.2.1 (extended composition)** The extended composition of relation R_{S_1} , ..., R_{S_m} relative to a subset of variables $A \subseteq \bigcup_{i=1}^m S_i$, denoted $EC_A(R_{S_1}, \ldots, R_{S_m})$, is defined by $$EC_A(R_{S_1},\ldots,R_{S_m})=\pi_A(\bowtie_{i=1}^m R_{S_i})$$ When the operation of extended composition is applied to m relations, it is called extended m-composition. If the projection operation is restricted to subsets of size i, it is called extended (i, m)-composition. It is not hard to see that extended composition is the operation applied in each bucket by adaptive-consistency. We next show that the notion of resolution is equivalent to extended 2-composition. Example 3.2.2 Consider the two clauses $\alpha = (P \vee \neg Q \vee \neg O)$ and $\beta = (Q \vee \neg W)$. Now let the relation $R_{PQO} = \{000, 100, 010, 001, 110, 101, 111\}$ be the models of α and the relation $R_{QW} = \{00, 10, 11\}$ be the models of β . Resolving these two clauses over Q generates the resolvent clause $\gamma = res(\alpha, \beta) = (P \vee \neg O \vee \neg W)$. The models of γ are $\{(000, 100, 010, 001, 110, 101, 111\}$. It is easy to see that $EC_{PQW}(R_{PQO}, R_{QW}) = \pi_{RQW}(R_{PQO} \bowtie R_{QW})$ yields the models of γ . Indeed, **Lemma 3.2.3** The resolution operation over two clauses, $(\alpha \vee Q)$ and $(\beta \vee \neg Q)$, results in a clause $(\alpha \vee \beta)$ for which $models(\alpha \vee \beta) = EC_{Q'}(models(\alpha \vee Q), models(\beta \vee \neg Q))$, where Q' is the union of scopes of both clauses excluding Q. \square Substituting extended decomposition by resolution in adaptive consistency yields a bucket-elimination algorithm for propositional satisfiability which we call *directional resolution* (DR). We call the output theory (i.e., formula) of directional resolution, denoted $E_d(\varphi)$, the directional extension of φ . The following description of the algorithm should look familiar. Given an ordering $d = (Q_1, ..., Q_n)$, all the clauses containing Q_i that do not contain any symbol higher in the ordering are placed in the bucket of Q_i , denoted bucket_i. The algorithm processes the buckets in the reverse order of d. Processing of bucket_i means resolving over Q_i all the possible pairs of clauses in the bucket and inserting the resolvents into appropriate lower buckets. Note that if the bucket contains a unit clause $(Q_i \text{ or } \neg Q_i)$, only unit resolutions are performed. As implied by Theorem 3.1.9, DR is guaranteed to generate a backtrack-free representation along the order of processing. Indeed, as already observed in the above example, once all the buckets are processed, and if the empty clause was not generated, a truth assignment (model) can be assembled in a backtrack-free manner by consulting $E_d(\varphi)$, using the order d. **Theorem 3.2.4 (backtrack-free by DR)** Given a theory φ and an ordering of its variables d, the directional extension $E_d(\varphi)$ generated by DR is backtrack-free along d ``` DIRECTIONAL-RESOLUTION (DR) ``` **Input:** A CNF theory φ , an ordering $d = Q_1, \ldots, Q_n$ of its variables. **OutputA** decision of whether φ is satisfiable. If it is, a theory $E_d(\varphi)$, equivalent to φ , else an empty directional extension. - 1. **Initialize:** generate an ordered partition of clauses into buckets $bucket_1, \ldots, bucket_n$, where $bucket_i$ contains all clauses whose highest variable is Q_i . - 2. for $i \leftarrow n$ downto 1 process $bucket_i$: - 3. **if** there is a unit clause **then** (the instantiation step) apply unit-resolution in $bucket_i$ and place the resolvents in their right buckets. **if** the empty clause was generated, theory is not satisfiable. - 4. **else** resolve each pair $\{(\alpha \vee Q_i), (\beta \vee \neg Q_i)\} \subseteq bucket_i$. **if** $\gamma = \alpha \vee \beta$ is empty, return $E_d(\varphi) = \{\}$, the theory is not satisfiable **else** determine the index of γ and add it to the appropriate bucket. - 5. **return** $E_d(\varphi) \leftarrow \bigcup_i bucket_i$ Figure 3.7: Directional-resolution Figure 3.8: A schematic execution of directional resolution using ordering d = (E, D, C, B, A) **Example 3.2.5** Given the input theory $\varphi_1 = \{(\neg C), (A \lor B \lor C), (\neg A \lor B \lor E), (\neg B \lor E)\}$ $(C \vee D)$, and an ordering d = (E, D, C, B, A), the theory is partitioned into buckets and processed by directional resolution in reverse order. Resolving over variable A produces a new clause $(B \vee C \vee E)$, which is placed in *bucket*_B. Resolving over B then produces clause $(C \vee D \vee E)$, which is placed in *bucket*_C. Finally, resolving over C produces clause $(D \vee E)$, which is placed in $bucket_D$. Directional resolution now terminates, since no resolution can be performed in $bucket_D$ and $bucket_E$. The output is a non-empty directional extension $E_d(\varphi_1)$. Once the directional extension is available, model generation can begin. There are no clauses in the bucket of E, the first variable in the ordering, and therefore E can also be assigned any value (e.g., E=0). Given E=0, the clause $(D \vee E)$ in bucket_D implies D=1, clause $\neg C$ in bucket_C implies C=0, and clause $(B \lor C \lor E)$ in bucket_B, together with the current assignments to C and E, implies B=1. Finally, A can be assigned any value since both clauses in its bucket are satisfied by previous assignments. The initial partitioning into buckets along the ordering d as well as the buckets' contents generated by the algorithm following resolution over each bucket are depicted in Figure 3.8. Not surprisingly, the complexity of directional-resolution is exponentially bounded (time and space) in the *induced width* of the theory's interaction graph along the order of processing. Notice that the graph of theory φ_1 along the ordering d (depicted also in Figure 3.8) has an induced width of 3. **Lemma 3.2.6** Given a theory φ and an ordering $d = (Q_1, ..., Q_n)$, if Q_i has at most w parents in the induced graph along d, then the bucket of Q_i in $E_d(\varphi)$ contains no more than 3^{w+1} clauses. **Proof:** Given a clause α in the bucket of Q_i , there are three possibilities for each parent P of Q_i : either P appears in α , $\neg P$ appears in α , or neither of them appears in α . Since Q_i also appears in α , either positively or negatively, the number of possible clauses in a bucket is no more than $2 \cdot 3^w < 3^{w+1}$. Since the number of parents of each variable is bounded by the induced-width along the order of processing we get: #### Theorem 3.2.7 (complexity of DR) Given a theory φ and an ordering of its variables d, the time complexity of algorithm DR along d is $O(n \cdot 9^{w_d^*})$, and $E_d(\varphi)$ contains at most $n \cdot 3^{w_d^*+1}$ clauses, where w_d^* is the induced width of φ 's interaction graph along d. \square ## 3.3 Bucket elimination for linear inequalities A special type of constraint is one that can be expressed by linear inequalities. The domains may be the real numbers, the rationals or finite subsets. In general, a linear constraint between r variables or less is of the form $\sum_{i=1}^{r} a_i x_i \leq c$, where a_i and c are rational constants. For example, $(3x_i+2x_j \leq 3) \wedge (-4x_i+5x_j \leq 1)$ are allowed constraints between variables x_i and x_j . In this special case, variable elimination amounts to the standard Gaussian elimination. From the inequalities $x-y \leq 5$ and x>3 we can deduce by eliminating x that y>2. The elimination operation is defined by: **Definition 3.3.1 (Linear elimination)** Let $\alpha = \sum_{i=1}^{(r-1)} a_i x_i + a_r x_r \leq c$, and $\beta = \sum_{i=1}^{(r-1)} b_i x_i + b_r x_r \leq d$. Then $elim_r(\alpha, \beta)$ is applicable only if a_r and b_r have opposite signs, in which case $elim_r(\alpha, \beta) = \sum_{i=1}^{r-1} (-a_i \frac{b_r}{a_r} + b_i) x_i \leq -\frac{b_r}{a_r} c + d$. If a_r and b_r have the same sign the elimination implicitly generates the universal constraint. DIRECTIONAL-LINEAR-ELIMINATION (φ, d) **Input:** A set of linear inequalities φ , an ordering $d = x_1, \ldots, x_n$. **Output**A decision of whether φ is satisfiable. If it is, a backtrack-free theory $E_d(\varphi)$. - 1. **Initialize:** Partition inequalities into ordered buckets. - 2. for $i \leftarrow n$ downto 1 do - 3. **if** x_i has one value in its domain **then** - substitute the value into each inequality in the bucket and put the resulting inequality in the right bucket. - 4. **else,for each** pair $\{\alpha, \beta\} \subseteq bucket_i$, compute $\gamma = elim_i(\alpha, \beta)$ **if** γ has no solutions, return $E_d(\varphi) = \{\}$, "inconsistency" **else** add γ to the appropriate lower bucket. - 5. **return** $E_d(\varphi) \leftarrow \bigcup_i bucket_i$ Figure 3.9: Fourier Elimination; DLE It is possible to show that the pair-wise join-project operation applied in a bucket can be accomplished by $linear\ elimination$ as defined above. Applying adaptive-consistency to linear constraints and processing each pair of relevant inequalities in a bucket by linear elimination yields a bucket elimination algorithm $Directional\ Linear\ Elimination$ (abbreviated DLE), which is the well known Fourier elimination algorithm. (see [38]). As in the case of propositional theories, the algorithm decides the solvability of any set of linear inequalities over the Rationals and generates a problem representation which is backtrack-free. The algorithm is summarized in
Figure 3.9. **Theorem 3.3.2** Given a set of linear inequalities φ , algorithm DLE (Fourier elimination) decides the consistency of φ over the Rationals and the Reals, and it generates an equivalent backtrack-free representation. \square **Example 3.3.3** Consider the set of inequalities over the Reals: ``` bucket_4: 5x_4 + 3x_2 - x_1 \le 5, x_4 + x_1 \le 2, -x_4 \le 0, ``` $$bucket_3: x_3 \le 5, x_1 + x_2 - x_3 \le -10$$ $$bucket_2: x_1 + 2x_2 \leq 0.$$ $bucket_1$: Figure 3.10: initial buckets $$bucket_4: 5x_4 + 3x_2 - x_1 \le 5, x_4 + x_1 \le 2, -x_4 \le 0,$$ $$bucket_3: x_3 \le 5, x_1 + x_2 - x_3 \le -10$$ $$bucket_2: x_1 + 2x_2 \le 0 \mid |3x_2 - x_1 \le 5, x_1 + x_2 \le -5$$ $bucket_1: || x_1 \leq 2.$ Figure 3.11: final buckets $$\varphi(x_1, x_2, x_3, x_4) = \{(1) \ 5x_4 + 3x_2 - x_1 \le 5, \ (2) \ x_4 + x_1 \le 2, \ (3) \ -x_4 \le 0,$$ $$(4) \ x_3 \le 5, \ (5) \ x_1 + x_2 - x_3 \le -10, \ (6) \ x_1 + 2x_2 \le 0 \}.$$ The initial partitioning into buckets is shown in Figure 3.10. Processing $bucket_4$, which involves applying elimination relative to x_4 over inequalities $\{(1),(3)\}$ and $\{(2),(3)\}$, respectively, results in $3x_2 - x_1 \le 5$, placed into $bucket_2$, and $x_1 \le 2$, placed into $bucket_1$. Next, processing the two inequalities $x_3 \le 5$, and $x_1 + x_2 - x_3 \le -10$ in $bucket_3$ eliminates x_3 , yielding $x_1 + x_2 \le -5$ placed into $bucket_2$. When processing $bucket_2$, containing $x_1 + 2x_2 \le 0$, $3x_2 - x_1 \le 5$, and $x_1 + x_2 \le -5$, no new inequalities are added. The final set of buckets is displayed in Figure 3.11. Once the algorithm is applied, we can generate a solution in a backtrack-free manner as usual. Select a value for x_1 from its domains that satisfies the unary inequalities in $bucket_1$. From there on, after selecting assignments for x_1, \ldots, x_{i-1} , select a value for x_i that satisfies all the inequalities in $bucket_i$. This is an easy task, since all the constraints are unary once the values of x_1, \ldots, x_{i-1} are determined. The complexity of Fourier elimination is not, however, bounded exponentially by the induced width. The reason is that the number of linear inequalities that can be specified over a scope of size i cannot be bounded exponentially by i. ## 3.4 Summary and bibliography notes Algorithm Adaptive-consistency was introduced by Dechter [23] as well as its complexity analysis using the concept of *induced-width* as the principle graph-parameter that controls the algorithms's complexity. A similar elimination algorithm was introduced earlier by Seidel [51]. It was observed that these algorithms belong to the class of Dynamic Programming algorithms as presented in [8]. In [24], the connection between Adaptive-Consistency and tree-clustering algorithms was made explicit, as will be shown in Chapter ??. The observation that pair-wise resolution is the variable-elimination operation for CNFs and adaptive-consistency implies algorithm directional-resolution for CNFs, was presented in [25, 47]. It was observed that the resulting algorithm is the well known David-Putnam algorithm [14]. This correspondence offered bounding the complexity worst-case performance of the directional resolution algorithm exponentially by the induced-width as well. ### 3.5 Exercises - 1. Prove theorem 3.1.9 - 2. Prove Lemma 3.2.3. - 3. Prove that Directional Resolution is polynomial for 2-CNFs. - 4. Assume that the input to Directional Resolution is a Horn theory (clauses that have at most one positive literal). Is the algorithm tractable? Analyze its complexity. - 5. Define a bucket-elimination algorithm for a) finding all solutions to constraint satisfaction problem, b) for finding all solutions consistent with $X_1 = 0, X_2 = 1$. - 6. Consider a tree-like constraint network. Show how would adaptive-consistency be applied and how a solution can be generated [give a specific tree example]. 