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Notation

R a constraint network

x1,...,T,variables

n the number of variables in a constraint network
D; the domain of variable x;

X,Y,Z sets of variables
R, S, T relations
r, s, t tuples in a relation
< X1, a1 >< Lo, Qg >, ..., < Tp,ad, > an assignment tuple
Opy=dy,....ep=dy (I7)
the selection operation on relations
Iy (R) the projection operatoin on relations
[z] the integer n such that z <n <z +1
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Chapter 1
Introduction

Over the last three decades, research in Artificial Intelligence has witnessed marked growth
in the core disciplines of knowledge representation, learning and reasoning. This growth
has been facilitated by a set of graph-based representations and reasoning algorithms
known as graphical models.

The term graphical models describes a methodology for representing information, or
knowledge, and for reasoning about that knowledge for the purpose of making decisions or
for accomplishing other tasks by an intelligent agent. What makes these models graphical
is that the structure used to represent the knowledge is often captured by a graph. The
primary benefits of graph-based representation of knowledge are that it allows compact

encoding of complex information and its efficient processing.

1.1 Probabilistic vs Deterministic Models

The concept of graphical models has mostly been associated exclusively with probabilistic
graphical models. Such models are used in situations where there is uncertainty about
the state of the world. The knowledge represented by these models concerns the joint
probability distribution of a set of variables. An unstructured representation of such a
distribution would be a list of all possible value combinations and their respective prob-

abilities. This representation would require a huge amount of space even for a moderate
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number of variables. Furthermore, reasoning about the information, for example, calculat-
ing the probability that a specific variable will have a particular value given some evidence
would be very inefficient. A Bayesian network is a graph-based and a far more compact
representation of a joint probability distribution (and, as such, a graphical model) where
the information is encoded by relatively small number of conditional probability distribu-
tions as illustrated by the following example based on the early example by Spigelhalter
and Lauritsen [39].

This simple medical diagnosis problem focuses on two diseases: Lung Cancer and
Bronchitis. There is one sympton dyspnoea (shortness of breath), that may be associated
with the presence of either disease (or both) and test results from X-ray that may be
related to either cancer, or smoking or both. Whether or not the patient is a smoker also
affects the likelihood of a patient having the diseases and symptoms. When a patient
presents a particular combination of symptoms X-ray results it is usually impossible to
say with certainty whether he suffers from either disease, from both, or from neither; at
best, we would like to be able to calculate the probability of each of these possibilities.
Calculating these probabilities (as well as many others) requires the knowledge of the joint
probability distribution of the five variables (Lung Cancer (L) , Bronchitis (B), Dyspnea
(D), Test of X-ray (T), and smoker (S)), that is, the probability of each of their 64 value
combinations.

Alternatively, the joint probability distribution can be represented more compactly by
factoring the distribution into a small number of conditional probabilities. One possible

factorization, for example, is given by
P(S,L,B,D,T)= P(S)P(L|S)P(B|S)P(D|L, B)P(T|L)

This factorization corresponds to the directed graph in Figure 1.1 where each variable
is represented by a node and there is an arrow connecting any two variables that have
direct probabilistic (and may be causal) interactions between them, (that is, participate
in one of the conditional probabilities).

In addition to allowing a more compact representation of the joint probability distri-
bution, the graph also represents a set of independencies that are true for the distribution.
For example, it shows that the variables Lung cancer and Bronchitis are conditionally in-

dependent on the variable smoking, that is, if smoking status is known then knowing that
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Figure 1.1: A simple medical diagnosis Bayesian network.

the patient has (or doesnt have) Lung cancer has no bearing on the probability that he
has Bronchitis. However if it is also know that shortness of breath is present, Lung cancer
and Bronchitis are no longer independent; knowing that the person has Lung cancer may
explains away Bronchitis and reduces the likelihood of Dyspnea. Such independencies are
very helpful for reasoning about the knowledge.

While the term graphical models has mostly been used for probabilistic graphical
models, the idea of using a graph-based structure for representing knowledge has been
used with the same amount of success in situations that seemingly have nothing to do with
probability distributions or uncertainty. One example is that of constraint satisfaction
problems. Rather than the probability of every possible combination of values assigned
to a set of variables, the knowledge encoded in a constraint satisfaction problem concerns
their feasibility, that is, whether these value combination satisfy a set of constraints that
are often defined on relatively small subsets of variables. This structure is associated
with a constraint graph where each variable is represented by a node and two nodes
are connected by an edge if they are bound by at least one constraint. A constraint
satisfaction problem along its constraint graph is often referred to as a constraint network
and is illustrated by the following example.

Consider the map in Figure 1.2 showing eight neighboring countries and consider a
set of three colors, red, blue, and yellow, for example. Each of the countries needs to be
colored by one of the three colors so that no two countries that have a joint border have the
same color. A basic question about this situation is to determine whether such a coloring
scheme exists and, if so, to produce such a scheme. One way of answering these questions

is to systematically generate all possible assignments of a color to a country and then
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Belgium

Portugal Switzerland

Figure 1.2: A map of eight neighboring countries

test each one to determine whether it satisfies the constraint. Such an approach would be
very inefficient because the number of different assignments could be huge. The structure
of the problem, represented by its constraint graph in Figure 1.3, could be helpful in
accomplishing the task. In this graph each country is represented by a node and there
is an edge connecting every pair of adjacent countries representing the constraint that

prohibits that they be colored by the same color.

Just as in the Bayesian network graph, the constraint graph reveals the independencies
in the map coloring problem. For example, it shows that if a color is selected for France the
problem separates into three smaller problems (Portugal - Spain, Italy - Switzerland, and
Belgium - Luxembourg - Holland) which could be solved independently of one another.
This kind of information is extremely useful for expediting the solution of constraint

satisfaction problems.

Figure 1.3: The map coloring constraint graph
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Whereas a Bayesian network is an example of a probabilistic graphical model, a con-
straint network is an example of a deterministic graphical model. The graphs associated
with the two problems are also different: Bayesian networks use directed graphs, indicat-
ing that the information regarding relationship between two variables is not symmetrical
while constraint graphs are undirected graphs. Despite these differences, the significance
of the graph-based structure and the way it is used to facilitate reasoning about the
knowledge are sufficiently similar to place both problems in a general class of graphical
models. Many other problem domains have similar graph based structures and are, in the
view of this book, graphical models. Examples include propositional logic, integer linear

programming, influence diagrams, and Markov networks.

1.2 Directed vs Undirected Models

The examples in previous section illustrate the two main classifications of graphical mod-
els. The first of these has to do with the kind information represented by the graph,
primarily on whether the information is deterministic or probabilistic. Constraint net-
works are, for example, deterministic; an assignment of values to variables is either valid
or it is not. Bayesian networks and Markov networks, on the other hand, represent prob-
abilistic relationships; the nodes represent random variables and the graph as a whole
encodes the joint probability distribution of those random variables. The distinction be-
tween these two categories of graphical models is not clear-cut, however. Cost networks,
which represent preferences among assignments of values to variables are typically deter-
ministic but they are similar to probabilistic networks as they are defined by real-valued
functions just like probability functions.

The second classification of graphical models concerns how the information is encoded
in the graph, primarily whether the edges in their graphical representation are directed
or undirected. For example, Markov networks are probabilistic graphical models that
have undirected edges while Bayesian networks are also probabilistic models but use a
directed graph structure. Cost and constraint networks are primarily undirected yet some
constraints are functional and can be associated with a directed model. For example,

Boolean circuits encode functional constraints directed from inputs to outputs.

Rina Dechter 11
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Figure 1.4: undirected and directed deterministic relationships

To make these classifications more concrete, consider a very simple example of a rela-
tionships between two variables. Suppose that we want to represent the logical relation-
ship AV B using a graphical model. We can do it by a constraint network of two variables
and a single constraint (specifying that the relationship A V B holds.” The undirected
graph representing this network is shown in (Figure 1.4(a)). We can add a third variable,
C, that will be ”true” if an only if the relation AV B is "true,” that is, C = AV B. This
model may be expressed as a constraint on all three variables, resulting in the complete
graph shown in Figure 1.4(b).

Now consider a probabilistic version of the above relationships, where, the case of
C = AV B we might employ a NOISY-OR relationship. A noisy-or function is the
nondeterministic analog of the logical OR function and specifies that each input variable
whose value is 71”7 produces an output of 1 with high probability 1 — € for some small e.

This can lead to the following encoding.
P(C=1A=0,B=0)=0, P(C=1A=0,B=1)=1—¢g,

P(C=1A=1,B=0)=1—¢,, P(C=1A=1B=1)=(1—ep)(l—e4)

This relationship is directional, representing the conditional probability of C' for any
given inputs to A and B and can parameterize the directed graph representation as in

Figure 1.4(c). On the other hand, if we are interested to introduce some noise to an

(©Rina Dechter 12



A|B|C|PAVBVC)
01010 0
A|B|PAVB)|1]0]0 1/15
010 0 010 1/15
10| 025 0]0]1 1/15
01| 025 11110 2/15
11 1/2 1101 2/15
0]1]1 2/15
1011 6/15

Figure 1.5: parameterizing directed and undirected probabilistic relations

undirected relation A V B we can do so by evaluating the strength of the OR relation
in a way that fits our intuition or expertise, making sure that the resulting function is
normalized. We could do the same for the ternary relation. These probabilistic functions
are sometime called potentials or factors which frees them from the semantic coherency
assumed when we talk about probabilities. Figure 1.5 shows a possible distribution of the

noisy two and three-variable OR relation, which is symmetrical.

From an algorithmic perspective, the division between directed and undirected graph-
ical models, is more salient and received considerable treatment in the literature [43].
Deterministic information seems to be merely a limiting case of nondeterministic infor-
mation where probability values are limited to 0 and 1. Alternatively, it can be perceived
as the limiting cost in preference description moving from 2-valued preference (consistent
and inconsistent) to multi-valued preference, also called soft constraints. Yet, this book
will be focused primarily on methods that are indifferent to the directionality aspect of
the models, and be more aware of the deterministic vs non-deterministic distinction. The
main examples used in this book will be constraint networks and Bayesian networks, since
these are respective examples of both undirected and directed graphical models, and of

Boolean vs numerical graphical models.
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1.3 General Graphical models

Graphical models include constraint networks [22] defined by relations of allowed tuples,
probabilistic networks [43], defined by conditional probability tables over subsets of vari-
ables or by a set of potentials, cost networks defined by costs functions and influence
diagrams [33] which include both probabilistic functions and cost functions (i.e., utili-
ties) [21]. Mixed networks is a graphical model that distinguish between probabilistic
information and deterministic constraints. Each graphical model comes with its typical
queries, such as finding a solution (over constraint networks), finding the most probable
assignment or updating the posterior probabilities given evidence, posed over probabilistic
networks, or finding optimal solutions for cost networks. The task for influence diagrams

is to choose a sequence of actions that maximizes the expected utility.