7. Write adaptive-consistency for tree networks as a distributed message-passing algorithms. Apply the algorithm to an arbitrary binary constraint network and discuss the properties of this algorithm ## Chapter 4 # Bucket-Elimination for Probabilistic Networks Having investigated bucket-elimination in deterministic constraint networks in the previous chapter, we now present the bucket-elimination algorithm for the three primary queries defined over probabilistic networks: 1) belief-updating or computing posterior marginals (bel) as well as finding the probability of evidence 2) finding the most probable explanation (mpe) and 3) finding the maximum a posteriori hypothesis (map). Recall the definition of Bayesian network in Definition 4.0.1. We start focusing on queries over Bayesian networks first and later show that the algorithms we derive are applicable with minor changes to Markov networks as well. **Definition 4.0.1 (Bayesian networks)** A Bayesian network (BN) is a 4-tuple $\mathcal{B} = \langle \mathbf{X}, \mathbf{D}, \mathbf{P}_G, \prod \rangle$. $\mathbf{X} = \{X_1, \dots, X_n\}$ is a set of ordered variables defined over domains $\mathbf{D} = \{D_1, \dots, D_n\}$, where $o = (X_1, \dots, X_n)$ is an ordering of the variables. The set of functions $P_G = \{P_1, \dots, P_n\}$ consist of conditional probability tables (CPTs for short) $P_i = \{P(X_i | \mathbf{Y}_i)\}$ where $\mathbf{Y}_i \subseteq \{X_{i+1}, \dots, X_n\}$. These P_i functions can be associated with a directed acyclic graph G in which each node represents a variable X_i and $\mathbf{Y}_i = pa(X_i)$ are the parents of X_i in G. That is, there is a directed arc from each parent variable of X_i to X_i . The Bayesian network \mathcal{B} represents the probability distribution over \mathbf{X} , $P_{\mathcal{B}}(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | x_{pa(X_i)})$. We define an evidence set e as an instantiated subset of the variables. ## 4.1 Belief Updating and Probability of Evidence Belief updating is the primary inference task over Bayesian networks. The task is to determine the posterior probability of singleton variables once new evidence arrives. For instance, if we are interested in likelihood that the sprinkler was on last night (as we were in a Bayesian network example in Chapter 2), then we need to update this likelihood if we observe that the pavement near the sprinkler is slippery. More generally, we are sometime asked to compute the posterior marginals of a subset of variables. Another important query over Bayesian networks, computing the probability of the evidence, namely computing the joint likelihood of a specific assignment to a subset of variables, is tightly related to belief updating. We will show in this chapter how these tasks can be computed by the bucket-elimination scheme. We will distinguish probabilistic functions (i.e., CPTs) given in the input of the Bayesian networks from probabilistic functions generated during computation. So, as we did so far, by P(X|Y) we denote an input CPT of variable X given its parent set Y, while derived probability functions will be denoted by λ s. ## 4.1.1 Deriving BE-bel We next present a step-by-step derivation of a general variable-elimination algorithm for belief updating. We will reserve the symbol P() to describe probability function of probability quantities. Sometime it will refer to a specified function, and sometime it will refer to the semantic notion of probabilities. This algorithm is similar to adaptive-consistency, but the join and project operators of adaptive-consistency are replaced, respectively, with the operations of product and summation. We begin with an example and then proceed to describe the general case. Let $X = x_1$ be an atomic proposition (e.g., pavement = slippery). The problem of belief updating is to compute the conditional probability of x_1 given evidence e, $P(x_1|e)$, and the probability of the evidence's P(e). By Bayes rule we refer to $P(x_1|e) = \frac{P(x_1,e)}{P(e)}$, where $\frac{1}{P(e)}$ is the normalization constant denoted by α . To develop the algorithm, we will use the previous example of a Bayesian network, 2.4.2 (Figure 2.4), and assume the evidence is g = 1. Consider the variables in the ordering $d_1 = A, C, B, F, D, G$. We want to compute P(A = a|g = 1) or P(A = a, g = 1) (note that upper case denotes variable names and lower-case denotes a generic value for the same variable.) By definition $$P(a, g = 1) = \sum_{c, b, e, d, g = 1} P(a, b, c, d, e, g) = \sum_{c, b, f, d, g = 1} P(g|f)P(f|b, c)P(d|a, b)P(c|a)P(b|a)P(a).$$ We can now apply some simple symbolic manipulation, migrating each conditional probability table to the left of the summation variables that it does not reference. We get $$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c) \sum_{d} P(d|b, a) \sum_{g=1} P(g|f).$$ (4.1) Carrying the computation from right to left (from G to A), we first compute the right-most summation, which generates a function over F that we denote by $\lambda_G(F)$, defined by: $\lambda_G(f) = \sum_{g=1} P(g|f)$ and place it as far to the left as possible, yielding $$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c) \lambda_{G}(f) \sum_{d} P(d|b, a).$$ (4.2) (We index a generated function by the variable that was summed over to create it; for example, we created $\lambda_G(f)$ by summing over G.) Summation removes or eliminates a variable from the calculation. Summing next over D (generating a function denoted $\lambda_D(B,A)$, defined by $\lambda_D(a,b) = \sum_d P(d|a,b)$), we get $$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \lambda_{D}(a, b) \sum_{f} P(f|b, c) \lambda_{G}(f)$$ (4.3) Next, summing over F (generating $\lambda_F(B,C)$ defined by $\lambda_F(b,c) = \sum_f P(f|b,c)\lambda_G(f)$), we get, $$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \lambda_D(a, b) \lambda_F(b, c)$$ $$(4.4)$$ Summing over B (generating $\lambda_B(A, C)$), we get $$P(a, g = 1) =
P(a) \sum_{c} P(c|a) \lambda_B(a, c)$$ $$(4.5)$$ ``` bucket_G = P(g|f), g = 1 bucket_D = P(d|b, a) bucket_F = P(f|b, c) bucket_B = P(b|a) bucket_C = P(c|a) bucket_A = P(a) ``` Figure 4.1: Initial partitioning into buckets using $d_1 = A, C, B, F, D, G$ Finally, summing over C (generating $\lambda_C(A)$), we get $$P(a, g = 1) = P(a)\lambda_C(a) \tag{4.6}$$ Summing over the values of variable A, we generate $P(g=1) = \sum_a P(a)\lambda_C(a)$. The answer to the query P(a|g=1) can be computed by normalizing the last product. Namely, $P(a|g=1) = \alpha P(a) \cdot \lambda_C(a)$ where $\alpha = \frac{1}{P(g=1)}$. We can create a bucket-elimination algorithm for this calculation by mimicking the above algebraic manipulation, using buckets as the organizational device for the various sums. First, we partition the conditional probability tables (CPTs, for short) into buckets relative to the given order, $d_1 = A, C, B, F, D, G$. In bucket G we place all functions mentioning G. From the remaining CPTs we place all those mentioning D in bucket D, and so on. This is precisely the partition rule we used in the adaptive-consistency algorithm for constraint networks. This results in the initial partitioning given in Figure 4.1. Note that observed variables are also placed in their corresponding bucket. Initializing the buckets corresponds to deriving the expression in Eq. (4.1). Now we process the buckets from last to first (or top to bottom in the figures), implementing the right to left computation in Eq. (4.1). Processing a bucket amounts to eliminating the variable in the bucket from subsequent computation. $bucket_G$ is processed first. We eliminate G by summing over all values g of G, but since we have observed that g = 1, the summation is over a singleton value. The function $\lambda_G(f) = \sum_{g=1} P(g|f) = P(g=1|f)$, is computed and placed in $bucket_F$. In our calculations above, this corresponds to deriving Eq. (4.2) from Eq. (4.1)). Once we have created a new function, it is placed in a Figure 4.2: Bucket elimination along ordering $d_1 = A, C, B, F, D, G$. lower bucket in accordance with the same rule we used to partition the original CPTs. Following order d_1 , we proceed by processing $bucket_D$, summing over D the product of all the functions that are in its bucket. Since there is a single function, the resulting function is $\lambda_D(b,a) = \sum_d P(d|b,a)$ and it is placed in $bucket_B$. Subsequently, we process the buckets for variables F, B, and C in order, each time summing over the relevant variable and moving the generated function into a lower bucket according to the placement rule. Since the query here is to compute the posterior marginal on A given g = 1, and $bucket_A$ contains P(a) and $\lambda_C(a)$, we normalize the product of those two functions to get the answer: $P(a|g = 1) = \alpha \cdot P(a) \cdot \lambda_C(a)$. Figure 4.2 summarizes the flow of this computation. In this example, the generated λ functions were at most two-dimensional; thus, the complexity of processing each bucket using ordering d_1 is (roughly) time and space quadratic in the domain sizes. But would this also be the case had we used a different variable ordering? Consider ordering $d_2 = A, F, D, C, B, G$. To enforce this ordering in our algebraic calculations we require that the summations remain in order d_2 from right to left, yielding (and we leave it to you to figure how the λ functions are generated): $$P(a, g = 1) = P(a) \sum_{f} \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) P(d|a, b) P(f|b, c) \sum_{g=1} P(g|f)$$ $$= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) P(d|a, b) P(f|b, c)$$ $$= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \lambda_{B}(a, d, c, f)$$ $$= P(a) \sum_{f} \lambda_{g}(f) \sum_{d} \lambda_{C}(a, d, f)$$ $$= P(a) \sum_{f} \lambda_{G}(f) \lambda_{D}(a, f)$$ $$= P(a) \lambda_{F}(a)$$ The analogous bucket elimination schematic process for this ordering is shown in Figure 4.3a. As before, we finish by calculating $P(A = a|g = 1) = \alpha P(a)\lambda_F(a)$, where $\alpha = \frac{1}{\sum_a P(a)\lambda_F(a)}$. We conclude this section with a general derivation of the bucket elimination algorithm for probabilistic networks, called BE-bel. As a byproduct, this algorithm yields the probability of the evidence. Consider an ordering of the variables $d = (X_1, ..., X_n)$ and assume we seek $P(X_1|e)$. Note that if we seek the belief for variable X_1 it should initiate the ordering. Later we will see how this requirement can be relaxed. Using the notation $\bar{x}_i = (x_1, ..., x_i)$ and $\bar{x}_i^j = (x_i, x_{i+1}, ..., x_j)$, we want to compute: $$P(x_1, e) = \sum_{\bar{x}_2^n} P(\bar{x}_n, e) = \sum_{\bar{x}_2^{(n-1)}} \sum_{x_n} \prod_i P(x_i, e | x_{pa_i})$$ Separating X_n from the rest of the variables results in $(F_n$ is variable X_n together with its parents): $$= \sum_{\bar{x}_{2}^{(n-1)}} \prod_{X_{i} \in X - F_{n}} P(x_{i}, e | x_{pa_{i}}) \cdot \prod_{X_{i} \in F_{n}} P(x_{i}, e | x_{pa_{i}})$$ $$= \sum_{\bar{x}_{2}^{(n-1)}} \prod_{X_{i} \in X - F_{n}} P(x_{i}, e | x_{pa_{i}}) \cdot \lambda_{n}(x_{S_{n}})$$ where $$\lambda_n(x_{S_n}) = \sum_{x_n} \prod_{X_i \in F_n} P(x_i, e | x_{pa_i})$$ (4.7) and S_n denotes all the variables appearing with X_n in a probability component, (excluding X_n). The process continues recursively with X_{n-1} . Figure 4.3: The bucket's output when processing along $d_2 = A, F, D, C, B, G$ Thus, the computation performed in bucket X_n is captured by Eq. (4.7). Given ordering $d = X_1, ..., X_n$, where the queried variable appears first, the CPTs are partitioned using the rule described earlier. Then buckets are processed from last to first. To process each bucket, the bucket's functions, include two types of functions the original CPT functions denoted by $P_1, ...P_k$ and the generated messages denoted by λ s. For convenience we denote the product of all the original functions placed in $bucket_X$ by ψ_X , $\psi_X = \prod_{P \in bucket_X} P$, where $scope(\psi_X)$ is the union of the scopes of all the original functions in the bucket. The messages are the λ functions computed and placed there by other buckets to which we now refer as $\lambda_1, ..., \lambda_j$ and defined over scopes $S_1, ..., S_j$. All these functions in the bucket are multiplied and the bucket's variable is eliminated by summation. The computed function in $bucket_{X_p}$ is λ_{X_p} and is defined over scope $S_p = \bigcup_i S_i - X_p$ by $\lambda_X = \sum_{X_p} \psi_X \cdot \prod_{\lambda \in bucket_{X_p}} \lambda$. This function is placed in the bucket of its largest-index variable in S_p . Once processing reaches the first bucket, we have all the information to compute the answer which is the product of those functions. If we also process the first bucket we get the probability of the evidence. Algorithm BE-bel is described formally in Figure 4.4. With the above derivation we showed that: **Theorem 4.1.1** Algorithm BE-Bel applied along any ordering that starts with X_1 computes the belief $P(X_1|e)$. It also computes the probability of evidence P(e) as the inverse of the normalizing constant in the first bucket. \square The bucket's operations for BE-bel. Processing a bucket requires the two types of operations on the functions in the buckets, combinations and marginalization. The combination operation in this case is a product, which generates a function whose scope is the union of the scopes of the bucket's functions. The marginalization operation, also called elimination, is summation, summing out the bucket's variable. The algorithm often referred to as beeing a *sum-product algorithm*. Note that we refer to the variables that we eliminate in a bucket as the bucket's variable. Let's look at an example of both of these operations in a potential bucket of B assuming it contains only two functions P(F|B,C), and P(B|A). These functions are displayed in Figure 4.5. To take the product of the functions P(F|B,C) and P(B|A) we create a function over F, B, C, A where for each tuple assignment, the function value is the product of the respective entries in the input functions. To eliminate variable B by summation, we sum the function generated by the product, over all values in D_B . We say that we sum out variable B. The computation of both the product and summation operators are depicted in Figure 4.6. The implementing details of the algorithm to perform these operations might have a significant impact on the performance. In particular, much depends on how the bucket's functions are represented. If, for example, the CPTs are represented as matrices, then we can exploit efficient matrix multiplication algorithms. ## 4.1.2 Complexity of BE-bel Although BE-Bel can be applied along any ordering, its complexity varies considerably across different orderings. Using ordering d_1 we recorded λ functions on pairs of variables #### Algorithm BE-bel **Input:** A belief network $\mathcal{B} = \langle \mathcal{X}, \mathcal{D}, \mathcal{G}, \mathcal{P} \rangle$, an ordering $d = (x_1, \dots, x_n)$; evidence e **output:** The belief $P(x_1|e)$ and probability of evidence P(e) - 1. Partition the input functions (CPTs) into $bucket_1, \ldots, bucket_n$ as follows: for $i \leftarrow n$ downto 1, put in $bucket_i$ all unplaced functions mentioning x_i . Put each observed variable in its bucket. Denote by ψ_i the product of input functions in $bucket_i$. - 2. backward: for $p \leftarrow n$ downto 1 do - 3. **for** all the functions $\psi_{S_0}, \lambda_{S_1}, \dots, \lambda_{S_j}$ in $bucket_p$ **do If** (observed variable) $X_p = x_p$ appears in $bucket_p$, assign $X_p = x_p$ to each function in $bucket_p$ and then put each resulting function in the bucket of the closest variable in its scope. **else**, 4. $$S_p \leftarrow scope(\psi_p) \cup \bigcup_{i=0}^{j}
scope(\lambda_i) - \{X_p\}$$ 5. $$\lambda_p \leftarrow \sum_{X_p} \psi_p \cdot \prod_{i=1}^j \lambda_{S_i}$$ 6. add λ_p to the bucket of the latest variable in S_p , 8. **return** $$P(e) = \alpha = \sum_{X_1} \psi_1 \cdot \prod_{\lambda \in bucket_1} \lambda$$ return: $P(x_1|e) = \frac{1}{\alpha} \psi_1 \cdot \prod_{\lambda \in bucket_1} \lambda$ Figure 4.4: BE-bel: a sum-product bucket-elimination algorithm | В | C | F | P(F B,C) | A | B | P(B A) | |-------|-------|------|----------|--------|-------|--------| | false | false | true | 0.1 | Summer | false | 0.2 | | true | false | true | 0.9 | Fall | false | 0.6 | | false | true | true | 0.8 | Winter | false | 0.9 | | true | true | true | 0.95 | Spring | false | 0.4 | Figure 4.5: Examples of functions in the bucket of B | A | В | C | F | $f(A, B, C, F) = P(F B, C) \cdot P(B A)$ | |--------|-------|-------|------|--| | summer | false | false | true | $0.2 \times 0.1 = 0.02$ | | summer | false | true | true | $0.2 \times 0.8 = 0.16$ | | fall | false | false | true | $0.6 \times 0.1 = 0.06$ | | fall | false | true | true | $0.6 \times 0.8 = 0.46$ | | winter | false | false | true | $0.9 \times 0.1 = 0.09$ | | winter | false | true | true | $0.9 \times 0.8 = 0.72$ | | spring | false | false | true | $0.4 \times 0.1 = 0.04$ | | spring | false | true | true | $0.4 \times 0.8 = 0.32$ | | summer | true | false | true | $0.8 \times 0.9 = 0.72$ | | summer | true | true | true | $0.8 \times 0.95 = 0.76$ | | fall | true | false | true | $0.4 \times 0.9 = 0.36$ | | fall | true | true | true | $0.4 \times 0.95 = 0.38$ | | winter | true | false | true | $0.1 \times 0.9 = 0.09$ | | winter | true | true | true | $0.1 \times 0.95 = 0.095$ | | spring | true | false | true | $0.6 \times 0.9 = 0.42$ | | spring | true | true | true | $0.6 \times 0.95 = 0.57$ | | A | B | F | $\lambda_C(A, B, F) = \sum_B f(A, B, C, F)$ | |--------|-------|------|---| | summer | false | true | 0.02 + 0.72 = 0.74 | | fall | false | true | 0.06 + 0.36 = 0.42 | | winter | false | true | 0.09 + 0.09 = 0.18 | | spring | false | true | 0.04 + 0.42 = 0.46 | | summer | true | true | 0.72 + 0.16 = 0.88 | | fall | true | true | 0.46 + 0.38 = 0.84 | | winter | true | true | 0.72 + 0.095 = 0.815 | | spring | true | true | 0.32 + 0.57 = 0.89 | Figure 4.6: Processing the functions in the bucket of ${\cal B}$ Figure 4.7: Two orderings, d_1 (a) and d_2 (b) of our example moral graph. In (c) the induced graph along ordering d_2 only, while using d_2 we had to record functions on as many as four variables (see $Bucket_C$ in Figure 4.3a). The arity (i.e., the scope size) of the function generated during processing of a bucket equals the number of variables appearing in that processed bucket, excluding the bucket's variable itself. Since computing and recording a function of arity r is time and space exponential in r we conclude that the complexity of the algorithm is dominated by its largest scope bucket and it is therefore exponential in the size (number of variables) of the bucket having the largest number of variables. The base of the exponent is bounded by a variable's domain size. Fortunately, as was observed earlier for adaptive-consistency, the bucket sizes can be easily predicted from the elimination process along the ordered graph. Consider the *primal graph* of a given Bayesian network. (see chapter 2) This graph has a node for each variable and any two variables appearing in the same CPT are connected. It is often called *moral graph* in the context of Bayesian networks because it can be obtained by connecting the parents of each node in the Bayesian directed graph and ignoring the arrows. We will use *moral graph* and *primal graph* interchangeably in the context of Bayesian networks. The moral graph of the network in Figure 2.4(a) is given in Figure 2.4(b). If we take this moral graph and impose an ordering on its nodes, the induced-width of the ordered graph of each nodes captures the number of variables which would be processed in that bucket. We demonstrate this next. **Example 4.1.2** Recall the definition of induced graph (Definition 3.1.7). The induced graph of the moral graph in Figure 2.4b, relative to ordering $d_1 = A, C, B, F, D, G$ is depicted in Figure 4.7a. Along this ordering the induced ordered graph was not added any edges over the original graph, since all the earlier neighbors of each node are already connected. The induced width of this graph is 2. Indeed, in this case, the maximum arity of functions recorded by the algorithm is 2. For ordering $d_2 = A, F, D, C, B, G$, the ordered moral graph is depicted in Figure 4.7b and the induced graph is given in Figure 4.7c. In this ordering, the induced width is not the same as the width. For example, the width of C is initially 2, but its induced width is 3. The maximum induced width over all the variables in this ordering is 4 which is the induced-width of this ordering. **Theorem 4.1.3 (Complexity of BE-bel)** Given a Byaesian network whose moral graph is G, let w^* be its induced width of G along ordering d, k the maximum domain size and r be the number of input CPTs. The time complexity of BE-bel is $O(r \cdot k^{w^*+1})$ and its space complexity is $O(n \cdot k^{w^*})$. **Proof.** During BE-bel, each bucket creates a λ function which can be viewed as a message that it sends to a *parent* bucket, down the ordering (recall that we process the variables from last to first). Since to compute this function over w^* variables the algorithm needs to consider all the tuples defined on all the variables in the bucket, whose number is bounded by $w^* + 1$, the time to compute the function is bounded by k^{w^*+1} and it size is bounded by k^{w^*} . For each of these k^{w^*+1} tuple we need to compute its value by considering information from each of the functions in the buckets. If r_i is the number of the bucket's input messages and deg_i is the number of messages it receives from its children, then the computation of the bucket's function is $O((r_i + deg_i + 1)k^{w^*+1})$. Therefore, summing over all the buckets, the algorithm's computation is bounded by $$\sum_{i} (r_i + deg_i - 1) \cdot k^{w^* + 1}.$$ We can argue that $\sum_i deg_i \leq n$, when n is the number of variables, because only a single function is generated in each bucket, and there are total of n buckets. Therefore the total complexity can be bound by $O((r+n) \cdot k^{w^*+1})$. Assuming r > n, this becomes $O(r \cdot k^{w^*+1})$. The size of each λ message is $O(k^{w^*})$. Since the total number of λ messages is bounded by n, the total space complexity is $O(n \cdot k^{w^*})$. \square ## 4.1.3 The impact of Observations In this section we will see that observations, which are variable assignments, can have two opposing effects on inference. One effect is of universal simplification and applies to any graphical model, while the other introduces complexity but is specific to Bayesian networks. ### Evidence removes connectivity The presence of observed variables, which we call evidence in the Bayesian network context, is inherent to queries over probabilistic networks. From a computational perspective evidence is just an assignments of values to a subset of the variables. It turns out that the presence of such partial assignments can significantly simplify inference algorithms such as bucket-elimination. In fact we will see that this property of variable instantiations, or conditioning, as it is sometime called, is the basis for algorithms that combine search and variable-elimination, to be discussed in future chapters. We will show now that observed variables can be handled in a way that case reduce computation. Take our belief network example with ordering d_1 and suppose we wish to compute the belief in A, having observed $B = b_0$. When the algorithm arrives at that bucket, the bucket contains the three functions P(b|a), $\lambda_D(b,a)$, and $\lambda_F(b,c)$, as well as the observation $B = b_0$ (see Figure 4.2 and add $B = b_0$ to $bucket_B$). Note that b_0 represent a specific value in the domain of B while b stands for an arbitrary value in its domain. The processing rule dictates computing $\lambda_B(a,c) = P(b_0|a)\lambda_D(b_0,a)\lambda_F(b_0,c)$. Namely, generating and recording a two-dimensioned function. It would be more effective, however, to apply the assignment b_0 to each function in the bucket separately and then put the individual resulting functions into lower buckets. In other words, we can generate $\lambda_1(a) = P(b_0|a)$ and $\lambda_2(a) = \lambda_D(b_0,a)$, each of which has a single variable in its scope and will be placed in bucket A, and $\lambda_F(b_0,c)$, which will be placed in bucket C. By doing so, we avoid increasing the dimensionality of the recorded functions. In order to exploit this feature we introduce a special rule for processing buckets with observations: the observed value is assigned to each function in a bucket, and each function generated by this assignment is moved to the appropriate lower bucket. Considering now ordering d_2 , $bucket_B$ contains P(b|a), P(d|b,a), P(f|c,b), and $B=b_0$ (see Figure 4.3a). The special rule for processing buckets holding observations will place the function $P(b_0|a)$ in $bucket_A$, $P(d|b_0,a)$ in $bucket_D$, and $P(f|c,b_0)$ in $bucket_F$. In subsequent processing only one-dimensional functions will be recorded. We see therefore that the presence of observations often reduces complexity: buckets of observed variables are processed in linear time and their recorded functions do not create functions on new subsets of variables. Alternatively, we could just preprocess all the functions in which B appears and assign it the value b_0 . This will reduce those functions scope and remove variable B altogether. We can then apply BE to the
resulting pre-processed problem. Both methods will lead to an identical performance, but using an explicit rule for observations during BE allows for a more general and dynamic treatment. It can later be generalized by replacing observations by more general constraints (see xxx). In order to see the implication of the observation rule computationally, we can modify the way we manipulate the ordered graph and will not add arcs among parents of observed variables when computing the induced graph which will permit a tighter bound on complexity. Adding arcs unnecessarily will results in loose complexity bounds. To capture this refinement we use the notion of *conditional induced graph*. **Definition 4.1.4 (conditional induced-width)** Given a graph G, the conditional induced graph relative to ordering d and evidence variables E, denoted $w_d^*(E)$, is generated, processing the ordered graph from last to first, by connecting the earlier neighbors of unobserved nodes only. The conditional induced width is the width of the conditional induced graph, disregarding observed nodes. For example, in Figure 4.8(a,b) we show the ordered moral graph and the induced ordered moral graph of the graph in Figure 2.4. In Figure 4.8(c) the arcs connected to the observed node B are marked by broken lines and are disregarded, resulting in the conditional induced-graph given in Figure 4.8(d). Modifying the complexity in Theorem 4.1.3, we get that, **Theorem 4.1.5** Given a Bayesian network having n variables, algorithm BE-bel when Figure 4.8: Adjusted induced graph relative to observing B using ordering d and evidence E = e, is time and space exponential in the conditional induced width $w_d^*(E)$ of the network's ordered moral graph. Specifically, The time complexity is $O(r \cdot k^{w_d^*(E)+1})$ and its space complexity is $O(n \cdot k^{w_d^*(E)})$. \square It is easy to see that the conditional induced-width is the induced-width obtained by removing the evidence variables altogether. This means that the impact of evidence can be accounted for before we commit to a particular variable orderings. Namely, we can remove evidence nodes and their incident edges from the moral graph, and only then compute an ordering whose induced-width is small. ### Evidence creating connectivity; relevant subnetworks We saw that observation can simplify computation. But, in Bayesian networks observation can also complicate inference. Belief-updating for Bayesian networks can be restricted to a subset of the network if the evidence and the query variables are concentrated in a certain part of the graph. When there is no evidence, computing the belief of a variable depends only on its non-descendant portion. The portion of the network which is relevant to a query grows as we seek to determine the belief based on a larger evidence set. This is because Bayesian networks functions convey local l probability distributions, and summation over all arguments values of a probability function is the constant 1. If we identify the portion of the network that is irrelevant, we can skip some buckets. For example, if we use a topological ordering from root to leaves along the directed acyclic graph, (where parents precede their child nodes), and assuming that the queried variable is the first in the ordering, we can identify skippable buckets dynamically during processing. **Proposition 4.1.6** Given a Bayesian network and a topological ordering $X_1, ..., X_n$, that begins a query variable X_1 , algorithm BE-bel, computing $P(x_1|e)$, can skip a bucket if during processing the bucket contains no evidence variables and no newly computed messages. **Proof:** If topological ordering is used, each bucket of a variable X contains initially at most one function, P(X|pa(X)). Clearly, if there is neither evidence nor new functions in the bucket the summation operation $\sum_{x} P(x|pa(X))$ will yield the constant 1. \square **Example 4.1.7** Consider again the belief network whose acyclic graph is given in Figure 2.4(a) and the ordering $d_1 = A, C, B, F, D, G$. Assume we want to update the belief in variable A given evidence on F. Obviously the buckets of G and D can be skipped and processing should start with $bucket_F$. Once $bucket_F$ is processed, the remaining buckets in the ordered processing are not skippable. Alternatively, we can consider pruning the non-relevant portion of the Bayesian network in advance, before committing to any processing ordering. The relevant subnetwork is called *ancestral subnetwork* and is defined recursively as follows. **Definition 4.1.8 (ancestral graph)** Given a Bayesian network's directed graph G = (X, E), and a query involving variables S, (including the evidence variables), the ancestral graph of G, G_{anc} , relative to $S \subseteq X$, includes all variables in S and if a node is in G_{anc} , its parents are also in G_{anc} . **Example 4.1.9** Continuing with the example from Figure 2.4(a), and assuming we want to assess the belief in A given evidence on F, the relevant ordered moral graph in Figure 2.4(a)(c) should be modified by deleting nodes D and G. The resulting graph has nodes A, B, C and F only. **Theorem 4.1.10** Given a Bayesian $\mathcal{B} = \langle \mathcal{X}, \mathcal{D}, \mathcal{G}, \mathcal{P} \rangle$ and a query P(Y|e), when $Y \subseteq X$ and $E \subseteq X$ is the evidence variable set, we can compute P(Y|e) by considering only the ancestral Bayesian network relative to $Y \cup E$. **Proof:** The proof is left as an exercise. # 4.2 Bucket elimination for optimization tasks Having examined the task of belief-updating using the algorithmic framework of bucket elimination, we will now focus on another primary query we often have related to a Bayesian network, that is, finding the most probable explanation (mpe) for the evidence. Belief-updating answers the question "what is the likelihood of a variable given the observed data?" Answering that question, however, is often not enough; we want to be able to find the most likely explanation for the data we encounter. This is an optimization problem, and while we pose the problem here on a probabilistic network, it is a problem that is representative of optimization tasks on many types of graphical model. The most probable explanation (mpe) task appears in numerous applications. Examples range from diagnosis and design of probabilistic codes to haplotype recognition in the context of family trees, and medical and circuit diagnosis. For example, given data on clinical findings, it may suggest the most likely disease a patient is suffering from. In decoding, the task is to identify the most likely input message which was transmitted over a noisy channel, given the observed output. Although the relevant task here is finding the most likely assignment over a *subset* of hypothesis variables which would correspond to a *map* query. However the mpe is close enough and is often used in applications (see [1] for more examples). Finally the queries of mpe/map (see Chapter 2) drive most of the learning algorithms for graphical model [37]. Our focus here is on algorithms for answering such queries on a given graphical model. ## 4.2.1 A Bucket-Elimination Algorithm for mpe Given a Bayesian network $\mathcal{B} = \langle X, D, G, \mathcal{P} \rangle$, the mpe task seeks an assignment to all the variables excluding the evidence variables that has the maximal probability given the evidence. Namely the task is to find a full instantiation \overline{x}^0 such that $P(\overline{x}^0) = \max_x P(\overline{x}, e)$, where denoting $\overline{x} = (x_1, ..., x_n)$, $P(\overline{x}, e) = \prod_i P(x_i, e|x_{pa_i})$. (remember the x_{pa_i} is the assignments to x restricted to the variables in the parent set of X_i .) Let e be a set of observations on a subset of the variables E. Given a variable ordering $d = X_1, ..., X_n$, we can accomplish this task by performing maximization operation, variable by variable, along the ordering from last to first (i.e., right to left), migrating to the left all CPTs that do not mention the maximizing variable. We will derive this algorithm in a similar way to that in which we derived BE-bel. Using the notation defined earlier for operations on functions, our goal is to find M, s.t. $$M = \max_{\bar{x}_n} P(\bar{x}_n, e) = \max_{\bar{x}_{(n-1)}} \max_{x_n} \prod_i P(x_i, e | x_{pa_i})$$ $$= \max_{\bar{x}_{n-1}} \prod_{X_i \in X - F_n} P(x_i, e | x_{pa_i}) \cdot \max_{x_n} P(x_n, e | x_{pa_n}) \prod_{X_i \in ch_n} P(x_i, e | x_{pa_i})$$ $$= \max_{\bar{x}_{n-1}} \prod_{X_i \in X - F_n} P(x_i, e | x_{pa_i}) \cdot h_n(x_{S_n})$$ where $$h_n(x_{S_n}) = \max_{x_n} P(x_n, e|x_{pa_n}) \prod_{X_i \in ch_n} P(x_i, e|x_{pa_i})$$ and S_n are the variables in the scopes of the local functions having X_n in their scope and ch_n are the child variables of X_n . Clearly, the algebraic manipulation of the above expressions is the same as the algebraic manipulation for belief updating where summation is replaced by maximization. Consequently, the bucket-elimination procedure BE-mpe is identical to BE-bel except for this change. Given ordering $X_1, ..., X_n$, the conditional probability tables are partitioned as before. To process each bucket, we multiply all the bucket's functions, which in this case can be regarded as cost functions denoted $h_1, ..., h_j$ and defined over some scopes and then eliminate the bucket's variable by maximization. If we distinguish again between the original function in the bucket denoted ψ_p and the messages which in this case will be denoted by h, the generated function in the bucket of X_p is $h_p: S_p \to R$, $h_p = \max_{X_p} \psi_p \cdot \prod_{i=1}^j h_i$, where $S_p = scope(\psi_p) \cup \bigcup_i scope(h_i) - X_p$. The function generated by a bucket is placed in the bucket of its largest-index variable in S_p . If the function is a constant, we can place it directly in the first