The use of any model of knowledge (and graphical models are no exception) involves
two, largely independent activities, the construction of the model and the extraction of
useful information from the model. In the case of our medical diagnosis problem, for
example, model construction involves the selection of the variables to be included, the
structure of the Bayesian network, and the specification of the conditional probability
distributions needed to specify the joint probability distribution. Information extraction
involves answering queries about the effect of evidence on the probability of certain vari-
ables and about the best (most likely) explanation for such evidence. In the case of the
map coloring problem the models structure is largely determined by the map to be colored.
Information extraction involves answering queries like whether the map can be colored
using a given set of colors, finding the minimum number of colors needed to color it and,
if a map cannot be colored by a given number of colors, finding the minimum number of

constraint violations that have to be incurred in order to color the map.

The construction of the graphical model, including learning its structure and param-
eters from data or from experts, depends very much on the specific type of problem.
For example, constructing a Bayesian network would be a very different process from
constructing an integer linear programming optimization problem. In contrast, the pro-
cess of answering queries from graphical models, in particular when taking advantage of

their graph-based structure, is more universal and common in many respects across many

(©Rina Dechter 14



types of problems. We call such activity as reasoning or, query processing, that is, de-
riving new conclusions from facts or data represented explicitly in the models. The focus
of this book is on the common reasoning methods that are used to extract information
from given graphical models. Reasoning over probabilistic models is often referred to as

inference. We, however attribute a more narrow meaning to inference as discussed shortly.

Although the information extraction process for all the interesting questions posed over
graphical models are computationally hard (i.e., NP-hard), and thus generally intractable,
their structure invite effective algorithms for many graph structures as we show through-
out the book. This includes answering optimization, constraint satisfaction, counting,
and likelihood queries. And the breadth of these queries render these algorithms applica-
ble to a variety of fields including scheduling, planning, diagnosis, design, hardware and
software testing, bio-informatics and linkage analysis. Our goal is to present a unifying
treatment in a way that goes beyond a commitment to the particular types of knowledge

expressed in the model.

In chapter two, we will define the framework of graphical models and will review the
various flavors of models. But, as already noted, the focus of this book is on query process-
ing algorithms which exploit graph structures primarily and are thus applicable across all
graphical models. These algorithms can be broadly classified as either inference-based or
search-based, and each class will be discussed separately, for they share different character-
istics. Inference-based algorithms perform a deductive step repeatedly while maintaining
a single view of the model. Some example of inference-based algorithms are resolution,
variable-elimination and join-tree clustering. These algorithms are exponentially bounded
in both time and space by a graph parameter called tree-width. Search-based algorithms
perform repeatedly a conditioning step, namely, fixing the value of a variable to a con-
stant, and thus restrict the attention to a subproblem. This leads to a search over all
subproblems that need to be solved eventually. Search algorithms can be executed in
linear space, and this makes them attractive. These algorithms can be shown to be ex-
ponentially bounded by graph-cutset parameters that depend on the memory level the
algorithm would use. When search and inference algorithms are combined they enable

improved performance by flexibly trading off time and space.

Previous books on graphical models focused either on probabilistic networks, or on

Rina Dechter 15
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constraint networks. The current book is therefore broader in its unifying perspective.
Yet it has restricted boundaries along the following dimensions. We address only graphical
models over discrete variables (no continuous variables), we cover only exact algorithms
(a subsequent extension for approximation is forthcoming), we address only propositional
graphical models (recent work on first-order graphical models is outside the scope of this
book.) In addition, we will not focus on exploiting the local structure of the functions.
what is knkoe the context-specific information. Such techniques are orthogonal to graph-
based principles and can and should be combined with them.

Finally, and as already noted, the book will not cover issues of modeling (by knowledge
acquisition or learning from data) which are the two primary approaches for generating
probabilistic graphical models. For this, and for more we refer the readers to the books in
the area. First and foremost is the classical book that introduced probabilistic graphical
models [43] and a sequence of books that followed amongst which are [42, 34]. In particular
note the comprehensive two recent textbooks [1, 37]. For deterministic graphical models

of Constraint networks see [22].

1.4 Overview of the book, chapter by chapter

The focus in this book is on query processing algorithms which exploit the graph structure
and are therefore applicable across all graphical models. It is useful to distinguish two
types of algorithms: inference-based and search-based. Algorithms within each class share
different characteristics. Inference-based algorithms (e.g., variable-elimination, join-tree
clustering) are time and space exponentially bounded by a graph parameter called tree-
width. Their complexity bounds are well studied and understood for more than 2 decades
now.

Search-based algorithms on the other hand are attractive because they can be executed
in linear space. Effective structure-based time bounds for search emerged only recently.
By augmenting bounded ingerence ideas they can flexibly tradeoff time and space. Fur-
thermore, search methods are more naturally poised to exploit the internal structure of
the functions themselves, what is often called their local structure. The thrust of ad-

vanced reasoning schemes is in combining inference and search yielding a spectrum of
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memory-sensitive algorithms universally applicable across many domains.

Chapter 2 presents the reader to the concepts of graphical models, provide definitions
and the specific graphical models discussed throughout the book. Chapters 3-6 focus on
inference algorithms, chapters 7-9 on search, while chapter 10 on hybrids of search and
inference. Specifically, in the inference part, chapter 3 describes a variable-elimination
scheme called bucket-elimination for constraint networks, chapter 4 use the motivation for
graph parameters introduced in Chapter 3 to address and elaborate on graph properties
that are relevant to the algorithms’s design and analysis that will be exploited through-
out the book. Then Chapter 5 focuses on bucket-elimination for probabilistic networks
and chapter 6 shows how these variable elimination algorithms can be extended to tree-
decompositions yielding the join-tree and junction-tree propagation schemes. Search is
introduced through Chapter 7 and 8 through AND/OR decomposition. We conclude with

chapter 10 giving hybrids of search an inference.
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Chapter 2

What are Graphical Models

In this chapter, we will begin by introducing the general graphical model framework
and continue with the most common types of graphical models, providing examples of
each type: constraint networks [22], Bayesian networks, Markov networks [43] and cost
networks. Another more involved example which we only briefly discuss is influence

diagrams [33].

2.1 General Graphical models

Graphical models include constraint networks [22] defined by relations of allowed tuples,
probabilistic networks [43], defined by conditional probability tables over subsets of vari-
ables or by a set of potentials, cost networks defined by costs functions and influence
diagrams [33] which include both probabilistic functions and cost functions (i.e., utili-
ties) [21]. Mixed networks is a graphical model that distinguish between probabilistic
information and deterministic constraints. Each graphical model comes with its typical
queries, such as finding a solution (over constraint networks), finding the most probable
assignment or updating the posterior probabilities given evidence, posed over probabilistic
networks, or finding optimal solutions for cost networks.

Simply put, a graphical model is a collection of [ocal functions over subsets of variables
that convey probabilistic, deterministic or preferential information and whose structure

is described by a graph. The graph captures independency or irrelevance information
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inherent in the model that can be useful for interpreting the data in the model and, most
significantly, can be exploited by reasoning algorithms.

A graphical model is defined by a set of variables, their respective domains of values
which we assume to be discrete and by a set of functions. Each function is defined on
a subset of the variables called its scope, which maps any assignment over its scope, an
instantiation of the scopes’ variables, to a real value. The set of local functions can be
combined in a variety of ways (e.g., by sum or product) to generate a global function whose
scope is the set of all variables. Therefore, a combination operator is a defining element
in a graphical model. As noted, common combination operators are summation and
multiplication, but we also have AND operator, for Boolean functions, or the relational
join, when the functions are relations.

We denote variables or sets of variables by uppercase letters (e.g., X, Y, Z, S ) and
values of variables by lower case letters (e.g., =, v, 2, s). An assignment (X; = z1,..., X, =
x,) can be abbreviated as x = (z1,...,x,). For a set of variables S, Dg denotes the
Cartesian product of the domains of variables in S. If X = {X;,..., X,,} and S C X, z¢
denotes the projection of x = (z1, ..., x,) over S. We denote functions by letters f, g, h,
etc., and the scope (set of arguments) of a function f by scope(f). The projection of a

tuple = on the scope of a function f, can also be denoted by Zscope(s) or, for brevity x;.

Definition 2.1.1 (elimination operators) Given a function h defined over a scope S,
the functions (miny h), (maxy h), and (> h) where X C S, are defined over U =
S—{X} as follows: For every U = u, and denoting by (u, z) the extension of tuple u by the
tuple X = z, (miny h)(u) = min, h(u, z), (maxx h)(u) = max, h(u,z), and (3 h)(u) =
>, h(u, ). Given a set of functions hy, ..., hy, defined over the scopes Sh, ..., Sk, the product
function II;h; and the sum function Zj h; are defined over U = U;S; such that for
every u € Dy, (Ijh;)(u) = W;h;(us;) and (325 hy)(u) = >, hi(us;). Alternatively,
(I;hy) (w) = Tihy(un,) and (32, hy)(u) =35 hj(un,).

The formal definition of a graphical model is give next.

Definition 2.1.2 (graphical model) A graphical model M is a 4-tuple, M = (X, D, F,®),

where:

(©Rina Dechter 20



1. X ={Xy,...,X,} is a finite set of variables;
2. D={Dy,...,D,} is the set of their respective finite domains of values;

3. F={f1,..., fr} is a set of positive real-valued discrete functions, defined over scopes

of variables S; C X. They are called local functions.

4. ® 1s a combination operator. The combination operator can also be defined axiomat-
ically as in [53]. (e.g., ® € {[],>.,XN} (product, sum, join)). But for the sake of

our discussion we can define it explicitly.

The graphical model represents a global function whose scope is X which is the combina-

tion of all its functions: ®._, f;.