bucket; constant functions are not necessary to determine the exact mpe value. We define the function $x^o: D_{S_P-X_p} \to D_{X_p}$ by $x_p^o(x_{S_P-X_p}) = argmax_{x_p}h_p(x_{S_p})$, which provides the optimizing assignment to X_p given the assignment to the variables in the function's scope. This function can be recorded and placed in the bucket of X_p^{-1} . ¹This step is optional; the maximizing values can be recomputed from the information in each bucket. The bucket-processing continues with the next variable, proceeding from the last to the first variable. Once all buckets are processed, the mpe value, M, can be extracted as the maximizing product of functions in the first bucket. At this point we know the mpe value but we have not generated an optimizing tuple. This requires a forward phase, which was not needed when we computed beliefs or the probability of evidence. The algorithm initiates a forward phase to compute an mpe tuple by assigning the variables along the ordering from X_1 to X_n , consulting the information recorded in each bucket. Specifically, the value x_i is selected to maximize the product in $bucket_i$ given the partial assignment $x = (x_1, ..., x_{i-1})$. The algorithm is presented in Figure 4.14. Observed variables are handled as in BE-bel. **Example 4.2.1** Consider again the belief network in Figure 2.4(a). Given the ordering d = A, C, B, F, D, G and the evidence G = 1, we process variables from last to first once partitioning the conditional probability functions into buckets, as was shown in Figure 4.1. To process G, assign G = 1, get $h_G(f) = P(G = 1|f)$, and place the result in bucket_F. The function $G^{o}(f) = argmax \ h_{G}(f)$ may be computed and placed in $bucket_{G}$ as well. In this case it is just $G^{o}(f) = 1$, namely, the value of G yielding the maximum cost extension into G is the constant G=1. Process bucket_D by computing $h_D(b,a)=\max_d P(d|b,a)$ and put the result in $bucket_B$. Bucket F, next to be processed, now contains two functions: P(f|b,c) and $h_G(f)$. Compute $h_F(b,c) = \max_f p(f|b,c) \cdot h_G(f)$, and place the resulting function in bucket_B. To process bucket_B, we record the function $h_B(a,c) = \max_b P(b|a)$. $h_D(b,a) \cdot h_F(b,c)$ and place it in bucket_C. To process C, (i.e., to eliminate C) we compute $h_C(a) = \max_c P(c|a) \cdot h_B(a,c)$ and place it in bucket_A. Finally, the mpe value given in $bucket_A$, $M = \max_a P(a) \cdot h_C(a)$, is determined. Next the mpe tuple is generated by going forward through the buckets. First, the value a^0 satisfying $a^0 = argmax_a P(a)h_C(a)$ is selected. Subsequently the value of C, $c^0 = argmax_c P(c|a^0)h_B(a^0,c)$ is determined. Next $b^0 = argmax_b P(b|a^0) h_D(b,a^0) h_F(b,c^0)$ is selected, and so on. A schematic computation is the same as in Figure 4.2 where λ is simply replaced by h. The backward process can be viewed as a compilation phase in which we compile information regarding the most probable extension (cost to go) of partial tuples to variables higher in the ordering. ## Algorithm BE-mpe **Input:** A belief network $\mathcal{B} = \langle X, D, G, \mathcal{P} \rangle$, where $\mathcal{P} = \{P_1, ..., P_n\}$; an ordering of the variables, $d = X_1, ..., X_n$; observations e. Output: The most probable assignment given the evidence. - 1. **Initialize:** Generate an ordered partition of the conditional probability function, $bucket_1, \ldots, bucket_n$, where $bucket_i$ contains all functions whose highest variable is X_i . Put each observed variable in its bucket. Let ψ_i be the input function in a bucket and let h_i be the messages in the bucket. - 2. **Backward:** For $p \leftarrow n$ downto 1, do for all the functions $h_1, h_2, ..., h_j$ in $bucket_p$, do - If (observed variable) bucket_p contains $X_p = x_p$, assign $X_p = x_p$ to each function and put each in appropriate bucket. - else, $S_p \leftarrow \bigcup_{i=1}^{j} scope(h_i) \cup scope(\psi_p) \{X_p\}$. Generate functions $h_p \Leftarrow \max_{X_p} \psi_p \cdot \prod_{i=1}^{j} h_i$ Add h_p to the bucket of the largest-index variable in S_p . #### 3. Forward: - Generate the mpe cost by maximizing over X_1 , the product in $bucket_1$. - (generate an mpe tuple) For i=1 to n along d do: Given $\overline{x}_{i-1}=(x_1,...,x_{i-1})$ Choose $x_i=argmax_{X_i}\psi_i\cdot \Pi_{\{h_j\in\ bucket_i\}}h_j(\overline{x}_{i-1})$ Figure 4.9: Algorithm *BE-mpe* As in the case of belief updating, the complexity of BE-mpe is bounded exponentially by the dimension of the recorded functions, and those functions are bounded by the induced width $w_d^*(E)$ of the ordered moral graph conditioned on the evidence variables, E. **Theorem 4.2.2** Algorithm BE-mpe is complete for the mpe task. Its time and space complexity are $O(r \cdot k^{w_d^*(E)+1})$ and $O(n \cdot k^{w_d^*(E)})$, respectively, where n is the number of variables, k bound the domain size and $w_d^*(E)$ is the induced width of the ordered moral graph along d, conditioned on the evidence E. \square ## 4.2.2 An Elimination Algorithm for Map The maximum a'posteriori hypothesis $(map)^2$ task is a generalization of both mpe and belief updating. It asks for the maximal probability associated with a *subset of hypothesis* variables and is likewise widely applicable especially for diagnosis tasks. Belief updating is the special case where the hypothesis variables are just single variables. The mpe query is the special case when the hypothesis variables are all the unobserved variables. We will see that since it is a mixture of the previous two tasks, in its bucket-elimination algorithm some of the variables are eliminated by summation while others by maximization. Given a Bayesian network, a subset of hypothesized variables $A = \{A_1, ..., A_k\}$, and some evidence e, the problem is to find an assignment to A having maximum probability given the evidence compared with all other assignments to A. Namely, the task is to find $a^o = argmax_{a_1,...,a_k}P(a_1,...,a_k,e)$ (see also Definition 2.4.3). So, we wish to compute $\max_{\bar{a}_k} P(a_1,...,a_k,e) = \max_{\bar{a}_k} \sum_{\bar{x}_{k+1}^n} \prod_{i=1}^n P(x_i,e|x_{pa_i})$ where $\bar{x} = (a_1,...,a_k,x_{k+1},...,x_n)$. Algorithm BE-map in Figure 4.10 considers only orderings in which the hypothesized variables start the ordering because summation should be applied first to the subset of variables which are in X - A, and subsequently maximization is applied to the variables in A. Since summation and maximization cannot be permuted we have to be restricted in the orderings (more on this shortly). Like BE-mpe, the algorithm has a backward phase and a forward phase, but the forward phase extends to the hypothesized variables only. Because only restricted orderings are allowed, the algorithm may be forced to have far $^{^2}$ sometime map is meant to refer to the mpe, and the map task is called marginal map. higher induced-width than would otherwise be allowed. We can partially alleviate this orderings restriction and allow maximization and summations to be interleaved as long as some constraints are obeyed. (We will leave this as an exercise.) **Theorem 4.2.3** Algorithm BE-map is complete for the map task for orderings started by the hypothesis variables. Its time and space complexity are are $O(r \cdot k^{w_d^*(E)+1})$ and $O(n \cdot k^{w_d^*(E)})$, respectively, where n is the number of variables in graph, k bounds the domain size and $w_d^*(E)$ is the conditioned induced width of its moral graph along d. (prove as an exercise.) \square ## 4.3 Bucket-elimination for Markov Random Fields Recalling Definition ?? of a Markov network (presented below for convenience), it is easy to see that the bucket-elimination algorithms we presented for Bayesian networks are immediately applicable to all the main queries over Markov networks. We only need to do is replace the input conditional probabilities through which a Bayesian network is specified by the collection of local functions denoted by $\psi(.)$ which are also know as potentials or factors. The query of computing posterior marginals is accomplished by BE-bel, computing mpe and map are accomplished by BE-mpe and BE-map respectively. The task of computing Z, the partition function, is identical algorithmically to the task of computing the probability of the evidence. Therefore BE-evidence is applicable. If the Markov network is specified by the exponential representation, then the combination function is summation rather than multiplication, but everything else stays the same. This is also demonstrated in the following subsection. In an exercise we ask that you will apply, BE-evidence to the Markov network in Figure 2.5. **Definition 4.3.1 (Markov Networks)** A Markov network is a graphical model $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{H}, \prod \rangle$ where $\mathbf{H} = \{\psi_1, \ldots, \psi_m\}$ is a set of potential functions where each potential ψ_i is a non-negative real-valued function defined over a scope of variables \mathbf{S}_i . The Markov network represents a global joint distribution over the variables \mathbf{X} given by: $$P(\mathbf{x}) = \frac{1}{Z} \prod_{i=1}^{m} \psi_i(\mathbf{x})$$, $Z = \sum_{\mathbf{x}} \prod_{i=1}^{m} \psi_i(\mathbf{x})$ ## Algorithm BE-map **Input:** A Bayesian network $\mathcal{B} = \langle X, D, G, \mathcal{P} \rangle P = \{P_1, ..., P_n\}$; a subset of hypothesis variables $A = \{A_1, ..., A_k\}$; an ordering of the variables, d, in which the A's are first in the ordering; observations e. ψ_i is the input function in the bucket of X_i . Output: A most probable assignment A = a. - 1. **Initialize:** Generate an ordered partition of the conditional probability functions, $bucket_1, \ldots, bucket_n$, where $bucket_i$ contains all functions whose highest variable is X_i . - 2. Backwards For $p \leftarrow n$ downto 1, do for all the message
functions $\beta_1, \beta_2, ..., \beta_j$ in $bucket_p$ and for ψ_p do - If (observed variable) bucket_p contains the observation $X_p = x_p$, assign $X_p = x_p$ to each β_i and ψ_p and put each in appropriate bucket. - else, $S_p \leftarrow scope(\psi_p) \cup \bigcup_{i=1}^j scope(\beta_i) \{X_p\}$. If X_p is not in A, then $\beta_p \Leftarrow \sum_{X_p} \psi_p \cdot \prod_{i=1}^j \beta_i$; else, $(X_p \in A)$, $\beta_p \Leftarrow \max_{X_p} \psi_p \cdot \prod_{i=1}^j \beta_i$ Place β_p in the bucket of the largest-index variable in S_p . - 3. **Forward:** Assign values, in the ordering $d = A_1, ..., A_k$, using the information recorded in each bucket in a similar way to the forward pass in BE-mpe. Figure 4.10: Algorithm *BE-map* where the normalizing constant Z is referred to as the partition function. # 4.4 Cost Networks and Dynamic Programming As we mentioned at the outset, bucket-elimination algorithms are variations of a very well known class of optimization algorithms known as *Dynamic Programming* [6, 8]. Here we make the connection explicit, observing that BE-mpe is a dynamic programming scheme with some simple transformations. That BE-mpe is dynamic programming becomes apparent once we transform the mpe's cost function, which has a product combination operator, into the traditional additive combination operator using the log function. For example, $$P(a,b,c,d,f,g) = P(a)P(b|a)P(c|a)P(f|b,c)P(d|a,b)P(g|f)$$ becomes $$C(a, b, c, d, e) = -logP = C(a) + C(b, a) + C(c, a) + C(f, b, c) + C(d, a, b) + C(g, f)$$ where each $C_i = -log P_i$. The general dynamic programming algorithm is defined over cost networks (see discussion in Section 2.3). As we showed earlier a cost network is a tuple $C = \langle X, D, C, \sum \rangle$, where $X = \{X_1, ..., X_n\}$ are variables over domains $D = \{D_1, ..., D_n\}$, C is a set of real-valued cost functions $C_1, ..., C_l$, defined over scopes $C_i : \bowtie_{j=1}^r D_{scop(C_j)} \to R^+$. The task is to find an assignment to the variables that minimizes $\sum_i C_i$. A straightforward elimination process similar to that of BE-mpe, (where the product is replaced by summation and maximization by minimization) yields the non-serial dynamic programming algorithm [8]. The algorithm, called BE-opt, is given in Figure 4.11. A schematic execution of our example along ordering d = G, A, F, D, C, B is depicted in Figure 4.12. And, not surprisingly, we can show that **Theorem 4.4.1** Given a cost network $C = \langle X, D, C, \sum \rangle$, BE-opt is complete for finding an optimal cost solution. Its time and space complexity are $O(r \cdot k^{w_d^*(E)+1})$ and $O(n \cdot k^{w_d^*(E)})$, respectively, where n is the number of variables in graph, k bounds the domain size and $w_d^*(E)$ is the conditioned induced width of its moral graph along d. \square ## Algorithm BE-opt **Input:** A cost network $C = \{C_1, ..., C_l\}$; ordering d; assignment e over variables E. Output: A minimal cost assignment. - 1. **Initialize:** Partition the cost components into buckets. Define ψ_i as the sum of the input cost functions in bucket X_i . - 2. **Process buckets** from $p \leftarrow n$ downto 1 For ψ_p and the cost messages $h_1, h_2, ..., h_j$ in $bucket_p$, do: - If (observed variable) $X_p = x_p$, assign $X_p = x_p$ to ψ_i and to each h_i and put in buckets. - Else, (sum and minimize) $h^p \Leftarrow \min_{X_p} (\psi_p + \sum_{i=1}^j h_i).