Note that the local functions define the graphical model and are given as input. The
global function provides the meaning of the graphical model but it cannot be computed ex-
plicitly (e.g., in a tabular form) due to its exponential size. Yet all the interesting reasoning
tasks (called also 'problems’ or 'queries’) are defined relative to the global function. For
instance, we may seek an assignment on all the variables (sometime called configuration,
or a solution) having the mazimum global value. Alternatively, we can ask for the number
of solutions to a constraint problem, defined by a summation. We can therefore define
a variety of reasoning queries using an additional operator called marginalization. For
example, if we have a function defined on two variables, F'(X,Y), a maximization query
can be specified by applying the max operator written as max, , F'(z,y) which returns a
function with no arguments, namely, a constant, or, we may seek the maximizing tuple
(x*,y*) = argmaz, , F(x,y). Sometime we are interested to get Y (x) = argmax,F(z,y).

Since the marginalization operator, which is max in the above examples, operates on
a function of several variables and returns a function on their subset, it can be viewed as
eliminating some variables from the function’s scope to which it is applied. Because of
that it is also called an elimination operator. Consider another example when we have a
joint probability distribution P(X,Y’) and we want to compute the marginal probability
P(X) =3, P(X,y). In this case we use the sum marginalization operator to express our
query. A formal definition of a reasoning task using the notion of a marginalization oper-

ator, is given next. We define marginalization by explicitly listing the specific operators
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we consider, but those can also be characterized axiomatically ([35, 53, 11]).

Definition 2.1.3 (a reasoning problem) A reasoning problem over a graphical model
M = (X,D,F,®) and a subset of variable Y C X 1is defined by a marginalization operator
Uy explicitly as follows. IfS is the scope of function f then |y f € {5 f, S“f;‘( Ty f s Sng}
is a marginalization operator. The reasoning problem P{(M,llz) is the task of computing

the function Pym(Z) =z ®)_, fi, where r is the number of functions in F.

We will focus often on reasoning problems defined by Z = {(}. Note that in our
definition 7y f is the relational projection operator and unlike the rest of the marginal-
ization operators the convention is that it is defined by the scope of variables that are not
eliminated.

Every graphical model can be associated with several graph representations. We next

define the most common graph representation called the primal graph.

Definition 2.1.4 (primal graph) The primal graph of a graphical model is an undi-
rected graph in which each vertex corresponds to a variable in the model and in which an
edge connects any two vertices if the corresponding variables appear in the scope of the

same local function.

We will now describe several specific graphical models and show how they fit the

general definition.

2.2 Constraint Networks

Constraint networks provide a framework for formulating real world problems as satisfying
a set of constraints among variables, and they are the simplest and most computationally
tractable of the graphical models we will be considering. Problems in scheduling, design,
planning and diagnosis are often encountered in real world scenarios and can be effectively
rendered as constraint networks problems.

Let’s take scheduling as an example. Consider the problem of scheduling several tasks,
where each takes a certain time and each have different options for starting time. Tasks

can be executed simultaneously, subject to some precedence restriction between them due
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to certain resources that they need but cannot share. One approach to formulating such
a scheduling problem is as a constraint satisfaction problem having a variable for each
combination resource and time slice (e.g. the conference room at 3pm on Tuesday, for a
class scheduling problem). The domain of each variable is the set of tasks that need to
be scheduled, and assigning a task to a variable means that this task will begin at this
resource at the specified time. In this model, various physical constraints can be described
as constraints between variables (e.g. that a given task takes three hours to complete or
that another task can be completed at most once).

The constraint satisfaction task is to find a solution to the constraint problem, that is,
an assignment of a value to each variable such that no constraint is violated. If no such
assignment can be found, we conclude that the problem is inconsistent. Other queries
include finding all the solutions and counting them or, if the problem is inconsistent,

finding a solution that satisfies the maximum number of constraints.

Definition 2.2.1 (constraint network, constraint satisfaction problem (CSP)) A
constraint network (CN) is a /-tuple, R = (X, D, C,X), where X is a set of variables
X ={Xy,..., X}, associated with a set of discrete-valued domains, D = {Dy, ..., D,},
and a set of constraints C = {C4,...,C,}. Each constraint C; is a pair (S;, R;), where R;
s a relation R; C Dg, defined on a subset of variables S; C X. The relation denotes all
compatible tuples of Ds, allowed by the constraint. The join operator X is used to combine
the constraints into a global relation. When it is clear that we discuss constraints we will
refer to the problem as a triplet R = (X, D, C). A solution is an assignment of values to
all the variables, denoted x = (x1,...,x,), ; € D;, such thatV C; € C, xs, € R;. The
constraint network represents its set of solutions, sol(R) =X; R;. We see that a constraint
network is a graphical model R = (X, D, C, X) whose functions are relations and the com-
bination operator is the relational join. We define the minimal domain of a variable X

to be all its values that participate in any solution. Namely, MinDom(X;) = nx, W; R;

The primary query over a constraint network is deciding if it has a solution. Other
relevant queries are enumerating or counting the solutions. Namely, the primary reasoning
tasks can be expressed as P = (R, w, Z), when marginalization is the relational projection

operator . That is, |y is my. Therefore the task of finding all solutions is expressed by

o ®ifi = mp(M; fi).
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(a) Graph coloring problem

Figure 2.1: A constraint network example of a map coloring

The primal graph of a constraint network is called a constraint graph. It is an undi-
rected graph in which each vertex corresponds to a variable in the network and in which
an edge connects any two vertices if the corresponding variables appear in the scope of

the same constraint.

Example 2.2.2 The map coloring problem in Figure 2.1(a) can be modeled by a con-
straint network: given a map of regions and three colors {red, green, blue}, the problem
is to color each region by one of the colors such that neighboring regions have different
colors. Each region is a variable, and each has the domain {red, green, blue}. The set
of constraints is the set of relations “different” between neighboring regions. Figure 2.1
overlays the corresponding constraint graph and one solution (A=red, B=blue, C=green,
D=green, E=blue, F=blue, G=red) is given. The set of constraints are A # B, A # D,
B#D B#+#C, B#G,D#G, D#+#F,G#F,D+#E.

O

Example 2.2.3 As noted earlier, constraint networks are particularly useful for express-
ing and solving scheduling problems. Consider the problem of scheduling five tasks (T1,
T2, T3, T4, T5), each of which takes one hour to complete. The tasks may start at 1:00,

2:00 or 3:00. Tasks can be executed simultaneously subject to the restrictions that:

e T1 must start after T3,
e T3 must start before T4 and after T5,

e T2 cannot be executed at the same time as either T1 or T4, and
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Unary constraint

Dry = {1:00, 3:00}

Binary constraints

Ryr1,r2y: {(1:00,2:00), (1:00,3:00), (2:00,1:00),

e (2:00,3:00), (3:00,1:00), (3:00,2:00)}
Ririrsy: {(2:00,1:00),  (3:00,1:00),

e e (3:00,2:00)}
' Ryraray: {(1:00,2:00), (1:00,3:00), (2:00,1:00),

‘ (2:00,3:00), (3:00,1:00), (3:00,2:00)}
e Ryrsray: {(1:00,2:00),  (1:00,3:00),

(2:00,3:00)}
R{T3’T5}I {(200,100), (300,100),
(3:00,2:00)}

Figure 2.2: The constraint graph and constraint relations of the scheduling problem.
e T4 cannot start at 2:00.

We can model this scheduling problem by creating five variables, one for each task, where
each variable has the domain {1:00, 2:00, 3:00}. The corresponding constraint graph is
shown in Figure 2.2, and the relations expressed by the graph are shown beside the figure.
U

Sometimes we express the relation R; as a cost function Cy(X;, = z;,...,X;, =
x; ) = 1if (x4, ...,2;) € R;, and 0 otherwise. In this case the combination operator is
a product. We will switch between these two views as needed. If we want to count the
number of solutions we merely change the marginalization operator to be summation. If
on the other hand we want merely to query whether the constraint network has a solution,
we can let the marginalization operator be logical summation. We let Z = {(}}, so that
the the summation occurs over all the variables. We will get “1” if the constraint problem

has a solution and “0” otherwise.
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Propositional Satisfiability One special case of the constraint satisfaction problem
is what is called propositional satisifiability (usually referred to as SAT). Given a formula
@ in conjunctive normal form (CNF), the SAT problem is to determine whether there is
a truth-assignment of values to its variables such that the formula evaluates to true. A
formula is in conjunctive normal form if it is a conjunction of clauses ay, ..., a;, where
each clause is a disjunction of literals (propositions or their negations). For example,
a=(PV-QV-R)and f = (R) are both clauses, where P, () and R are propositions,
and P, =@ and —R are literals. ¢ = a A = (PV -Q V =R) A (R) is a formula in
conjunctive normal form.

Propositional satisfiability can be defined as a constraint satisfaction problem in which
each proposition is represented by a variable with domain {0, 1}, and a clause is repre-
sented by a constraint. For example, the clause (- AV B) is a relation over its propositional

variables that allows all tuple assignments over (A, B) except (A =1,B = 0).

2.3 Cost Networks

In constraint networks, the local functions are constraints, i.e., functions that assign a
boolean value to a set of inputs. However, it is straightforward to extend constraint
networks to accommodate real-valued relations using a graphical model called a cost
network. In cost networks, the local functions represents cost-components, and the sum
of these cost-components is the global cost function of the network. The primary task
is to find an assignment of the variables such that the global cost function is optimized
(minimized or maximized). Cost networks enable one to express preferences among local
assignments and, through their global costs to express preferences among full solutions.
Often, problems are modeled using both constraints and cost functions. The con-
straints can be expressed explicitly as being functions of a different type than the cost
functions, or they can be included as cost components themselves. It is straightforward to

see that cost networks are graphical model where the combination operator is summation.

Definition 2.3.1 (cost network, combinatorial optimization) A cost network is a
4-tuple graphical model, C = (X, D, F,> ), where X is a set of variables X = { X1, ..., X, },

associated with a set of discrete-valued domains, D = {Ds, ..., D,}, and a set of local cost
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functions F = {f1,..., f-}. Each f; is a real-valued function (called also cost-component)
defined on a subset of variables S; C X. The local cost components are combined into a

global cost function via the ), operator. Thus the cost network represents the function
Clx) = filxs,)

which can also be written as

Clz) =7 flay)

feF
where x¢ 1s the projection of v on the scope of f.

The primary optimization task (which we will assume to be a minimization, w.l.o.g) is
to find an optimal solution for the global cost function F =), f;. Namely, finding a tuple
x such that F(x) = min, > . fi(z). We can associate the cost model with its primal graph
in the usual way. Like in the case of constraints, we will drop the > notation whenever
the nature of the functions and theiwr combination into a global function is clear from the

context.