$ Place h^p to its designated bucket. - 3. Forward: Assign minimizing values in ordering d, consulting functions in each bucket, as in BE-mpe Figure 4.11: Dynamic programming as BE-opt Figure 4.12: Schematic execution of BE-Opt Consulting again the various classes of cost networks elaborated on in Section 2.3, algorithm, BE-opt is applicable to all including weighted-csps, max-csps and max-sat. ## 4.5 Mixed Networks 3 The last class of graphical models we will address is mixed network which were discussed and defined in Section 2.5. To refresh, these models allows the explicit representation of both probabilistic information and constraints. Therefor we assume that the mixed network is defined by a pair of a Bayesian network and a constraint network. This pair express a conditional probability distribution over all the variables which requires that all the assignments that have non-zero probability will satisfy all the constraints. We will focus only on the task that is unique for this graphical model, the *constraint* probability evaluation (CPE) which can also stand for *CNF* probability evaluation. For example, if we have both a Bayesian network and a cnf formula φ , we want to compute $P(x \in \varphi)$. Given a mixed network $\mathcal{M}_{(\mathcal{B},\varphi)}$, where φ is a CNF formula defined on a subset of variables Q, the CPE task is to compute: (remember $moels(\varphi)$ are the assignments to all variables satisfying φ . \overline{x}_Q is the restriction of \overline{x} to the variables in Q. $$P_{\mathcal{B}}(\varphi) = \sum_{\bar{x}_Q \in models(\varphi)} P(\bar{x}_Q).$$ Using the belief network product form we get: $$P(\varphi) = \sum_{\{\bar{x}|\bar{x}_Q \in models(\varphi)\}} \prod_{i=1}^n P(x_i|x_{pa_i}).$$ We assume that X_n is one of the CNF variables, and we separate the summation over X_n and the rest of the variables $\mathbf{X} - \{X_n\}$ as usual. We denote by γ_n the set of all clauses that are defined on X_n and by β_n all the rest of the clauses. The scope of γ_n is denoted by Q_n , and we define $S_n = \mathbf{X} - Q_n$ and S_n is the set of all variables in the scopes of CPTs ^{3*} can be skipped on a first reading and clauses that are defined over X_n . We get: $$P(\varphi) = \sum_{\{\bar{x}_{n-1} | \bar{x}_{S_n} \in models(\beta_n)\}} \sum_{\{x_n | \bar{x}_{Q_n} \in models(\gamma_n)\}} \prod_{i=1}^n P(x_i | x_{pa_i}).$$ Denoting by t_n the set of indices of functions in the product that do not mention X_n and by $l_n = \{1, ..., n\} \setminus t_n$ we get: $$P(\varphi) = \sum_{\{\bar{x}_{n-1} | \bar{x}_{S_n} \in models(\beta_n)\}} \prod_{j \in t_n} P_j \cdot \sum_{\{x_n | \bar{x}_{Q_n} \in models(\gamma_n)\}} \prod_{j \in l_n} P_j.$$ Therefore: $$P(\varphi) = \sum_{\{\bar{x}_{n-1} | \bar{x}_{S_n} \in models(\beta_n)\}} (\prod_{j \in t_n} P_j) \cdot \lambda^{X_n},$$ where λ^{X_n} is defined over $S_n - \{X_n\}$, by $$\lambda^{X_n} = \sum_{\{x_n | \bar{x}_{Q_n} \in models(\gamma_n)\}} \prod_{j \in l_n} P_j. \tag{4.8}$$ The case of observed variables When X_n is observed, that is constrained by a literal, the summation operation reduces to assigning the observed value to each of its CPTs and to each of the relevant clauses. In this case Equation (4.8) becomes (assume $X_n = x_n$ and $P_{=x_n}$ is the function instantiated by assigning x_n to X_n): $$\lambda^{x_n} = \prod_{j \in I_n} P_{j=x_n}, \quad if \ \bar{x}_{Q_n} \in m(\gamma_n \wedge (X_n = x_n)). \tag{4.9}$$ Otherwise, $\lambda^{x_n} = 0$. Since \bar{x}_{Q_n} satisfies $\gamma_n \wedge (X_n = x_n)$ only if $\bar{x}_{Q_n - X_n}$ satisfies $\gamma^{x_n} = resolve(\gamma_n, (X_n = x_n))$, we get: $$\lambda^{x_n} = \prod_{j \in I_n} P_{j=x_n} \ if \ \bar{x}_{Q_n - X_n} \in m(\gamma_n^{x_n}). \tag{4.10}$$ Therefore, we can extend the case of observed variable in a natural way: CPTs are assigned the observed value as usual while clauses are individually resolved with the unit clause $(X_n = x_n)$, and both are moved to appropriate lower buckets. Therefore, in the bucket of X_n we should compute λ^{X_n} . We need to place all CPTs and clauses mentioning X_n and then compute the function in Equation (4.8). The computation #### **Algorithm 1**: Elim-cpe **Input**: A belief network $\mathcal{B} = \{P_1, ..., P_n\}$; a CNF formula on k propositions $\varphi = \{\alpha_1, ..., \alpha_m\}$ defined over k propositions; an ordering of the variables, $d = \{X_1, ..., X_n\}$. **Output**: The belief $P(\varphi)$. 1 Place buckets with unit clauses last in the ordering (to be processed first). #### // Initialize Partition \mathcal{B} and φ into $bucket_1, \ldots, bucket_n$, where $bucket_i$ contains all the CPTs and clauses whose highest variable is X_i . Put each observed variable into its appropriate bucket. (We denote probabilistic functions by λs and clauses by αs). - 2 for $p \leftarrow n$ downto 1 do // Backward Let $\lambda_1, \ldots, \lambda_j$ be the functions and $\alpha_1, \ldots, \alpha_r$ be the clauses in $bucket_p$ Process-bucket $_p(\sum, (\lambda_1, \ldots, \lambda_j), (\alpha_1, \ldots, \alpha_r))$ - **3 return** $P(\varphi)$ as the result of processing bucket₁. of the rest of the expression proceeds with X_{n-1} in the same manner. This yields algorithm Elim-cpe (described in Algorithm 1 and Procedure Process-bucket_p). The elimination operation is summation for the current query. Thus, for every ordering of the propositions, once all the CPTs and clauses are partitioned, we process the buckets from last to first, in each applying the following operation. Let $\lambda_1, ... \lambda_t$ be the probabilistic functions in bucket P and $\alpha_1, ... \alpha_r$ be the clauses. The algorithm computes a new function λ^P over $S_p = scope(\lambda_1, ... \lambda_t) \cup scope(\alpha_1, ... \alpha_r) - \{X_p\}$ defined by: $$\lambda^{P} = \sum_{\{x_{p} | \bar{x}_{O} \in models(\alpha_{1}, \dots, \alpha_{r})\}} \prod_{j} \lambda_{j}$$ **Example 4.5.1** Consider the belief network in Figure 4.13, which is similar to the one in Figure 2.4, and the query $\varphi = (B \vee C) \wedge (G \vee D) \wedge (\neg D \vee \neg B)$. The initial partitioning into buckets along the ordering d = A, C, B, D, F, G, as well as the output buckets are given in Figure 4.14. The initial partitioning can be gleaned from Figure 4.15. We compute: In bucket $$G$$: $\lambda^G(f,d) = \sum_{\{g|g \lor
d = true\}} P(g|f)$ In bucket F : $\lambda^F(b,c,d) = \sum_f P(f|b,c)\lambda^G(f,d)$ ## Procedure Process-bucket_p $(\sum, (\lambda_1, \dots, \lambda_j), (\alpha_1, \dots, \alpha_r))$ if $bucket_p$ contains evidence $X_p = x_p$ then - 1. Assign $X_p = x_p$ to each λ_i and put each resulting function in the bucket of its latest variable - 2. Resolve each α_i with the unit clause, put non-tautology resolvents in the buckets of their latest variable and move any bucket with unit clause to top of processing else Generate $\lambda^p = \bigvee_{\{x_p | \bar{x}_{U_p} \in models(\alpha_1, ..., \alpha_r)\}} \prod_{i=1}^j \lambda_i$ Add λ^p to the bucket of the latest variable in S_p , where $S_p = \bigcup_{i=1}^j scope(\lambda_i) \bigcup_{i=1}^r scope(\alpha_i) - \{X_p\}$ Figure 4.13: Belief network In bucket $$D$$: $\lambda^D(a,b,c) = \sum_{\{d \mid \neg d \lor \neg b = true\}} P(d \mid a,b) \lambda^F(b,c,d)$ In bucket B : $\lambda^B(a,c) = \sum_{\{b \mid b \lor c = true\}} P(b \mid a) \lambda^D(a,b,c) \lambda^F(b,c)$ In bucket C : $\lambda^C(a) = \sum_c P(c \mid a) \lambda^B(a,c)$ In bucket A : $\lambda^A = \sum_a P(a) \lambda^C(a)$ For example $\lambda^G(f, d=0) = P(g=1|f)$, because if D=0 g must get the value "1", while $\lambda^G(f, d=1) = P(g=0|f) + P(g=1|f)$. In summary, Theorem 4.5.2 (Correctness and Completeness) Algorithm Elim-cpe is sound and complete for the CPE task. Figure 4.14: Execution of Elim-CPE Figure 4.15: Execution of ELIM-CPE (evidence $\neg G$) Notice that algorithm Elim-cpe also includes a unit resolution step whenever possible (see Procedure $Process-bucket_p$) and a dynamic reordering of the buckets that prefers processing buckets that include unit clauses. This may have a significant impact on efficiency because treating observations (namely unit clauses) in a special way can avoid creating new dependencies as we already observed. **Example 4.5.3** Let's now extend the example by adding $\neg G$ to the query. This will place $\neg G$ in the bucket of G. When processing bucket G, unit resolution creates the unit clause D, which is then placed in bucket D. Next, processing bucket F creates a probabilistic function on the two variables B and C. Processing bucket D that now contains a unit clause will assign the value D to the CPT in that bucket and apply unit resolution, generating the unit clause $\neg B$ that is placed in bucket B. Subsequently, in bucket B we can apply unit resolution again, generating C placed in bucket C, and so on. In other words, aside from bucket F, we were able to process all buckets as observed buckets, by propagating the observations. (See Figure 4.15.) To incorporate dynamic variable ordering, after processing bucket G, we move bucket D to the top of the processing list (since it has a unit clause). Then, following its processing, we process bucket B and then bucket C, then F, and finally A. Since unit resolution increases the number of buckets having unit clauses, and since those are processed in linear time, it can improve performance substantially. Such buckets can be identified a priori by applying unit resolution on the CNF formula or arc-consistency on the constraint expression. In general, any level of resolution can be applied in each bucket. This can yield stronger CNF expressions in each bucket and may help improve the computation of the probabilistic functions. ## 4.6 The General Bucket Elimination We now summarize and generalize the bucket elimination algorithm using the two operators of combination and marginalization. As defined in Chapter 2, the general task can be defined over a graphical model $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes \rangle$, where: $X = \{X_1, ..., X_n\}$ is a set of variables having domain of values $D = \{D_1, ..., D_n\}$ and $F = \{f_1, ..., f_k\}$ is a set of functions, where each f_i is defined over $S_i = scope(f_i)$. Given a function h and given $Y \subseteq scope(h)$, the (generalized) projection operator $\psi_Y h$ is defined by enumeration as $\psi_Y h \in \{max_{S-Y}h, min_{S-Y}h, \Pi_{S-Y}h, \sum_{S-Y}h\}$ and the (generalized) combination operator $\otimes_j f_j$ defined over $U = \cup_j scope(f_j), \otimes_{j=1}^k f_j \in \{\Pi_{j=1}^k f_j, \sum_{j=1}^k f_j, \bowtie_j f_j\}$. All queries require computing $\psi_Y \otimes_{i=1}^n f_i$. Such problems can be solved by a general bucket-elimination algorithm stated in Figure 4.16. For example, BE-bel is obtained when $\psi_Y = \sum_{S-Y}$ and $\otimes_j = \Pi_j$, BE-mpe is obtained when $\psi_Y = \max_{S-Y}$ and $\otimes_j = \Pi_j$, and adaptive consistency corresponds to $\psi_Y = \pi_{S-Y}$ and $\otimes_j = \bowtie_j$. Similarly, Fourier elimination and directional resolution can be shown to be expressible in terms of such operators. # 4.7 Combining Elimination and Conditioning In this section we temporarily departure from inference algorithm and have a glimpse into a search scheme via the *cutset-conditioning* idea. Search methods will be presented in details later on. It is natural to mention the idea of search now by focusing on the notion of observations which simplify inference (section 4.1.3). Specifically, we observed that when some variables are assigned, connectivity in the graph reduces yielding saving in computation. The magnitude of saving is reflected through the *conditioned induced-graph*. Cutset-conditioning is a scheme that exploits this property in a systematic way. We ## Algorithm General bucket-elimination (GBE) **Input:** A set of functions $F = \{f_1, ..., f_n\}$, an ordering of the variables, $d = X_1, ..., X_n$; $Y \subseteq$. Output: A new compiled set of functions from which the query $\bigvee_{i=1}^n f_i$ can be derived in linear time. - 1. **Initialize:** Generate an ordered partition of the functions into $bucket_1, ..., bucket_n$, where $bucket_i$ contains all the functions whose highest variable in their scope is X_i . An input function in each bucket ψ_i . - 2. **Backward:** For $p \leftarrow n$ downto 1, do for all the functions $\psi_p, \lambda_1, \lambda_2, ..., \lambda_j$ in $bucket_p$, do - If (observed variable) $X_p = x_p$ appears in $bucket_p$, assign $X_p = x_p$ in ψ_p and to each λ_i and put each resulting function in appropriate bucket. - else, $S_p \leftarrow (\bigcup_{i=1}^j scope(\lambda_i)) \cup scope(\psi_p) \{X_p\}$. Generate $\lambda_p = \Downarrow_{S_p} \psi_p \otimes_{i=1}^j \lambda_i$ and add λ_p to the largest-index variable in S_p . - 3. Return: all the functions in each bucket. Figure 4.16: Algorithm bucket-elimination #### ALGORITHM VEC-EVIDENCE **Input:** A belief network $\mathcal{B} = \langle \mathcal{X}, \mathcal{D}, \mathcal{G}, \mathcal{P} \rangle$, an ordering $d = (x_1, \ldots, x_n)$; evidence e over E, a subset C of conditioned variables; **output:** The probability of evidence P(e) Initialize: $\lambda = 0$. 1. For every assignment C = c, do • $\lambda_1 \leftarrow$ The output of BE-bel with $c \cup e$ as observations. • $\lambda \leftarrow \lambda + \lambda_1$. (update the sum). 2. Return $P(e) = \alpha \cdot \lambda$ (α is a normalization constant.) Figure 4.17: Algorithm vec-evidence can select a subset of variables, which we call cutset, assign them values (i.e., condition on them), solve the conditioned problem by an inference algorithm such as BE, and repeat this process for all assignments to the cutset. The cutset can be explored by brute-force enumeration of all its assignments. We give a highlevel description of the algorithm, called $Variable\ elimination\ and\ Conditioning\ or\ VEC$ for short in Figure 4.17. However, the enumeration process can be done more efficiently using a search over the tree of all variables assignments. In particular, using depth-first-search (dfs) the assignments to the cutset variables can be enumerated in linear space only. In the extreme, if we condition on all the variables (namely the custet is the whole set) we will get a brute-force dfs search that traverses the full search-tree and accumulates the appropriate sums of probabilities. For example, we can compute expression 4.11 below for the probability of evidence in the network of Figure 2.4 by traversing the search-tree in Figure 4.18 along the ordering, from first variable to last variable. $$P(A = a) = \sum_{c,b,f,d,g} P(g|f)P(f|b,c)P(d|a,b)P(c|a)P(b|a)P(a)$$ $$= P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\sum_{f} P(f|b,c)\sum_{d} P(d|b,a)\sum_{g} P(g|f), \tag{4.11}$$ Figure 4.18: probability tree The idea of cutset-conditioning search however, is to limit search to only a subset of variables: to the cutset variables. Let C be a cutset $C \subseteq X$, and V = X - C. (as usual, we denote by v an assignment to V and by c an assignment to C.) Obviously, $$P(e) = \sum_{x} P(x, e) = \sum_{c \in D_C} \sum_{v \in D_V} P(c, v, e) = \sum_{c, v} \prod_{i} P(x_i | x_{pa_i}, c, v, e)$$ For every C = c, we can compute $\sum_{v} P(v, c, e)$ using Bucket-Elimination over variables V, while treating the conditioned variables, C, as observed variables. This basic computation will be enumerated for all value combinations of the conditioned variables, and the sum is accumulated (see the algorithm in Figure 4.17). Clearly, **Theorem 4.7.1** Algorithm VEC-bel is sound and complete for computing the belief of the first variable and the probability of evidence. Given an assignment C = c, the time and space complexity of computing the conditioned probability by BE is bounded exponentially by the induced-width of the ordered moral graph along ordering d conditioned for both observed (E) and conditioned (C) nodes, (namely when both C and E are removed from the graph). This parameter is denoted by $w_d^*(E \cup C)$. **Theorem 4.7.2 (complexity)** Given a set of conditioning variables, C, the space complexity of algorithm VEC-bel is $O(n \cdot k^{(w_d^*(C \cup E))})$, while its time complexity is $O(n \cdot
k^{(w_d^*(E \cup C) + |C|)})$. Proof: see exercises If, removing the variables $E \cup C$ yields a cycle-free graph, we call C a cycle-cutset. Recall that in this case the conditioned induced-width is 1, and therefore the remaining subproblem can be solved efficiently by BE. This specific case yields the cycle-cutset algorithm [17], or loop-cutset algorithm [43] which we will discuss in detail later. **Definition 4.7.3 (cycle-cutset)** Given an undirected graph G a cycle-cutset is a subset of the nodes that breaks all its cycles. Namely, when removed, the graph has no cycles. Theorem 4.7.2 calls for a secondary optimization task on graphs: **Definition 4.7.4 (Find a minimal w-cutset)** Given a graph G = (V, E) and a constant r, find a smallest subset of nodes C_w , such that G', the subgraph of G restricted to $V - C_w$, has induced-width less than or equal r. Finding a minimal r-cutset, for any r is known to be hard. # 4.8 Summary and Bibliographical Notes In the last two chapters, we showed how the bucket-elimination framework can be used to unify variable-elimination algorithms for both deterministic and probabilistic graphical models. The chapters described the bucket-elimination framework which unifies variable-elimination algorithms deterministic and probabilistic reasoning as well as for optimization tasks. The algorithms take advantage of the structure of the graph. Most bucket-elimination algorithms⁴ are time and space exponential in the induced-width of the underlying dependency primal graph of the problem. ⁴all, except Fourier algorithm. The chapter is based on Dechter's Bucket-elimination algorithm that appeared in [19] and [20]. Among the early variable elimination algorithms we find the peeling algorithm for genetic trees [13], Zhang and Poole's VE1 algorithm [58] and SPI algorithm by D'Ambrosio et.al., [46] which preceded both elim-bel and VE1 and provided the principle ideas in the context of belief updating. Decimation algorithms in statistical physics are also related and were applied to Boltzmann trees [50]. In [45] the connection between optimization and constraint satisfaction and its relationship to dynamic programming is explicated. In the work of [41, 53] and later in [11] an axiomatic framework that characterize tasks that can be solved polynomially over hyper-trees, is introduced. functions, and satisfy a certain set of axioms. The axiomatic framework [53] was shown to capture optimization tasks, inference problems in probabilistic reasoning, as well as constraint satisfaction. Indeed, the tasks considered in this paper can be expressed using operators obeying those axioms and therefore their solution by tree-clustering methods follows. Since, as shown in [24] and here, tree-clustering and bucket elimination schemes are closely related, tasks that fall within the axiomatic framework [53] can be accomplished by bucket elimination algorithms as well. In [11] a different axiomatic scheme is presented using semi-ring structures showing that impotent semi-rings characterize the applicability of constraint propagation algorithms. Most of the tasks considered here do not belong to this class. ## 4.9 Exercises - 1. Consider the Markov network in Figure 2.5. - (a) Show schematically how you compute the partition function of this network using BE-evidence. - (b) Assume that you use exponential representation. Show what will be the specification of this network using exponential notation - (c) Compute the exponential representation - (d) How would you compute the partition function with that representation assuming that variable E is assigned the value 0. - 2. Consider the Bayesian network in Figure 2.4(a). What porion of the Bayesian network do you need to consider to compute the belief given evidence 1. A=0, 2. D=1 3. G=0, 4. D=1, G=0. - 3. Prove Theorem 4.1.10. - 4. Perform the numerical computation fully of the example of 4.2.1. Assume the evidence is G=1. Find the mpe value and the corresponding assignment along the order of variables specified. - 5. Prove the completeness of Algorithm BE-map. Namely prove Theorem ??. - 6. In Algorithm BE-map (Figure 4.10), the ordering of the variables is restricted so that the hypothesis variables $A \subseteq X$ appear first in the ordering and therefore process last by BE-mao. Devise a more general constraints of the feasible orderings for which the algorithm would still be complete. Namely for which it will provide the exact map value and map assignment. - 7. Cost networks are defined by ... define a bucket elimination algorithm that finds the optimal solution for a const network. Prove the correctness of your algorithm and analyze its complexity. - 8. (conditioning) Consider the following belief network and assume we want to compute the probability of Z = a. Describe your algorithm and analyze its complexity. - 9. A question on irrelevant subnetworks - 10. Prove the complexity of Algorithm VEC evidence (see Theorem 4.7.2). # Chapter 5 # The Graphs of Graphical Models As we saw, and as we will see throughout the book, the structure of graphical models can be described by graphs that capture dependencies and independencies in the knowledge-base. These graphs are useful because they convey information regarding the interaction between variables and allow efficient query processing. In this chapter we provide a general overview of the graph properties that are relevant to the algorithms that we encounter. We will focus on a graph parameter called *induced-width* or *treewidth* and cycle-cutset decomposition that captures well the complexity of reasoning algorithms for graphical models. Although we already assumed familiarity with the notion of a graph, we take the opportunity to define it formally now. **Definition 5.0.1 (Directed and undirected graphs)** A directed graph is a pair $G = \{V, E\}$, where $V = \{X_1, \ldots, X_n\}$ is a set of vertices, and $E = \{(X_i, X_j) | X_i, X_j \in V\}$ is the set of edges (arcs). If $(X_i, X_j) \in E$, we say that X_i points to X_j . The degree of a variable is the number of arcs incident to it. For each variable X_i , $pa(X_i)$ or pa_i , is the set of variables pointing to X_i in G, while the set of child vertices of X_i , denoted $ch(X_i)$, comprises the variables that X_i points to. The family of X_i , F_i , includes X_i and its parent variables. A directed graph is acyclic if it has no directed cycles. An undirected graph is defined similarly to a directed graph, but there is no directionality associated with the edges. A graphical model can be represented by a *primal graph*. **Definition 5.0.2 (primal graph)** The primal graph of a graphical model is an undirected graph that has variables as its vertices and an edge connects any two variables that appear in the scope of the same function. The absence of an arc between two nodes indicates that there is no direct function specified between the corresponding variables. We observed earlier primal graphs for a variety of graphical models depicting both constraints and probabilistic functions. The primal graph (also called moral graph for Bayesian networks) is an effective way to capture the structure of the knowledge. In particular, graph separation is a sound way to capture conditional independencies relative to probability distributions over directed and undirected graphical models. In the context of probabilistic graphical models, primal graphs are also called i-maps (independence maps[43]). In the context of relational databases [40] primal graphs capture the notion of embedded multi-valued dependencies (EMVDs). All advanced algorithms for graphical models exploit their graphical structure. Besides the primal graph, other graph depictions include hyper-graphs, dual graphs and factor graphs. # 5.1 Types of graphs Although the arcs in a primal graph are defined over pairs of variables in a function scopes, they are well defined for functions whose scopes is larger than two. It's arcs do not provide a one to one correspondence with scopes. Hypergraphs and dual graphs are such representations: **Definition 5.1.1 (hypergraph)** A hypergraph is a pair $\mathcal{H} = (V, S)$ where $V = \{v_1, ..., v_n\}$ is a set of nodes and $S = \{S_1, ..., S_l\}$, $S_i \subseteq V$, is a set of subsets of V called hyperedges. In the *hypergraph* representation of a graphical model, nodes represent the variables, and *hyperarcs* (drawn as regions) are the scopes of functions. They group those variables that belong to the same scope. A related representation is the *dual graph*. Unlike a hypergraph, the dual graph is just a regular graph structure; it represents each function scope by a node and associates a labeled arc with any two nodes whose scopes share variables. The arcs are labeled by the shared variables. **Definition 5.1.2 (a dual graph)** A hypergraph $\mathcal{H} = (V, S)$ can be mapped to a dual graph denoted \mathcal{H}^{dual} . The nodes of the dual graph are the hyperedges (or edges if we have a graph), and a pair of such nodes is connected if they share vertices in V. The arc that connects two such nodes is labeled by the shared vertices. Formally, given a hypergraph $\mathcal{H} = (V, S)$, $\mathcal{H}^{dual} = (S, E)$ where $S = \{S_1, ..., S_l\}$ are edges in \mathcal{H} , and $(S_i, S_j) \in E$ iff $S_i \cap S_j \neq \emptyset$. **Definition 5.1.3 (A primal graph of a hypergraph)** A primal graph of a hypergraph $\mathcal{H} = (V, S)$ has V as its set of nodes, and any two nodes are connected if they appear in the same hyperedge. Note that if all the functions in the graphical model are binary, then its hypergraph is identical to its primal graph. #### Graphical models and hypergraphs Any graphical model $\mathcal{R} = \langle X, D, G, \mathcal{F} \rangle$, $F = \{f_{S_1}, ..., f_{S_t}\}$ can be associated with a hypergraph $\mathcal{H}_{\mathcal{R}} = (X, H)$, where X is the set of nodes (variables), and H is the scopes of
the functions in \mathcal{F} , namely $H = \{S_1, ..., S_l\}$. Therefore, the dual graph of the hypergraph of a graphical model associates a node with each function's scope and an arc for each two nodes sharing variables. **Example 5.1.4** Figure 5.1 depicts the *hypergraph* (a), the *primal graph* (b) and the *dual graph* (c) representations of a graphical model with variables A, B, C, D, E, F and with functions on the scopes (ABC), (AEF), (CDE) and (ACE). The specific functions are irrelevant to the current discussion; they can be arbitrary relations over domains of $\{0,1\}$, such as $C = A \vee B, F = A \vee E$, CPTs or cost functions. The meaning of graph (d) will be described shortly. Figure 5.1: (a)Hyper, (b)Primal, (c)Dual and (d)Join-tree of a graphical model having scopes ABC, AEF, CDE and ACE. (e) the factor graph A factor graph is also a popular graphical depiction of a graphical model. **Definition 5.1.5 (factor graph)** Given a graphical model and its hypergraph H = (V, S) defined by the functions scopes, the factor graph has function nodes and variable nodes. Each scope is associated with a function node and it is connected to all the variable nodes appearing in the function. Figure 5.1e depicts the factor graph of the hypergraph in part (a). We have seen that there is a tight relationship between the complexity of inference algorithms such as bucket elimination and the graph concept called induced width. All inference algorithms are time and space exponential in the induced-width along the order of processing. This motivates finding an ordering with a smallest induced width, a task known to be hard [4]. However, useful greedy heuristics algorithms are available and we will briefly review these in the next few paragraphs [22, 5, 54]. ## 5.2 The induced width **Definition 5.2.1 (width)** Given an undirected graph G = (V, E), an ordered graph is a pair (G, d), where $V = \{v_1, ..., v_n\}$ is the set of nodes, E is a set of arcs over V, and $d = (v_1, ..., v_n)$ is an ordering of the nodes. The nodes adjacent to v that precede it in the ordering are called its parents. The width of a node in an ordered graph is its number of parents. The width of an ordering d of G, denoted $w_d(G)$ (or w_d for short) is the maximum width over all nodes. The width of a graph is the minimum width over all the orderings of the graph. **Example 5.2.2** Figure 5.2 presents a graph G over six nodes, along with three orderings of the graph: $d_1 = (F, E, D, C, B, A)$, its reversed ordering $d_2 = (A, B, C, D, E, F)$, and $d_3 = (F, D, C, B, A, E)$. Note that we depict the orderings from bottom to top, so that the first node is at the bottom of the figure and the last node is at the top. The arcs of the graph are depicted by the solid lines. The parents of A along d_1 are $\{B, C, E\}$. The width of A along d_1 is 3, the width of C along d_1 is 1, and the width of A along A is 2. The width of these three orderings are: A are A and A are A are A are A along A are A are A along A are A are A along A are A are A are A along along A are A along A are A along A are A and A along A are A along A along A are A along A are A along A along A are A along A along A along A are A along A along A along A are are A along A are A along A are A along A are A along A a **Definition 5.2.3 (induced width)** The induced width of an ordered graph (G, d), denoted w^*_d , is the width of the induced ordered graph along d obtained as follows: nodes are processed from last to first; when node v is processed, all its parents are connected. The induced width of a graph, denoted by w^* , is the minimal induced width over all its orderings. Formally $$w^*(G) = \min_{d \in orderings} w^*_{d}(G)$$ **Example 5.2.4** Consider again Figure 5.2. For each ordering d, (G, d) is the graph depicted without the broken edges, while (G^*, d) is the corresponding induced graph that Figure 5.2: (a) Graph G, and three orderings of the graph; (b) $d_1 = (F, E, D, C, B, A)$, (c) $d_2 = (A, B, C, D, E, F)$, and (d) $d_3 = (F, D, C, B, A, E)$. Broken lines indicate edges added in the induced graph of each ordering. includes the broken edges. We see that the induced width of B along d_1 is 3, and that the overall induced width of this ordered graph is 3. The induced widths of the graph along orderings d_2 and d_3 both remain 2, and, therefore, the induced width of the graph G is 2. ## Trees. A rather important observation is that a graph is a tree (has no cycles) iff it has an ordering whose width is 1. The reason a width-1 graph cannot have a cycle is because, for any ordering, at least one node on a cycle would have two parents, thus contradicting presumption of having a width-1 ordering. And vice-versa: if a graph has no cycles, it can always be converted into a rooted directed tree by directing all edges away from a designated root node. In such a directed tree, every node has exactly one node pointing to it; its parent. Therefore, any ordering in which, according to the rooted tree, every parent node precedes its child nodes, has a width of 1. Notice that given an ordering having width of 1, its induced-ordered graph has no additional arcs, yielding an induced width of 1, as well. In summary, #### **Proposition 5.2.5** A graph is a tree iff it has width and induced width of 1. \square Finding a minimum-width ordering of a graph can be accomplished by the greedy algorithm min-width (see Figure 5.3). The algorithm orders variables from last to first as follows: in the first step, a variable with minimum degree is selected and placed last in the ordering. The variable and all its adjacent edges are then eliminated from the original graph, and selection of the next variable continues recursively with the remaining graph. Ordering d_2 of G in Figure 5.2(c) could have been generated by a min-width ordering. ``` MIN-WIDTH (MW) input: a graph G = (V, E), V = \{v_1, ..., v_n\} output: A min-width ordering of the nodes d = (v_1, ..., v_n). 