Weighted Constraint Satisfaction Problems A special class of cost networks that
has gained considerable interest in recent years is a graphical model called the Weighted
Constraint Satisfaction Problem (WCSP) [11]. These networks extends the classical con-
straint satisfaction problem formalism with soft constraints, that is, positive integer-valued

local cost functions. Formally,

Definition 2.3.2 (WCSP) A Weighted Constraint Satisfaction Problem (WCSP) is a
graphical model (X, D, F,> ) where each of the functions f; € F assigns ”0” (no penalty)
to allowed tuples and a positive integer penalty cost to the forbidden tuples. Namely, f; :
Ds, — N, where S; is the scope of the function. More explicitly, f; : Dx, %...xDx, — N,
where S; = {X,,, ..., X;,} is the scope of the function.

Many real-world problems can be formulated as cost networks and often fall into the
weighted CSP class. This includes resource allocation problems, scheduling [7], bioin-
formatics [16, 57|, combinatorial auctions [49, 22] and maximum satisfiability problems

[15].
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o[1]o] = of1]o] o o[1]o] = (ABC)
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(a) Cost functions (b) Constraint graph

Figure 2.3: A cost network.

Example 2.3.3 Figure 2.3 shows an example of a WCSP instance with boolean variables.
The cost functions are given in Figure 2.3(a), and the associated graph is shown in Figure
2.3(b). Note that a value of co in the cost function denotes a hard constraint (i.e., high
penalty). You should check that the minimal cost solution of the problem is 5, which
corresponds to the assignment (A =0,B=1,C=1,D=0,F =1). O

The task of MAX-CSP, namely of finding a solution that satisfies the maximum number
of constraints (when the problem is inconsistent), can be formulated as a cost network
by treating each relation as a cost function that assigns “0” to consistent tuples and “1”
otherwise. Since all violated constraints are penalized equally, the global cost function
will simply count the number of violations. In this case the combination operator is

summation and the marginalization operator is minimization. Namely, the task is to find

o ®;fi = minx (D, fi). Formally,

Definition 2.3.4 (MAX-CSP) A MAX-CSP is a WCSP (X,D,F) with all penalty
costs equal to 1. Namely, Vf; € F, f; - Dg, — {0, 1}, where scope(f;) = S;

Maximum Satisfiability In the same way that propositional satisfiability (SAT) can
be seen as a constraint satisfaction problem over logical formulas in conjunctive normal
form, so can the problem of mazimum satisfiability (MAX-SAT) be formulated as a MAX-
CSP problem. In this case, given a set of boolean variables and a collection of clauses
defined over subsets of those variables, the goal is to find a truth assignment that violates

the least number of clauses. Naturally, if each clause is associated with a positive weight,
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then the problem can be described as a WCSP. The goal of this problem, called weighted
mazimum satisfiability (Weighted MAX-SAT), is to find a truth assignment such that the

sum weight of the violated clauses is minimized.

Integer Linear Programs. Another well known class of optimization task is integer
linear programming. It is formulated over variables that can be assigned integer values
(finite or infinite). The task is to find an optimal solution to a linear cost function
F(x) = Y. oyx; that satisfies a set of linear constraints C1,...C; where each constraint
can be specified by a linear function. Namely a constraint C; over scopes S; a constraint
> ees, Az T < 0. Formally,

Definition 2.3.5 (Integer linear programming) A Integer Linear programming Prob-
lem (IP) is a graphical model (X,N,F = {f1,...f,,C1,..,Ci},> ) having two types of
functions. Linear cost components f(xz;) = cyz; for each variable X;, where o is a real

number. The constraints are of weighted csp type

00 otherwise

0, ’ g Aip TSN
Ci<x5i>:{ i e My

or infinity otherwise. The marginalization operator is minimization or mazimization.

2.4 Probability Networks

As mentioned previously, Bayesian networks and Markov networks are the two primary
formalisms for expressing probabilistic information via graphical models. A Bayesian
network [43] is defined by a directed acyclic graph over vertices that represent random
variables of interest (e.g., the temperature of a device, the gender of a patient, a feature
of an object, the occurrence of an event). The arc from one node to another is meant
to signify a direct causal influence or correlation between the respective variables, and
this influence is quantified by the conditional probability of the child given all of its
parents. Therefore, to define a Bayesian network, one needs both a directed graph and
the associated conditional probability functions. To be consistent with our graphical

models description we define Bayesian network as follows.
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Definition 2.4.1 (Bayesian networks) A Bayesian network (BN) is a 4-tuple B =
(X,D,Ps,[])- X = {X1,...,X,,} is a set of ordered variables defined over domains
D = {D,...,D,}, where o = (Xy1,...,X,) is an ordering of the variables. The set of
functions P = {Py,...,P,} consist of conditional probability tables (CPTs for short)
P, ={P(X;|Y:)} where Y; C {Xii1,..., Xn}. These P; functions can be associated with
a directed acyclic graph G in which each node represents a variable X; and Y; = pa (X;)
are the parents of X; in the graph. That is, there is a directed arc from each parent
variable of X; to X;. The Bayesian network B represents the probability distribution over
X, Pg(x1,...,xn) = [} P(@ilzpa(x,)). We define an evidence set e as an instantiated

subset of the variables.

The parent/child relations of a Bayesian network, regardless of whether they actually
represent causal relationships, always yields a valid joint probability distribution which is
consistent with its input CPTs. Namely, for each X; and its parent set Y}, it can be shown
that Pg(X;|Y;) = P(X;]Y;). Therefore a Bayesian network is a graphical model, where
the functions in F' denote conditional probability tables and the scope of each function f;
is X; and its parents in the directed graph G, where the combination operator is product,
® = [[. The primal graph of a Bayesian network is called a moral graph and it connects
any two variables appearing in the same CPT. The moral graph can also be obtained
from the directed graph G by connecting the parents of each child node and making all

directed arcs undirected.

Example 2.4.2 [43] Figure 2.4(a) is a Bayesian network over six variables, and Figure
2.4(b) shows the corresponding moral graph. The example expresses the causal rela-
tionship between variables “season” (A), “the automatic sprinkler system is "on”’ (B),
“whether it rains or does not rain” (C'), “manual watering is necessary” (D), “the wet-
ness of the pavement” (F'), and “the pavement is slippery” (G). The Bayesian network is
defined by six conditional probability tables each associated with a node and its parents.
For example, the CPT of F' describes the probability that the pavement is wet (F = 1) for
each status combination of the sprinkler and raining. Possible CPTs are given in Figure
2.4(c).

The conditional probability tables contain only half of the entries because the rest of

the information can be derived based on the property that all the conditional probabilities
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y
@ Slippery @

(a) Directed acyclic graph (b) Moral graph
Bl ¢ | F | prBo) B | A =winter| D | P(D|A,B)
false| false | true 0.1 false false true 0.3
true| false | true 0.9 true false true 0.9
false| true| true 0.8 false true true 0.1
true| true | true 0.95 true true true 1
A C | P(C|A) A B | P(BJA)
Summer | true 0.1 Summer | true 0.8 F G P(G|F)
Fall true 0.4 Fall true 0.4 false true 0.1
Winter | true 0.9 Winter | true 0.1 true true 1
Spring | true 0.3 Spring | true 0.6

(c) Possible CPTs that accompany our example

Figure 2.4: Belief network P(G, F,C, B, A) = P(G|F)P(F|C,B)P(D|A, B)P(C|A)P(B|A)P(A)

sum to 1. This Bayesian network expresses the probability distribution P(A, B,C, D, F,G) =
P(A)- P(BJA)-P(C|A)- P(D|B,A)- P(F|C,B) - P(G|F). |

Next, we define the main queries over Bayesian networks:

Definition 2.4.3 (Queries over Bayesian networks) Let B = (X,D,Pq,[]) be a
Bayesian network. Given evidence E = e the primary queries over Bayesian networks

are to find the following quantities:

1. Posterior marginals, or belief. For every X; = x; not in E the belief is defined
by bel(x;) = Pg(x;le).
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2. The Probability of evidence is Pz(e).

3. The Most probable explanation (mpe) is an assignment z° = (z°,...,2°%,)

satisfying Pg(x°) = max, Pg(x|e). The mpe value is max, Pg(z|e).

4. Maximum a posteriori hypothesis (map). Given a set of hypothesized variables
A={A, ..., A}, A C X, the map task is to find an assignment a® = (a°, ..., a’)
such that P(a®) = max,, P(agle). The mpe query is sometime also referred to as

map query.

These queries are applicable to a variety of applications such as situation assessment,
diagnosis, probabilistic decoding and linkage analysis, to name a few. To answer the above
queries over B = (X, D, Pg, []) we use as marginalization operators either summation or
maximization. In particular, the query of finding the probability of the evidence can be
expressed as g ®;fi = > [, Pi. The belief updating task, when given evidence e, can
be formulated using the summation as a marginalization operator, by {y= > x_+, where
Z; = {X;}. Namely, VX, bel(X;) =Ux, @xfr = > (x_x,jp=e) [[1 Px- An mpe task is
defined by a maximization operator where Z = {0}, yielding mpe =|y ®; f; = maxy [[, P;.

If we want to get the actual mpe assignment we would need to use the argmax operator.

Markov networks also called Markov Random Fields (MRF) are undirected proba-
bilistic graphical models very similar to Bayesian networks. However, unlike Bayesian
networks they convey undirectional information, and are therefore defined over an undi-
rected graph. Moreover, whereas the functions in Bayesian networks are conditional prob-
ability tables of children given their parents in the directed graph, in Markov networks
the local functions, called potentials, can be defined over any subset of variables. These
potential functions between random variables can be thought of as expressing some kind
of a correlation information. When a configuration to a subset of variables is likely to
occur together their potential value may be large. For instance in vision scenes, variables
may represent the grey levels of pixels, and neighboring pixels are likely to have similar
grey values. Therefore, they can be given a higher potential level. Other applications of

Markov Random fields are in Physics (e.g., modeling magnetic behaviors of crystals).
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Like a Bayesian network, a Markov network also represents a joint probability distri-
bution, even though its defining local functions do not have a clear probabilistic semantics.
In particular, they do not express local marginal probabilities (see [43] for a discussion).

Markov networks are useful when the notion of directionality in the information is
unnatural. Example applications are image analysis and spatial statistics. They convey
symmetrical information and can be viewed as the probabilistic counterpart of constraint

or cost networks, whose functions are symmetrical as well.

Definition 2.4.4 (Markov Networks) A Markov network is a graphical model M = {
X, D, H []) where H= {11, ..., ¥} is a set of potential functions where each potential
¥; 1 a non-negative real-valued function defined over a scope of variables S;. The Markov

network represents a global joint distribution over the variables X given by:

P@ =5 [[ut@ . 2= [[u)

z =1

where the normalizing constant Z is referred to as the partition function.