1. for j = n to 1 by -1 do 2. r \leftarrow a node in V with smallest degree. 3. put r in position j and G \leftarrow G - \{r\}. (delete from V node r and from E all its adjacent edges) 4. endfor ``` Figure 5.3: The min-width (MW) ordering procedure **Proposition 5.2.6** [29] Algorithm min-width (MW) finds a minimum width ordering of a graph and its complexity is O(|E|) when E are the edges in the graph. \square Though finding the min-width ordering of a graph is easy, finding the minimum *induced* width of a graph is hard (NP-complete [4]). Nevertheless, deciding whether there exists an ordering whose induced width is less than a constant k, takes $O(n^k)$ time [48]. The property follows from the fact that a graph having a treewidth bounded by k must have a separator of size bounded by k+1 such that the resulting components created when the separator is removed each has a tree-width of size k. Enumerating all subgraph of size k in order to consider them as appropriate separators is $O(n^k)$. For details see [48] and also [55]. A decent greedy algorithm, obtained by a small modification to the min-width algorithm, is the min-induced-width (MIW) algorithm (Figure 5.4). It orders the variables from last to first according to the following procedure: the algorithm selects a variable with minimum degree and places it last in the ordering. The algorithm next connects the node's neighbors in the graph to each other, and only then removes the selected node and its adjacent edges from the graph, continuing recursively with the resulting graph. The ordered graph in Figure 5.2(c) could have been generated by a min-induced-width ordering of G. In this case, it so happens that the algorithm achieves w^* , the minimum induced width of the graph. Another variation yields a greedy algorithm known as min-fill. It uses the min-fill set, that is, the number of edges needed to be filled so that the node's parent set be fully connected, as an ordering criterion. This min-fill heuristic described in Figure 5.5, was demonstrated empirically to be somewhat superior to min-induced-width algorithm [36]. The ordered graph in Figure 5.2(c) could have been generated by a min-fill ordering of G while the ordering d_1 or d_3 in parts (a) and (d) could not. ``` MIN-INDUCED-WIDTH (MIW) input: a graph G = (V, E), V = \{v_1, ..., v_n\} output: An ordering of the nodes d = (v_1, ..., v_n). 1. for j = n to 1 by -1 do 2. r \leftarrow a node in V with smallest degree. 3. put r in position j. 4. connect r's neighbors: E \leftarrow E \cup \{(v_i, v_j) | (v_i, r) \in E, (v_j, r) \in E\}, 5. remove r from the resulting graph: V \leftarrow V - \{r\}. ``` Figure 5.4: The min-induced-width (MIW) procedure What is the complexity of MIW and MIN-Fill? It is easy to see that their complexity is bounded by $O(n^3)$. The notions of width and induced width and their relationships to various graph parameters, have been studied extensively and will be briefly discuss next. ``` MIN-FILL (MIN-FILL) input: a graph G = (V, E), V = \{v_1, ..., v_n\} output: An ordering of the nodes d = (v_1, ..., v_n). 1. for j = n to 1 by -1 do 2. r \leftarrow a node in V with smallest fill edges for his parents. 3. put r in position j. 4. connect r's neighbors: E \leftarrow E \cup \{(v_i, v_j) | (v_i, r) \in E, (v_j, r) \in E\}, 5. remove r from the resulting graph: V \leftarrow V - \{r\}. ``` Figure 5.5: The min-fill (MIN-FILL) procedure # 5.3 Chordal graphs For some special graphs such as chordal graphs, computing the induced-width is easy. A graph is *chordal* if every cycle of length at least four has a chord, that is, an edge connecting two nonadjacent vertices. For example, G in Figure 5.2(a) is not chordal since the cycle (A, B, D, C, A) does not have a chord. The graph can be made chordal if we add the edge (B, C) or the edge (A, D). Many difficult graph problems become easy on chordal graphs. For example, finding all the maximal (largest) cliques
(completely connected subgraphs) in a graph, an NP-complete task on general graphs, is easy for chordal graphs. This task (finding maximal cliques) is facilitated by using yet another ordering procedure called the max-cardinality ordering [56]. A max-cardinality ordering of a graph orders the vertices from first to last according to the following rule: the first node is chosen arbitrarily. From this point on, a node that is connected to a maximal number of already ordered vertices is selected, and so on. Ordering d_2 in Figure 5.2(c) is a max-cardinality ordering. A max-cardinality ordering can be used to identify chordal graphs. Namely, a graph is chordal iff in a max-cardinality ordering each vertex and all its parents form a clique. One can thereby enumerate all maximal cliques associated with each vertex (by listing the sets of each vertex and its parents, and then identify the maximal size of a clique). Notice that there are at most n maximal cliques: each vertex and its parents is one such clique. In addition, when using a max-cardinality ordering of a chordal graph, the ordered graph is identical to its induced graph, and therefore its width is identical to its induced width. It is easy to see that, **Proposition 5.3.1** If G is the induced graph of a graph G, along some ordering d, then G is chordal. \square **Proof:** One way to show this is to realize that the ordering d can be realized by a max-cardinality ordering of G. **Example 5.3.2** We see again that G in Figure 5.2(a) is not chordal since the parents of A are not connected in the max-cardinality ordering in Figure 5.2(d). If we connect B and C, the resulting induced graph is chordal. ``` MAX-CARDINALITY (MC) input: a graph G = (V, E), V = {v₁, ..., v_n} output: An ordering of the nodes d = (v₁, ..., v_n). 1. Place an arbitrary node in position 0. 2. for j = 1 to n do 3. r ← a node in G that is connected to a largest subset of nodes in positions 1 to j − 1, breaking ties arbitrarily. 4. endfor ``` Figure 5.6: The max-cardinality (MC) ordering ordering procedure **Proposition 5.3.3** [56] Given a graph G = (V, E) the complexity of max-cardinality search is O(n+m) when |V| = n and |E| = m. **Definition 5.3.4 (k-trees)** A subclass of chordal graphs are k-trees. A k-tree is a chordal graph whose maximal cliques are of size k+1, and it can be defined recursively as follows: (1) A complete graph with k vertices is a k-tree. (2) A k-tree with r vertices can be extended to r+1 vertices by connecting the new vertex to all the vertices in any clique of size k. A partial k-tree is a k-tree having some of its arcs removed. Namely it will clique of size smaller than k. #### 5.4 From linear orders to tree orders #### 5.4.1 Elimination trees We can associate with any ordering with a partial order that can be captured by a tree rather than by a chain. This tree is called an *elimination tree* and is related to the notion of a *pseudo-tree* defined subsequently. Given an ordering d of a graph G, we can designate as a parent of node n its closest earlier neighbor in the induced order graph graph (G^*, d) . Fromally, **Definition 5.4.1 (elimination trees)** Given an ordered induced graph (G^*, d) , its elimination tree has the nodes of G and every node has a directed arc from its preceding neighbor in the induced graph (G^*, d) that appears latest in the order. The root of the tree is the first node in the ordering. The height (or depth) of an ordering is the height (or depth) of its elimination tree. **Example 5.4.2** consider the graph in Figure 5.7(a). An elimination tree for the ordering d = (1, 2, 3, 4, 7, 5, 6) is depicted in Figure 5.7(b). #### 5.4.2 Pseudo Trees It turns out that elimination trees of a graph are a special case of what is known as a pseudo-trees of a graph. As we will show, a pseudo-tree includes depth-first search (dfs) spanning trees of a graph as a special case. **Definition 5.4.3 (pseudo tree, extended graph)** [30] Given an undirected graph G = (V, E), a directed rooted tree T = (V, E') defined on all its nodes is a pseudo tree if any arc of G which is not included in E' is a back-arc in T, namely it connects a node in T to an ancestor in T. The arcs in E' may not all be included in E. Given a pseudo tree T of G, the extended graph of G relative to T includes also the arcs in G that are not in T. Namely the extended graph is defined as $G^T = (V, E \cup E')$. It is well known [27] that a spanning tree of G that is generated by a DFS traversal of the graph, has all its non-tree arcs as back-arcs. Figure 5.7: (a) A graph; (b) a DFS tree \mathcal{T}_1 ; (c) a pseudo tree \mathcal{T}_2 ; (d) a chain pseudo tree \mathcal{T}_3 Clearly, a tree generated by a dfs traversal of a graph is a pseudo-tree whose arcs are all included in G. Example 5.4.4 Consider the graph G displayed in Figure 5.7(a). Ordering $d_1 = (1, 2, 3, 4, 7, 5, 6)$ is a DFS ordering of a DFS tree T_1 having the smallest DFS tree depth of 3 (Figure 5.7(b)). The tree T_2 in Figure 5.7(c) is a pseudo tree and has a tree depth of 2 only. The two tree-arcs (1,3) and (1,5) are not in G. The tree T_3 in Figure 5.7(d), is a chain. The extended graphs G^{T_1} , G^{T_2} and G^{T_3} are presented in Figure 5.7(b),(c),(d) when we ignore directionality and include the dotted arcs. The tree T_1 is also an elimination tree along the order d = (1,2,3,4,7,5,6). T_2 is an elimination tree along d = (1,3,4,2,5,7,6). However the chain T_3 is not an elimination tree because 7 is not connected to 4 in the induced graph along that ordering. **Proposition 5.4.5** An elimination-tree is a pseudo-tree. **Proof:** We have to show that a non-tree arcs in the elimination-tree are back-arcs (left as exercise) Generating low height elimination trees It is desirable to get orderings that have a small height of their pseudo-tree. Finding a minimal height ordering is also known to be hard. We can use a DFS tree traversal of the induced-width of a graph to generate a small tree. The tree height is dependant on the initial ordering used. Note that every elimination-tree is a pseudo-tree. Generating an elimination-tree is easy since they are defined constructively, and they are also pseudo-trees. **Proposition 5.4.6** 1. Any DFS tree of the induced graph (G^*, d) is a pseudo-tree. 2. There exists a DFS ordering of the induced-graph that is an elimination-tree. Proof: Exercise Another greedy algorithm called hypergraph decomposition aims to generate small hight elimination orderings and is sometime also used to generate small induced-width. It is based on the recursive decomposition of the dual hypergraph and it uses the notion of hypergraph separator. **Definition 5.4.7 (hypergraph separators)** Given a dual hypergraph $\mathcal{H} = (\mathbf{V}, \mathbf{E})$ of a graphical model, a hypergraph separator decomposition is a pair $\langle \mathcal{H}, \mathcal{S} \rangle$ where: $\mathcal{S} \subset \mathbf{E}$, and the removal of \mathcal{S} separates \mathcal{H} into more than 2 disconnected components; The algorithm works by partitioned the hypergraph into two balanced (roughly equalsized) parts, while minimizing the number of hyperedges across. A small number of crossing edges translates into a small number of variables shared between the two sets of functions. Each part is then recursively partitioned in the same fashion, until they contain a single vertex. This yields a tree of hypergraph separators where each separator corresponds to a subset of variables chained together. Since the above hypergraph partitioning heuristic can select the separations in many ways it is a non-deterministic algorithm (see software hMeTiS¹.) and the height and induced width of the resulting elimination tree may vary significantly from one run to the next. In Table 5.1 we illustrate the induced width and depth of the elimination tree obtained with the hypergraph and min-fill heuristics for 10 Bayesian networks graphs from the Bayesian Networks Repository² and 10 constraint networks graphs derived from the SPOT5 benchmark [7]. It was generally observed that the min-fill heuristic generates lower induced width elimination trees, while the hypergraph heuristic produces much smaller height elimination trees. ¹Available at: http://www-users.cs.umn.edu/karypis/metis/hmetis ²Available at: http://www.cs.huji.ac.il/labs/compbio/Repository | Network | hypergraph | | min-fill | | Network | hypergraph | | min-fill | | |----------|------------|-------|----------|-------|----------|------------|-------|----------|-------| | | width | depth | width | depth | | width | depth | width | depth | | barley | 7 | 13 | 7 | 23 | spot_5 | 47 | 152 | 39 | 204 | | diabetes | 7 | 16 | 4 | 77 | spot_28 | 108 | 138 | 79 | 199 | | link | 21 | 40 | 15 | 53 | spot_29 | 16 | 23 | 14 | 42 | | mildew | 5 | 9 | 4 | 13 | spot_42 | 36 | 48 | 33 | 87 | | munin1 | 12 | 17 | 12 | 29 | spot_54 | 12 | 16 | 11 | 33 | | munin2 | 9 | 16 | 9 | 32 | spot_404 | 19 | 26 | 19 | 42 | | munin3 | 9 | 15 | 9 | 30 | spot_408 | 47 | 52 | 35 | 97 | | munin4 | 9 | 18 | 9 | 30 | spot_503 | 11 | 20 | 9 | 39 | | water | 11 | 16 | 10 | 15 | spot_505 | 29 | 42 | 23 | 74 | | pigs | 11 | 20 | 11 | 26 | spot_507 | 70 | 122 | 59 | 160 | Table 5.1: Bayesian Networks Repository (left); SPOT5 benchmarks (right). ## 5.5 Tree-decompositions Another important parameter that is highly related to the induced-width called *treewidth*. It aims at capturing how close a graph is to a tree by embedding the graph in a tree of clusters, yielding a *tree-decomposition*. **Definition 5.5.1 (tree decomposition)** A tree decomposition of a hypergraph H = (X, S) where $S = \{S_1, \ldots, S_t\}$, is a tree T = (V, E) where V is the set of nodes, also called "clusters", and E is the set of edges, together with a labeling function χ that associates with each vertex $v \in V$ a set (a cluster) $\chi(v) \subseteq X$ satisfying: - 1. For each $S_i \in S$ there exists a