The primary queries over Markov networks are the same as those of Bayesian network.
That is, computing the posterior marginal distribution over all variables X; € X, finding
the mpe value and finding the partition function. It is not hard to see that this later
query is mathematically identical to computing the probability of evidence. We see that
as a graphical model, Markov networks are very similar to Bayesian networks, Markov
networks are graphical models whose combination operator is the product operator, ® =
[] and the marginalization operator can be summation, or maximization, depending on

the query.

Example 2.4.5 Figure 2.5 shows a 3 x 3 square grid Markov network with 9 variables
{A,B,C,D,E,F,G,H,I}. The twelve potentials are: (A, B), ¥s(B,C), ¥3(A, D),
(B, E), ¥s5(C, F), v6(C, D), ¥7(D, E), ¥s(D,G), vo(E, H), 10(F, 1), 111(G,H) and
12(H, I). The Markov network represents the probability distribution formed by tak-
ing a product of these twelve functions and then normalizing. Namely, given that x =

(a7b7c7d76’f7g7h7i)
1 12
P(z) = EH%(»’%)
i=1
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(a) (b)

Figure 2.5: (a) An example 3 x 3 square Grid Markov network (ising model) and (b) An
example potential Hg(D, F)

where Z =) T[], ¢i(xy,) is the partition function. O

Markov networks typicall are generated by starting with a graph model which de-
scribes the variables of interestand how they depend on each other, like in the case of
image analysis whose graph is a grid. Then the user defines potential functions on the
cliques of the graph. A well known example is the ising model. This model arize from
statistical physics [?]. It was used to model the behavior of magnets. The structure is
a grid, where the variables have values {—1,4+1}. The potential express the desire to
have neighboring variables have the same value. The resulting Markov network is called
a Markov random field. Alternatively, like in the case of constraint networks, if the po-
tential functions are specified with no explicit reference to a graph (perhaps representing
some local probabilistic information or compatibility information) the graph emerges as
the associated primal graph.

Markov networks provide some more freedom from the modeling perspective, allowing
to express potential functions on any subset of variables. This however comes at the
cost of loosing semantic clarity. The meaning of the input local functions relative to the
emerging probability distribution is not coherent. In both Bayesian networks and Markov

networks the modeling process starts from the graph. In the Bayesian network case the
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graph restricts the CPTs to be defined for each node and its parents. In Markov networks,
the potentials should be defined on the maximal cliques. For more see [43].

It is sometime convenient to represent potential as positive functions only (even when
correlational information can be expressed also by negative numbers). In that case an
exponential representation is common. This again, is motivated by work in statistical

physics where using the following transformation into what is called energy function.

wS'L (JI&) = eiE(ISi)

we get that

and therefore

We see that high probability states correspond to low energy states. Such models.
known as energy-based models, are common in Physics and Biochemistry and are

particularly popular in machine learning.

2.5 Mixed networks

In this section, we introduce the mixed network, a graphical model which allows both
probabilistic information and deterministic constraints and which provides a coherent

meaning to the combination.

Definition 2.5.1 (mixed networks) Given a belief network B = (X,D,Pg,[][) that
expresses the joint probability Pg and given a constraint network R = (X, D, C,X) that
expresses a set of solutions p, a mized network based on B and R denoted Mgy =
(X,D,P,C) is created from the respective components of the constraint network and a
Bayesian network as follows: the variables X and their domains are shared, (we could
allow non-common variables and take the union), and the functions include the CPTs in

Pq and the constraints in C. The mized network expresses the conditional probability
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Alex is likely to go in bad weather
Chris rarely does in bad weather
Becky is indifferent, but unpredictable

PN CN
P(W)

(D)
P PN OOy ©

®

(a) (0)

Query:
Is it likely that Chris goes to the
party if Becky does not but the weather
is bad?

P(C,-Blw =bad,A — B,C — A)

Figure 2.6: The part example, A Bayesian network (a), a constraint formula (b) and a

mixed network (c)

_ Ps(x |z € p), if TEp
Pz ={ [ HE1EEP) |
0, otherwise.

Example 2.5.2 Consider a scenario involving social relationship between three individ-
uals Alex (A), Becky (B) and Chris (C). We know that if Alex goes to a party Becky will
go, and if Chris goes Alex goes. We also know the weather effects these three individuals
differently and they will or will not go to a party with some differing likelihood. We can
express the relationship between going to the party and the weather using a Bayesian

network, while the social relationship using a propositional formula (see Figure 2.6). O

The mixed network have two types of functions, probabilistic local functions and
constraints. This is a graphical model whose combination operator is product, when we

assume that constraints have their cost-based representation.
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Belief updating, MPE and MAP queries over probabilistic networks can be extended to
mixed networks straight-forwardly. They are well defined relative to the mixed probability
distribution Pps. Since Py is not well defined for inconsistent constraint networks we
always assume that the constraint network portion is consistent.

Mixed networks give rise to a new query, which is to find the probability of a consistent
tuple; namely, we want to determine Pg(Z € sol(R)). We will call this a Constraint
Probability Fvaluation (CPE). Note that evidence is a special type of constraint. We will
elaborate on this next.

The problem of evaluating the probability of CNF queries over Bayesian networks has
various applications. One example is network reliability: Given a communication graph
with a source and a destination, one seeks to diagnose the failure of communication. Since
several paths may be available between source and destination, the failure condition can
be described by a CNF formula as follows. Failure means that for all paths (conjunctions)
there is a link on that path (disjunction) that fails. Given a probabilistic fault model of the
network, the task is to assess the probability of a failure [44]. There are many examples
in modeling travel patterns of human and in natural language processing. [?7, 7, ?].

[comment: either have citations or remove this last sentence]

Definition 2.5.3 (queries on mixed networks) We consider the following 2 new queries:

o Given a mived network Mpgr), where B = (X,D,G,P) and R = (X,D,C) the
constraint, Probability FEvaluation (CPE) task is to find the probability Ps(z €
sol(R)). If R is a CNF expression @, the enf probability evaluation seeks Pg(T €
m(p)), where m(yp) are the models (solutions of ).

e Belief assessment of a constraint or on a CNF expression is the task of assessing
Ps(X|p) for every variable X. Since P(X;|p) = a-P(X; A@) where o is a normaliz-
ing constant relative to X, computing Pg(X|p) reduces to a CPFE task over B for the
query ((X; = x;) Ap). In other words we want to compute Pg(Z|X; = x;,T € m(p)).
More generally, Pg(¢|Y) = o, - Pe(ew AY) where ay, is a normalization constant rel-

ative to all the models of p.

We conclude with some common alternative formulations of queries over mixed net-

works which contain both constraints and probabilistic functions.
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Definition 2.5.4 (The Weighted Counting Task) Given a mized network M = (X, D, Pg, C),
where Pg = {Py, ..., Py} the weighted counting task is to compute the normalization con-
stant given by: N
Z= > ]]Pxs) (2.1)
x€S0l(C) i=1
where sol(C) is the set of solutions of the constraint portion C. Equivalently, if we have

a cost-based representation of the constraints in C' as 0/1 functions, we can rewrite Z as:

z=> [1Pxs)]ICi (2.2)

x€X i=1 j=1

We will refer to Z as weighted counts and we can see that mathematically, it is identical

to the partition function.

Definition 2.5.5 (Marginal task) Given a mized network M = (X, D, F,C), the marginal
task is to compute the marginal distribution at each variable. Namely, for each variable

X; and x; € D;, compute:

1 if X, 1s assigned the value x; in x

P(z;) = Z Oz, (X) Prm(x), where §,,(x) = {

o 0 otherwise

When we are given a probabilistic network that has zeros, we can extract a constraint

portion from it, generating an explicit mixed network as we show below.

Definition 2.5.6 (Modified Mixed network) Given a mized network M = (X, D, F, C),
a modified mized network is a four-tuple M’ = (X, D, F, C') where C' = CU{FC;},

where

1 Otherwise

FC; can be expressed as a relation. It is sometimes called the flat constraints of the

probability function.

Clearly, the modified mixed network M’ and the original mixed network M are equivalent
in that PM’ = PM
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It is easy to see that the weighted counts over a mixed network specialize to (a) the
probability of evidence in a Bayesian network, (b) the partition function in a Markov
network and (c¢) the number of solutions of a constraint network. The marginal problem

can express the posterior marginals in a Bayesian or Markov network.

2.5.1 Mixed Markov and Bayesian networks

2.5.2 Mixed cost networks

We often have combinatorial optimization tasks that distinguish between local cost func-
tions and local constraints. While constraints can be expressed as cost functions, main-
taining them seperate can invite specific constraint processing algorithms that would

improve performance.
Definition 2.5.7 (mixed cost and constraint networks) Given...

A classical example is integer linear programs.

2.6 Summary and bibliographical comments

The work on graphical models can be seen as originating from two communities. The one
that centers on statistics, probabilities and aim at capturing probability distributions vs
the one that centers on deterministic relationships, such as constraint networks and logic
systems. Each represent an extreme point in a spectrum of models. Each went through
the process of generalization and extensions towards the other; probablistic models were
augmented with constraint processing and utility information (e.g., leading to influence
diagrams), and constraint networks were extended to soft constraints and into fuzzy type
information.

The seminal work by Bistareli, Rossi and Montanari [11] titled semiring-based con-
straint satisfaction and optimization and the whole line of work that followed provides a
foundational unifying treatment of graphical models, using the mathematical framework
of semirings. Varoius semirings yield different graphical models, using the umbrealla

name Soft Constraints. The work emerged from and generalizes the area of constraint
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networks. Constraint networks were distinguished as semirings that are idempotent. For
a complete treatment see [10]. Another line of work rooted at probabilistic networks
was introduced by Shenoy and Shafer providing an axiomatic treatment for probability
and belief-function propagation [52, 53|. Their framework is focued on an axiomatic for-
mulation of the two operators of combination and marginalization in graphical models.
The work by Dechter [18, 20] focusing on unifying variable elimination algorithms across
constraint networks, cost networks and probabilistic networks demonstrate that common
algorithms can be applied across all these graphical models such as constraints networks,
cost-networks, propositional cnfs, influence diagrams and probabilistic networks. can be
expressed using also the two operation of combination and marginalization [35]. This
work is the basis of the exposition in this book. Other work that observe the applicability
of common message-passing algorithms over certain restricted graphs beyond probabilistic
networks only, or constraint networks only is the work by Srinivas and McEliece [3] titled

the generalized distributive law.
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Chapter 3

Bucket-Elimination for Deterministic
Networks

This chapter is the first of three chapters in which we introduce the bucket-elimination in-
ference scheme. This scheme characterizes all inference algorithms over graphical models,
where by inference we mean algorithms that solve queries by inducing equivalent model
representations according to some set of inference rules. These are sometimes called repa-
rameterization schemes because they generate an equivalent specification of the problem
from which answers can be produced easily. We will see that the bucket elimination
scheme is applicable to most, if not all, of the types of queries and graphical models we
discussed in Chapter 2, but its general structure and properties are most readily under-
stood in the context of constraint networks. Therefore, this chapter introduces bucket
elimination in its application to constraint networks. In the following chapter, we will
apply this scheme to probabilistic reasoning and combinatorial optimization.

Bucket-elimination algorithms are knowledge-compilation methods: they generate an
equivalent representation of the input problem from which various queries are answerable
in polynomial time. In this chapter, the target query is whether or not an input constraint
network is consistent.

To illustrate the basic idea behind bucket elimination, let’s walk through a simple
constraints problem. Consider the graph coloring problem in Figure ??. The task is to

assign one of two colors (green or red) to each node in the graph so that adjacent nodes
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Bucket(E): E# D, E#C
Bucket(C): C # B
Bucket(D): D # A,
Bucket(B): B # A,
Bucket(A):
{green,red} (b)
Bucket(E): E+# D, E #C
% - Bucket(C): C# B || D=C
Bucket(D): D # A, || ,D# B
{greenredt( A B) (oreenreqy Bucket(B): B# A, || B=A
Bucket(A): ||

(a) (c)

Figure 3.1: A graph coloring example (a) and a schematic execution of adaptive-

consistency (b,c)

will have different colors. Here is one way to solve this problem: consider node FE first. It
can be colored either green or red. Since only two colors are available it follows that D and
C' must have identical colors; thus, C' = D can be inferred, and we can add this as a new
constraint in our network without changing its solutions set. We can ignore variable F
from now on since we already summarized his impact on the rest of the problem when we
added C' = D. We focus on variable C' next. Together, the inferred constraint C' = D and
the input constraint C' # B imply that D # B, and we add this constraint to the problem.
Having taken into account the effect of C' on the other variables in the network, we can
ignore C' also from now on. Continuing in this fashion with node D, we infer A = B.
However, since there is an input constraint A # B we have reached a contradiction and

can conclude that the original set of constraints is inconsistent.

The algorithm which we just executed, is known as adaptive-consistency in the con-
straint literature [23] and it can solve any constraint satisfaction problem. The algorithm

works by processing and eliminating variables one by one, while deducing the effect of the
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eliminated variable on the rest of the problem. The elimination operation first joins all
the relations that are defined on the current variable and then projects out the variable.
Adaptive-consistency can be described using a data structure called buckets as follows:
given an ordering of the variables, we process the variables from last to first. In the pre-
vious example, the ordering was d = A, B, D, C, E/, and we processed the variables from
E to A. Note that we will use this convention throughout: we assume that the inference
algorithm process the variables from last to first w.r.t to a given ordering. The reason for
that will be clear later. The first step is to partition the constraints into ordered buck-
ets, so that the bucket for the current variable contains all constraints that mention the
current variable and that have not been placed in a previous bucket. In our example, all
the constraints mentioning the last variable E are put in a bucket designated as bucketg.
Subsequently, all the remaining constraints mentioning D are placed in bucketp, and so
on. The initial partitioning of the constraints is depicted in Figure 3.1a. The general
partition rule given an ordering is that each constraint identifies the variable L in its

scope that appears latest in the ordering, and then places the constraint in buckety.

After this initialization step, the buckets are processed from last to first. Processing a
bucket means solving the subproblem defined by the constraints in the bucket and then
inferring the constraint that is imposed by that subproblem on the rest of the variables
excluding the bucket’s variable. In other words, we compute the constraint that the
bucket-variable induces on the variables that precede it in the ordering. As we saw,
processing bucket F produces the constraint D = C, which is placed in buckets. By
processing bucketo, the constraint D # B is generated and placed in bucketp. While
processing bucket D, we generate the constraint A = B and put it in bucketg. When
processing bucketp inconsistency is discovered between the inferred A # B and the input
constraint A = B. The buckets’ final contents are shown in Figure 3.1b. The new inferred

constraints are displayed to the right of the bar in each bucket.

Observe that at each step, one variable and all its related constraints are, in fact,
solved, and a new constraint is inferred on all of the rest of the participating variables.
Observe also that because the new added constraints are inferred, the problem itself does

not change and with or without the added constraints, it has the same set of solutions.
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However, what is significant is that once all the buckets are processed, and if no inconsis-
tencies were discovered, a solution can be generated in a so called backtrack-free manner.
This means that a solution can be assembled by assigning values to the variables pro-
gressively, starting with the first variable in ordering d and this process is guaranteed to
continue until all the variables are assigned a value from their respective domains, thus
yielding a solution to the problem. The notion of backtrack-free constraint network rel-
ative to an ordering is central to the theory of constraint processing and will be defined
shortly.

The bucket-elimination algorithm illustrated above for constraints is applicable to
general graphical models as we will show. The algorithm is applied to the given model

(e.g., a Bayesian network or a cost network) for the given particular query.

3.1 The case of Constraint Networks

We have presented an informal definition of the bucket elimination algorithm on constraint
networks called adaptive-consistency. Here we will provide a formal definition of the
algorithm, using the formalism of constraint networks introduced in the previous chapter

and utilizing the the following operations:

Definition 3.1.1 (operations on constraints: select, project, join) Let R be a re-
lation on a set S of variables, let Y C S be a subset of the variables, and letY =y (ory)
be an instantiation of the variables in' Y. We denote by o,(R) the selection of those tuples
in R that agree with Y =y. We denote by Iy (R) the projection of the relation R on the
subset Y, that is, a tuple Y =y appears in Ily(R) if and only if it can be extended to a
full tuple in R. Let Rg, be a relation on a set Sy of variables and let Rg, be a relation on
a set Sy of variables. We denote by Rg, W Rg, the natural join of the two relations. The
join of Rs, and Rg, is a relation defined over S1USy containing all the tuples t, satisfying
ts, € Rs, and tg, € Rg,.

Using the above operations, adaptive-consistency can be specified as in Figure 3.2. In
step 1 the algorithm partitions the constraints into buckets whose structure depends on

the variable ordering used. The main bucket operation is given in steps 4 and 5.
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ADAPTIVE-CONSISTENCY (AC)

Input: a constraint network R = (X, D, R), an ordering d = ( x1,...,2,)

output: A backtrack-free network, denoted E4(R), along d, if the empty constraint
was not generated. Else, the problem is inconsistent

1. Partition constraints into buckety, ..., bucket,, as follows:

for i «+ n downto 1, put in bucket; all unplaced constraints

mentioning x;.

for p < n downto 1 do

for all the constraints Rg,, ..., Rs, in bucket, do
A« UZ:l Si —{x,}
Ra ¢+ TL(X_, Rg,)

SRR ol I

if R4 is not the empty relation then add R4 to the bucket of the
latest variable in scope A,

. else exit and return the empty network

8.  return Ey(R) = (X, D, bucket, U buckety U - - - U bucket,,)

Figure 3.2: Adaptive-Consistency as a bucket-elimination algorithm
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Algorithm adaptive-consistency specifies that it returns a “backtrack-free” network
along the ordering d. This concept is related to the search approach that is common
for solving constraint satisfaction, and in particular, to backtracking search (for more see
Chapter ??7). Backtracking search assign values to the variables in a certain order in a
depth-first manner, checking the relevant constraints, until an assignment is made to all
the variables or a dead-end is reached where no consistent values exist. If a dead-end is
reached, search will backtrack to a previous variable, change its value, and proceed again
along the ordering. We say that a constraint network is backtrack-free along an ordering d
of its variables if it is guaranteed that a dead-end will never be encountered by backtrack
search.

We next define the notion of backtrack-free network. It is based on the notion of a

partial solution.

Definition 3.1.2 (partial solution) Given a constraint network R, we say that an as-
signment of values to a subset of the variables S = {X;, ..., X;} given by a = (< Xy,a1 >
< Xo,a9 >, ..., < Xj,a; >) is consistent relative to R iff it satisfies every constraint

whose scope is subsumed in S. The assignment a is also called a partial solution of R.

Definition 3.1.3 (backtrack-free search) A constraint network is backtrack-free rela-
tive to a given ordering d = (X1, ..., X,,) if for every i < n, every partial solution over

(X1, ..., X;) can be consistently extended to include X;1.
We are now ready to state the main property of adaptive-conistency.

Theorem 3.1.4 (Correctness and Completeness of Adapative-consistency) [23/
Given a set of constraints and an ordering of variables, adaptive-consistency decides if a
set of constraints is consistent and, if it is, the algorithm always generates an equivalent

representation that is backtrack-free along the input variable ordering. O
Proof: See exercises (]

Example 3.1.5 Consider the graph coloring problem depicted in Figure 7?7 (modified

from example ?? with colors represented by numbers). The figure shows a schematic
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execution of adaptive-consistency using the bucket data structure for the two orderings
dy = (E,B,C,D,A) and dy = (A, B,D,C, E). The initial constraints, partitioned into
buckets for both orderings, are displayed in the figure to the left of the double bars, while
the constraints generated by the algorithm are displayed to the right of the double bar,
in their respective buckets. Let’s focus first on ordering ds: as shown in 3.4, adaptive-
consistency proceeds from E to A and imposes constraints on the parents of each processed
variable, which are those variables appearing in its bucket. To process bucketg all three
constraints in the buckets are solved and the set of solutions is projected over D, C, and
B, recording the ternary constraint Rpcp which is placed in buckets (see Figure 3.4
for details). Next, the algorithm processes bucketc which contains C' # A and the new
constraint Rpcp. Joining these two constraints and projecting out C' yields a constraint
Rpp that is placed in the bucket of D, and so on. In our case Rpp = D = B and its
generation is depicted in two steps of Figure 3.4.