vertex $v \in V$ such that $S_i \subseteq \chi(v)$; - 2. (running intersection property) For each $X_i \in X$, the set $\{v \in V \mid X_i \in \chi(v)\}$ induces a connected subtree of T. **Definition 5.5.2 (treewidth, pathwidth)** The treewidth of a tree decomposition of a graph is the size of its largest cluster minus 1. Namely $tw(T) = \max_{v} |\chi(v)| - 1$. The Figure 5.8: Tree decomposition example **treewidth** of a hypergraph is the minimum treewidth over all possible tree-decompositions. The **pathwidth** is the treewidth over the restricted class of chain decompositions (namely when T is a chain.) Example 5.5.3 We will look at two graph examples. First consider the hypergraph in Figure 5.9(a) where $\mathcal{H} = (V = \{A, B, C, D, E, F\}, S = \{AEF, ABC, CDE, ACE\}$. The tree in Figure 5.9(d) is a depiction of a tree-decomposition, where each hyperedge is its own cluster. You can verify that the property of connectedness is satisfied. In this case we did not need to combine different hyperedges into a single cluster. The actual hypergraph is already a (hyper)tree. Consider now the second example in Figure 5.2(a). In this case we have a simple graph. A tree-decomposition is given by the tree whose nodes are $V = \{1, 2, 3, 4\}$ and edges are $E = \{(1, 2), (1, 3), (3, 4) \text{ and } \chi(1) = \{A, B, C\}, \chi(2) = \{A, B, E\}, \chi(3) = \{B, C, D\}. \chi(4) = \{D, F\}.$ See Figure 5.8 How can we construct a tree decomposition? Interestingly, we can show that the set maximal cliques of an induced-graph provides a tree decomposition of the graph. Namely, the maximal cliques of the induced graph can be connected into a tree structure that satisfies the running intersection property (property 2 of definition 5.5.1). This is because an induced-graph is a chordal graph. All that remains is to show then is that the maximal cliques of a chordal graph provide a tree-decomposition. **Proposition 5.5.4** Given a hypergaph H = (X, S) whose primal graph G is chordal, the maximal cliques of G constitute a tree-decomposition. **Proof:** Let's use a maximal cardinality order d of the chordal graph. It is easy to identify the maximal cliques and enumerate them going from the last to the first node. Let this order be $C = \{C_1, ... C_r\}$. Then the tree T = (C, E), is built as follows. For every j connect C_j to C_k , where k < j iff clique C_k shares a maximum number of variables with C_j . Clearly property 1 of the tree decomposition definition is satisfied by the tree T since ever $S_i \in H$ appears as a clique in the primal graph G and is therefore subsumed in one of the maximal cliques. property 2, the running intersection property, is also satisfied. This is less straightforward and we leave it to the reader to explore (see literature on chordal graphs). Consequently, a popular way of generating a tree-decomposition of a hypergraph is to embed it in an induced-graph that is chordal (i.e., select an ordering and generate the induced graph along that ordering) and then select the maximal cliques and connect them into a tree. By definition, the induced width of that ordering and the treewidth of that ordering are identical, both coincide with the size of the maximal clique - 1. Consequently the minimum over all orderings, of the induced-width and the treewidth are identical as well. Indeed, the induced-width and the tree-width for any graph are the same parameter. (For mode see [24]). For various relationships between these and other graph parameters see [4, 32, 12]. **Example 5.5.5** Consider the hypergraph $\mathcal{H} = (V, S)$ where $V = \{1, 2, ..., 13\}$ and $S = \{\{1, 2, 3, 4, 5\}, \{3, 6, 9, 12\}, \{12, 13\}, \{5, 7, 11\}, \{8, 9, 10, 11\}, \{10, 13\}$. The primal graph of this hypergraph is given in Figure 5.9(a). The hypergraph is given in 5.9(b), and its dual graph is depicted in Figure 5.9(c). The reader is encouraged to compute the induced width along two orderings and speculate what the treewidth of this hypergraph might be. Suggest a tree-decomposition. **Definition 5.5.6 (hypertree)** A hypergraph whose primal graph is chordal, and whose maximal ciques correspond to the hyperedges is a hypertree Definition 5.5.7 (connectedness, join-trees, hypertrees and acyclic networks) Given a dual graph of a hypergraph, an arc subgraph of the dual graph satisfies the connectedness property iff for each two nodes that share a variable, there is at least one path Figure 5.9: A hypergraph represented by (a) a primal graph, (b) a hypergraph, and (c) a dual graph. of labeled arcs, each containing the shared variables. An arc subgraph of the dual graph that satisfies the connectedness property is called a join-graph. A join-graph that is a tree is called a join-tree. A hyper-tree is also called an acyclic graph. It can be shown that **Proposition 5.5.8** A hypergraph whose dual-graph has a join-tree is a hypertree. **Example 5.5.9** Considering again Figure 5.1 We see that the arc between (AEF) and (ABC) in Figure 5.1(c) is redundant because variable A also appears along the alternative path (ABC) - AC - (ACE) - AE - (AEF). A consistent assignment to A is thereby ensured by these constraints even if the constraint between AEF and ABC is removed. Likewise, the arcs labeled E and C are also redundant, and their removal yields the graph in 5.1(d). We also see that the join-tree in Figure 5.1(d) satisfies the connectedness property. The hypergraph in Figure 5.1(a) has a join-tree and is therefore a hypertree. \Box ## 5.6 The cycle-cutset and w-cutset schemes We described earlier the treewidth parameter as a measure capturing how close is a graph to a tree as reflected via a tree of clusters of nodes. Here we will focus on alternative way of transforming a graph into a tree called cycle-cutset and more generally, w-cutset, Figure 5.10: An instantiated variable cuts its own cycles. decomposition. A cutset is a set of nodes that can be removed from the graph. We showed at the end of Chapter 4 that we can consider conditioning on a subset of the variables, namely, assigning them values and solve the rest of the problem as if its graph does not include the cutset. Cutset-decomposition is a class of algorithms that we will focus on in later chapters. The graph parameter that controls its promise and complexity is w if we use a w-cutset decomposition. **Definition 5.6.1 (cycle-cutset,w-cutset)** Given a graph G, a subset of nodes is called a w-cutset iff when removed from the graph the resulting graph has an induced-width less than or equal to w. A minimal w-cutset of a graph has a smallest size among all w-cutsets of the graph. A cycle-cutset is a 1-cutset of a graph. A cycle-cutset is known by the name a *feedback vertex set* and it is known that finding the minimal such set is NP-complete [31]. However, we can always settle for approximations, provided by greedy schemes. Cutset-decomposition schemes call for a new optimization task on graphs: **Definition 5.6.2 (finding a minimal w-cutset)** Given a graph G = (V, E) and a constant w, find a smallest subset of nodes U, such that when removed, the resulting graph has induced-width less than or equal w. Finding a minimal w-cutset is hard, but various greedy heuristic algorithms were investigated. In particular several greedy algorithms for the special case of cycle-cutset can be found [2]. The general task of finding a minimal w-cutset was addressed in recent papers [28, 9]. Note that verifying that a given subset of nodes is a w-cutset can be accomplished in polynomial time (linear in the number of nodes), by deleting the candidate cutset from the graph and verifying that the remaining graph has an induced width bounded by w [4]. It can be shown that the size of the smallest cycle-cutset (1-cutset), c_1^* and the smallest induced width, w^* , obey the inequality $c_1^* \ge w^* - 1$. Therefore, $1 + c_1^* \ge w^*$. In general, if c_w^* is the size of a minimal w-cutset then, #### Theorem 5.6.3 $$1 + c_1^* \ge 2 + c_2^* \ge ...b + c_b^*, ... \ge w^* + c_{w^*}^* = w^*$$ Proof: exercise ## 5.7 Summary and Bibliographical Notes ### 5.8 Exrecises - 1. Show what is the factor graph of the hypergraph in Figure 5.1? - 2. Analyze the complexity of the the greedy algorithms, MW, MIW, MF, MC, appearing in this chapter. # Bibliography - [1] Darwiche A. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009. - [2] Bar-Yehuda R A. Becker and D. Geiger. Random algorithms for the loop-cutset problem. In *Uncertainty in AI (UAI'99)*, pages 81–89, 1999. - [3] Srinivas M. Aji and Robert J. McEliece. The generalized distributive law. *IEEE Transactions on Information Theory*, 46(2):325–343, 2000. - [4] S. A. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability a survey. *BIT*, 25:2–23, 1985. - [5] A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal junction trees. In *Uncertainty in AI (UAI'96)*, pages 81–89, 1996. - [6] R.E. Bellman. Dynamic Programming. Princeton University Press, 1957. - [7] E. Bensana, M. Lemaitre, and G. Verfaillie. Earth observation satellite management. Constraints, 4(3):293–299, 1999. - [8] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, 1972. - [9] B. Bidyuk and R. Dechter. On finding w-cutset in bayesian networks. In *Uncertainty* in AI (UAI04), 2004. - [10] S. Bistarelli. Semirings for Soft Constraint Solving and Programming (Lecture Notes in Computer Science. Springer-Verlag, 2004. - [11] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and optimization. *Journal of the Association of Computing Machinery*, 44, No. 2:165–201, 1997. - [12] H.L. Bodlaender. Treewidth: Algorithmic techniques and results. In *MFCS-97*, pages 19–36, 1997. - [13] C. Cannings, E.A. Thompson, and H.H. Skolnick. Probability functions on complex pedigrees. *Advances in Applied Probability*, 10:26–61, 1978. -
[14] M. Davis and H. Putnam. A computing procedure for quantification theory. *Journal* of the Association of Computing Machinery, 7(3), 1960. - [15] S. de Givry, J. Larrosa, and T. Schiex. Solving max-sat as weighted csp. In Principles and Practice of Constraint Programming (CP-2003), 2003. - [16] S. de Givry, I. Palhiere, Z. Vitezica, and T. Schiex. Mendelian error detection in complex pedigree using weighted constraint satisfaction techniques. In *ICLP Workshop on Constraint Based Methods for Bioinformatics*, 2005. - [17] R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning and cutset decomposition. *Artificial Intelligence*, 41:273–312, 1990. - [18] R. Dechter. Bucket elimination: A unifying framework for probabilistic inference. In *Proc. Twelfth Conf. on Uncertainty in Artificial Intelligence*, pages 211–219, 1996. - [19] R. Dechter. Bucket elimination: A unifying framework for probabilistic inference algorithms. In *Uncertainty in Artificial Intelligence (UAI'96)*, pages 211–219, 1996. - [20] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 113:41–85, 1999. - [21] R. Dechter. A new perspective on algorithms for optimizing policies under uncertainty. In *International Conference on Artificial Intelligence Planning Systems* (AIPS-2000), pages 72–81, 2000. - [22] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003. - [23] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction problems. *Artificial Intelligence*, 34:1–38, 1987. - [24] R. Dechter and J. Pearl. Tree clustering for constraint networks. *Artificial Intelligence*, pages 353–366, 1989. - [25] R. Dechter and I. Rish. Directional resolution: The davis-putnam procedure, revisited. In *Principles of Knowledge Representation and Reasoning (KR-94)*, pages 134–145, 1994. - [26] R. Dechter and P. van Beek. Local and global relational consistency. *Theoretical Computer Science*, pages 283–308, 1997. - [27] S. Even. Graph algorithms. In Computer Science Press, 1979. - [28] Myan Fishelson and Dan Geiger. Optimizing exact genetic linkage computations. *RECOMB*, pages 114–121, 2003. - [29] E. C. Freuder. A sufficient condition for backtrack-free search. *Journal of the ACM*, 29(1):24-32, 1982. - [30] E. C. Freuder. A sufficient condition for backtrack-bounded search. *Journal of the ACM*, 32(1):755–761, 1985. - [31] M. R Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-completeness. In W. H. Freeman and Company, New York, 1979. - [32] H. Hasfsteinsson H.L. Bodlaender, J. R. Gilbert and T. Kloks. Approximating treewidth, pathwidth and minimum elimination tree-height. In *Technical report RUU-CS-91-1*, *Utrecht University*, 1991. - [33] R. A. Howard and J. E. Matheson. Influence diagrams. 1984. - [34] F.V. Jensen. *Bayesian networks and decision graphs*. Springer-Verlag, New-York, 2001. - [35] J. Larrosa K. Kask, R. Dechter and A. Dechter. Unifying tree-decompositions for reasoning in graphical models. *Artificial Intelligence*, 166(1-2):165–193, 2005. - [36] U. Kjæaerulff. Triangulation of graph-based algorithms giving small total state space. In Technical Report 90-09, Department of Mathematics and computer Science, University of Aalborg, Denmark, 1990. - [37] D. Koller and N. Friedman. *Probabilistic Graphical Models*. MIT Press, 2009. - [38] J.-L. Lassez and M. Mahler. On fourier's algorithm for linear constraints. *Journal of Automated Reasoning*, 9, 1992. - [39] S.L. Lauritzen and D.J. Spiegelhalter. Local computation with probabilities on graphical structures and their application to expert systems. *Journal of the Royal Statistical Society, Series B*, 50(2):157–224, 1988. - [40] D. Maier. The theory of relational databases. In *Computer Science Press, Rockville, MD*, 1983. - [41] L. G. Mitten. Composition principles for the synthesis of optimal multistage processes. *Operations Research*, 12:610–619, 1964. - [42] R.E. Neapolitan. *Learning Bayesian Networks*. Prentice hall series in Artificial Intelligence, 2000. - [43] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988. - [44] L. Portinale and A. Bobbio. Bayesian networks for dependency analysis: an application to digital control. In *Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI99)*, pages 551–558, 1999. - [45] A. Dechter R. Dechter and J. Pearl. Optimization in constraint networks. In *Influence Diagrams, Belief Nets and Decision Analysis*, pages 411–425. John Wiley & Sons, 1990. - [46] B. D'Ambrosio R.D. Shachter and B.A. Del Favero. Symbolic probabilistic inference in belief networks. In *National Conference on Artificial Intelligence (AAAI'90)*, pages 126–131, 1990. - [47] I. Rish and R. Dechter. Resolution vs. search; two strategies for sat. *Journal of Automated Reasoning*, 24(1/2):225–275, 2000. - [48] D. G. Corneil S. A. Arnborg and A. Proskourowski. Complexity of finding embeddings in a k-tree. SIAM Journal of Discrete Mathematics., 8:277–284, 1987. - [49] T. Sandholm. An algorithm for optimal winner determination in combinatorial auctions. *Proc. IJCAI-99*, pages 542–547, 1999. - [50] L. K. Saul and M. I. Jordan. Learning in boltzmann trees. *Neural Computation*, 6:1173–1183, 1994. - [51] R. Seidel. A new method for solving constraint satisfaction problems. In *International Joint Conference on Artificial Intelligece (Ijcai-81)*, pages 338–342, 1981. - [52] G. R. Shafer and P.P. Shenoy. Axioms for probability and belief-function propagation. volume 4, 1990. - [53] P.P. Shenoy. Valuation-based systems for bayesian decision analysis. *Operations Research*, 40:463–484, 1992. - [54] K. Shoiket and D. Geiger. A proctical algorithm for finding optimal triangulations. In Fourteenth National Conference on Artificial Intelligence (AAAI'97), pages 185–190, 1997. - [55] Kirill Shoikhet and Dan Geiger. A practical algorithm for finding optimal triangulations. In AAAI/IAAI, pages 185–190, 1997. - [56] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs. *SIAM Journal of Computation.*, 13(3):566–579, 1984. - [57] P. Thbault, S. de Givry, T. Schiex, and C. Gaspin. Combining constraint processing and pattern matching to describe and locate structured motifs in genomic sequences. In Fifth IJCAI-05 Workshop on Modelling and Solving Problems with Constraints, 2005. - [58] N.L. Zhang and D. Poole. Exploiting causal independence in bayesian network inference. *Journal of Artificial Intelligence Research (JAIR)*, 1996.