Notice that adaptive-consistency along ordering d; generates a different set of con-
straints, and in particular it generates only binary constraints, while along ordering d,
the algorithm generates a ternary constraint. Notice also that for the ordering dy, the
constraint B # E generated in the bucket of D is displayed for illustration only in the
bucket of B (in parentheses), since there is already an identical original constraint. Indeed

the constraint is redundant. O

Example 3.1.6 An alternative graphical illustration of the algorithm’s performance us-
ing d, is given in Figure 3.4. The figure shows, through the changing graph, how con-
straints are generated in the reverse order of dy = A, B,D,C, E, and how a solution
is created in the forward order of d,. The first step is processing the constraints that
mention variables E. These are all joined to create a relation over EDBC and then E
is projected out, yielding a constraint on DBC' whose relation is explicitly given in the
figure. The relation is added to the set of constraints and is depicted as an added clique
over the 3 nodes. Then F is removed, yielding the 3rd graph that includes only nodes
A, D, B,C. The next variable to be processed is C. the constraints that include C are
the original constraint B # C and the new constraint over DBC'. Joining both yields
the new constraint on DBC' as depicted, and projecting out C from this relation yields

a constraint on DB whose meaning is the equality constraint. variable D is eliminated
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next and then B, yielding the last variable A with two values {1,2}.

Subsequently, the reverse process of generating a solution starts at A. Since it has 2
legitimate values, we can select any of those. The value A = 1 is selected. The next value
satisfying the inequality constraint is B = 2, then D = 2 (satisfying D = B), then C' = 3
(satisfying C' # B). To assign a value for E we look at the constraint on EDBC' which
only allows £ = 1 to extend the current partial solution A = 1,B =2,D = 2,C = 3.
yielding a full solution. |

What is the complexity of adaptive-consistency? It is clearly linear in the number of
buckets and the time to process each bucket. However, since processing a bucket amounts
to solving a constraint-satisfaction subproblem (generating the join of all relations) its
complexity is exponential in the number of variables mentioned in a bucket. Conve-
niently, the number of variables appearing in a bucket along a given ordering, can be
obtained using the induced-width of the graph along that ordering. The induced-width is
an important graph parameter that is instrumental to all bucket-elimination algorithms,

and we define it next.

Definition 3.1.7 (Induced graph and induced width) Given an undirected graph G =
(V,E), where V.= {vy,...,v,} is the set of nodes, E is a set of arcs over V, an ordered
graph is a pair (G,d), where d = (vy, ..., v,) is an ordering of the nodes. The nodes adja-
cent to v that precede it in the ordering are called its parents. The induced graph of an
ordered graph (G,d) is an ordered graph (G*,d) where G* is obtained from G as follows:
the nodes of G are processed from last to first (top to bottom) along d. When a node v is
processed, all of its parents are connected. The induced width of an ordered graph, (G, d),
denoted w*(d), is the mazimum number of parents a node has in the the induced ordered
graph (G*,d). The induced width of a graph, w*, is the minimal induced width over all

its orderings.

Example 3.1.8 Generating the induced-graph ford, = E, B,C, D, Aanddy, = A, B,D,C, E
leads to the two graphs in Figure 3.5. The broken lines are the newly added arcs. The
induced width along d; and dy are 2 and 3 respectively. They suggest different perfor-

mance bounds for adaptive-consistency because the number of variables in a bucket is
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Ordering d;

12 Bucket(A): A# D, A# B
Bucket(D): D# E || Rps
# £ Bucket(C): C #B C # FE
Bucket(B): B#FE || Rkp, Rip
Bucket(E): || Rg

Ordering d,
Bucket(E): E# D, E+C, E+#+ B

2 Bucket(c): C # B || Rpcp
(a) Bucket(D): D# A || Rps(=D = B)
Bucket(B): B# A || Rap(= R # B)
Bucket(A): || Ra

{12}

Figure 3.3: A modified graph coloring problem

bounded by the number of parents of the corresponding variable in the induced ordered

graph which is equal to its induced-width. 0

Theorem 3.1.9 The time and space complezity of Adaptive-Consistency is O((r-+n)k® (1)
and O(n - kD) respectively, where n is the number of variables, k is the mazimum do-
main size and w*(d) is the induced-width along the order of processing d and r is the

number of the problems’ constraints.

Proof: Since the total number of input functions plus those generated is bounded by
r 4+ n and since the computation in a bucket is O(rk"*"(@*1) where r; is the number of
functions in bucket i, the total over all buckets is O((r + n)k*" @+ O

The above analysis suggests that problems having bounded induced width w* < b for
some constant b can be solved in polynomial time. In particular, observe that when the
graph is cycle-free its width and induced width are 1. Consider, for example, ordering
d = (A,B,C,D,E,F,G) for the tree in Figure 3.6. As demonstrated by the schematic

execution along d in Figure 3.6, adaptive-consistency generates only unary relationships
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Figure 3.4: A schematic variable-elimination and solution genration process is backtrack-

free (comment: change the order of dy)
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W*(D)=3

WH(d) =3 W*(d) =2

Figure 3.5: The induced width along the orderings: diy = A, B,C,D,E and dy =
E,B,C,D, A

in this cycle-free graph.We note that on trees the algorithm can be accomplished in a
distributed manner as a message passing algorithm which converges to exact solution.

We will come back to this point in a later chapter.

3.2 Bucket elimination for Propositional CNF's

Since propositional CNF formulas, discussed in Chapter 2, are a special case of constraint
networks, we might wonder what adaptive consistency looks like when applied to them.
Propositional variables take only two values {true, false} or “1”7 and “0.” We de-
note propositional variables by uppercase letters P,Q, R, ..., propositional literals (i.e.,
P =“true” or P =“false”) by P and =P and disjunctions of literals, or clauses, are denoted
by «, 8, .... A unit clause is a clause of size 1. The notation (aVT), when o = (PVQV R)
is shorthand for the disjunction (PV QV RV T). (aV ) denotes the clause whose literal
appears in either « or . The resolution operation over two clauses (aV @) and (5V —=Q)
results in a clause (a V f3), thus eliminating @). A formula ¢ in conjunctive normal form
(CNF) is a set of clauses ¢ = {ay,...,a:} that denotes their conjunction. The set of

models or solutions of a formula ¢ is the set of all truth assignments to all its symbols
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bucket(G) Reg

bucket(F) Rcg........

Bucket(E) R EB -
bucket(D) Ryg V V
bucket(C) R
R CA - V v Dc DC
bucket(B E— 2
® R Ba/ Dp Dp
bucket(A) .- ’DlA D>
; A

Figure 3.6: Schematic execution of adaptive-consistency on a tree network. Dy denotes

unary constraints over X

that do not violate any clause in . Deciding if a formula is satisfiable is known to be
NP-complete [31].

It turns out that the join-project operation used to process and eliminate a variable
by adaptive-consistency over relational constraints translates to pair-wise resolution when

applied to clauses [26].

Definition 3.2.1 (extended composition) The extended composition of relation Rg,,
..., Rg,, relative to a subset of variables A C \J* | S;, denoted EC4(Rsg,,...,Rs,,), is
defined by

EC4(Rs,,...,Rs,) =ma(X2, Rg,)

When the operation of extended composition is applied to m relations, it is called extended
m~composition. If the projection operation is restricted to subsets of size i, it is called

extended (i, m)-composition.

It is not hard to see that extended composition is the operation applied in each bucket
by adaptive-consistency. We next show that the notion of resolution is equivalent to

extended 2-composition.
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Example 3.2.2 Consider the two clauses a = (P V =Q V =0) and g = (Q vV =W).
Now let the relation Rpgo = {000,100,010,001,110,101,111} be the models of o and
the relation Row = {00,10,11} be the models of 5. Resolving these two clauses over
@ generates the resolvent clause v = res(o,5) = (P V -0 V =W). The models of
7 are {(000, 100,010,001, 110,101,111}. It is easy to see that ECpow(Rpgo, Row) =
Trow (Rpgo M Rgy) yields the models of ~. O

Indeed,

Lemma 3.2.3 The resolution operation over two clauses, (aV Q) and (5 V —Q), results
in a clause (o V B) for which models(a Vv B) = ECgq (models(a V Q), models(8 V =Q)),

where Q' is the union of scopes of both clauses excluding ). O

Substituting extended decomposition by resolution in adaptive consistency yields a
bucket-elimination algorithm for propositional satisfiability which we call directional res-
olution (DR).

We call the output theory (i.e., formula) of directional resolution, denoted Ey(y),
the directional extension of ¢. The following description of the algorithm should look
familiar. Given an ordering d = (Q1, ..., @,), all the clauses containing @; that do not
contain any symbol higher in the ordering are placed in the bucket of @);, denoted bucket;.
The algorithm processes the buckets in the reverse order of d. Processing of bucket; means
resolving over @); all the possible pairs of clauses in the bucket and inserting the resolvents
into appropriate lower buckets.

Note that if the bucket contains a unit clause (@; or =Q);), only unit resolutions are
performed. As implied by Theorem 3.1.9, DR is guaranteed to generate a backtrack-free
representation along the order of processing. Indeed, as already observed in the above
example, once all the buckets are processed, and if the empty clause was not generated,
a truth assignment (model) can be assembled in a backtrack-free manner by consulting

E4(p), using the order d.

Theorem 3.2.4 (backtrack-free by DR) Given a theory ¢ and an ordering of its vari-
ables d, the directional extension Eq(p) generated by DR is backtrack-free along d
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DIRECTIONAL-RESOLUTION (DR)
Input: A CNF theory ¢, an ordering d = )1, .. ., @, of its variables.
OutputA decision of whether ¢ is satisfiable. If it is, a theory Ey(¢),

equivalent to ¢, else an empty directional extension.
1. Inmitialize: generate an ordered partition of clauses into buckets
bucket, ..., bucket,, where bucket; contains all clauses whose
highest variable is @);.
for i + n downto 1 process bucket;:
if there is a unit clause then (the instantiation step)
apply unit-resolution in bucket; and place the resolvents in their right buckets.
if the empty clause was generated, theory is not satisfiable.
4. else resolve each pair {(a Vv @Q;), (5 V =Q;)} C bucket;.
if v = a Vv § is empty, return E4(¢) = {}, the theory is not satisfiable
else determine the index of v and add it to the appropriate bucket.

5. return E;(p) < |, bucket;

Figure 3.7: Directional-resolution
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Figure 3.8: A schematic execution of directional resolution using ordering d =
(E,D,C,B,A)

Example 3.2.5 Given the input theory ¢y = {(-C),(AvBVC), (FAVBVE), (-BV
C'Vv D)}, and an ordering d = (E, D, C, B, A), the theory is partitioned into buckets and
processed by directional resolution in reverse order. Resolving over variable A produces a
new clause (BVC'V E), which is placed in bucketg. Resolving over B then produces clause
(CVv DV E), which is placed in bucket. Finally, resolving over C' produces clause (DV E),
which is placed in bucketp. Directional resolution now terminates, since no resolution can
be performed in bucketp and buckety. The output is a non-empty directional extension
E4i(p1). Once the directional extension is available, model generation can begin. There
are no clauses in the bucket of E, the first variable in the ordering, and therefore £ can
also be assigned any value (e.g., £ = 0). Given E = 0, the clause (D V E) in bucketp
implies D = 1, clause =C' in bucketc implies C' = 0, and clause (BV C' V E) in bucketp,
together with the current assignments to C' and FE, implies B = 1. Finally, A can be
assigned any value since both clauses in its bucket are satisfied by previous assignments.
The initial partitioning into buckets along the ordering d as well as the buckets’ contents
generated by the algorithm following resolution over each bucket are depicted in Figure
3.8. O

Not surprisingly, the complexity of directional-resolution is exponentially bounded

(time and space) in the induced width of the theory’s interaction graph along the order
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of processing. Notice that the graph of theory ¢; along the ordering d (depicted also in
Figure 3.8) has an induced width of 3.

Lemma 3.2.6 Given a theory ¢ and an ordering d = (Q1, ..., Qn), if Q; has at most w
parents in the induced graph along d, then the bucket of Q; in E4(p) contains no more

than 3**t1 clauses.

Proof: Given a clause « in the bucket of ();, there are three possibilities for each parent
P of Q);: either P appears in a,, =P appears in «, or neither of them appears in a. Since
(); also appears in «, either positively or negatively, the number of possible clauses in a

bucket is no more than 2 - 3% < 3%+, n

Since the number of parents of each variable is bounded by the induced-width along

the order of processing we get:

Theorem 3.2.7 (complexity of DR)
Given a theory ¢ and an ordering of its variables d, the time complexity of algorithm DR
along d is O(n-9%a), and E4(p) contains at most n-3%a*! clauses, where w} is the induced

width of ¢’s interaction graph along d. O

3.3 Bucket elimination for linear inequalities

A special type of constraint is one that can be expressed by linear inequalities. The
domains may be the real numbers, the rationals or finite subsets. In general, a linear
constraint between r variables or less is of the form Z:Zl a;r; < ¢, where a; and c are
rational constants. For example, (3z;+2x; < 3)A(—4x;+5x; < 1) are allowed constraints
between variables x; and z;. In this special case, variable elimination amounts to the
standard Gaussian elimination. From the inequalities z —y < 5 and x > 3 we can deduce

by eliminating x that y > 2. The elimination operation is defined by:
Definition 3.3.1 (Linear elimination) Let a = 21(2_11) a;r; + a,x, < ¢, and B =
Zg;l) bix; + bz, < d. Then elim,(«, B) is applicable only if a, and b, have opposite

signs, in which case elim,(a, f) = Z;:ll(—aib—’" + b))z < —Z—:c +d. If a, and b, have the

ar

same sign the elimination implicitly generates the universal constraint.
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DIRECTIONAL-LINEAR-ELIMINATION (¢, d)

Input: A set of linear inequalities @, an ordering d = x1,. .., x,.

OutputA decision of whether ¢ is satisfiable. If it is, a backtrack-
free theory Fy(p).

1. Initialize: Partition inequalities into ordered buckets.

2. for i < n downto 1 do

3. if ; has one value in its domain then
substitute the value into each inequality in the bucket
and put the resulting inequality in the right bucket.

4. else,for each pair {«, 5} C bucket;, compute v = elim;(a, 5)
if v has no solutions, return Fy(p) = {}, “inconsistency”
else add v to the appropriate lower bucket.

5. return E;(p) < |, bucket;

Figure 3.9: Fourier Elimination; DLE

It is possible to show that the pair-wise join-project operation applied in a bucket can
be accomplished by linear elimination as defined above. Applying adaptive-consistency
to linear constraints and processing each pair of relevant inequalities in a bucket by
linear elimination yields a bucket elimination algorithm Directional Linear Elimination
(abbreviated DLE), which is the well known Fourier elimination algorithm. (see [38]).

As in the case of propositional theories, the algorithm decides the solvability of any
set of linear inequalities over the Rationals and generates a problem representation which

is backtrack-free. The algorithm is summarized in Figure 3.9.

Theorem 3.3.2 Given a set of linear inequalities p, algorithm DLE (Fourier elimina-
tion) decides the consistency of ¢ over the Rationals and the Reals, and it generates an
equivalent backtrack-free representation. O

Example 3.3.3 Consider the set of inequalities over the Reals:
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buckety : Sxy+3x9 — 21 <5, x4 +1x1 <2, —x4 <O,
buckets :  x3 <5, x1+ 19 — 23 < —10

buckety : x4+ 279 < 0.

buckety :

Figure 3.10: initial buckets
buckety : bry+3w9 — 1 <5, x4+ 11 <2, —24 <0,
buckets :  x3 <5, x1+ 19 — 23 < —10
buckety : 1+ 2w9 <0 || 3xg — 21 < 5,21 + 29 < =5
buckety : || z1 < 2.

Figure 3.11: final buckets

(w1, 29, 23, 74) = {(1) 54 + 329 — 21 <5, (2) 24+ 71 <2, (3) — 24 <0,
(4) xI3 < 5, (5) T+ To — T3 < —10, (6) r1 + 2I2 < 0}

The initial partitioning into buckets is shown in Figure 3.10. Processing bucket,, which
involves applying elimination relative to x4 over inequalities {(1),(3)} and {(2),(3)}, re-
spectively, results in 3z, — 27 < 5, placed into bucket,, and x; < 2, placed into bucket;.
Next, processing the two inequalities x3 < 5, and xy + x5 — 3 < —10 in buckets elimi-
nates x3, yielding 1 + x5 < —5 placed into buckety. When processing buckets, containing
T1+ 219 <0, 3x9 — 21 < 5, and x1 + 2 < —5, no new inequalities are added. The final

set of buckets is displayed in Figure 3.11. |

Once the algorithm is applied, we can generate a solution in a backtrack-free manner
as usual. Select a value for x; from its domains that satisfies the unary inequalities in
bucket;. From there on, after selecting assignments for z1,...,x;_1, select a value for z;
that satisfies all the inequalities in bucket;. This is an easy task, since all the constraints
are unary once the values of x1,...,x; 1 are determined.

The complexity of Fourier elimination is not, however, bounded exponentially by the
induced width. The reason is that the number of linear inequalities that can be specified

over a scope of size ¢ cannot be bounded exponentially by .
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3.4 Summary and bibliography notes

Algorithm Adaptive-consistency was introduced by Dechter [23] as well as its complexity
analysis using the concept of induced-width as the principle graph-parameter that con-
trols the algorithms’s complexity. A similar elimination algorithm was introduced earlier
by Seidel [51]. It was observed that these algorithms belong to the class of Dynamic
Programming algorithms as presented in [8]. In [24], the connection between Adaptive-
Consistency and tree-clustering algorithms was made explicit, as will be shown in Chapter
?7.

The observation that pair-wise resolution is the variable-elimination operation for
CNFs and adaptive-consistency implies algorithm directional-resolution for CNFs, was
presented in [25, 47]. Tt was observed that the resulting algorithm is the well known David-
Putnam algorithm [14]. This correspondence offered bounding the complexity worst-case
performance of the directional resolution algorithm exponentially by the induced-width

as well.

3.5 Exercises
1. Prove theorem 3.1.9
2. Prove Lemma 3.2.3.
3. Prove that Directional Resolution is polynomial for 2-CNFs.

4. Assume that the input to Directional Resolution is a Horn theory (clauses that have

at most one positive literal). Is the algorithm tractable? Analyze its complexity.

5. Define a bucket-elimination algorithm for a) finding all solutions to constraint sat-

isfaction problem, b) for finding all solutions consistent with X; = 0, X5 = 1.

6. Consider a tree-like constraint network. Show how would adaptive-consistency be

applied and how a solution can be generated [give a specific tree example].
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7. Write adaptive-consistency for tree networks as a distributed message-passing algo-
rithms. Apply the algorithm to an arbitrary binary constraint network and discuss

the properties of this algorithm
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Chapter 4

Bucket-Elimination for Probabilistic
Networks

Having investigated bucket-elimination in deterministic constraint networks in the pre-
vious chapter, we now present the bucket-elimination algorithm for the three primary
queries defined over probabilistic networks: 1) belief-updating or computing posterior
marginals (bel) as well as finding the probability of evidence 2) finding the most probable
explanation (mpe) and 3) finding the maximum a posteriori hypothesis (map).

Recall the definition of Bayesian network in Definition 4.0.1. We start focusing on
queries over Bayesian networks first and later show that the algorithms we derive are

applicable with minor changes to Markov networks as well.

Definition 4.0.1 (Bayesian networks) A Bayesian network (BN) is a 4-tuple B =
(X,D,Pq, ). X = {Xy,..., Xy} is a set of ordered variables defined over domains
D ={D,...,D,}, where o = (Xy,...,X,) is an ordering of the variables. The set of
functions Pg = {Py,...,P,} consist of conditional probability tables (CPTs for short)
P, ={P(X;|Y;) } where Y; C {Xis1,..., Xpu}. These P; functions can be associated with
a directed acyclic graph G in which each node represents a variable X; and Y; = pa (X;)
are the parents of X; in G. That is, there is a directed arc from each parent variable
of X; to X;. The Bayesian network B represents the probability distribution over X,
Pa(x1,...,x,) = [[imy P(zi|2pacxy)). We define an evidence set e as an instantiated subset

of the variables.
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4.1 Belief Updating and Probability of Evidence

Belief updating is the primary inference task over Bayesian networks. The task is to de-
termine the posterior probability of singleton variables once new evidence arrives. For
instance, if we are interested in likelihood that the sprinkler was on last night (as we were
in a Bayesian network example in Chapter 2), then we need to update this likelihood
if we observe that the pavement near the sprinkler is slippery. More generally, we are
sometime asked to compute the posterior marginals of a subset of variables. Another im-
portant query over Bayesian networks, computing the probability of the evidence, namely
computing the joint likelihood of a specific assignment to a subset of variables, is tightly
related to belief updating. We will show in this chapter how these tasks can be computed
by the bucket-elimination scheme.

We will distinguish probabilistic functions (i.e., CPTs) given in the input of the
Bayesian networks from probabilistic functions generated during computation. So, as
we did so far, by P(X|Y) we denote an input CPT of variable X given its parent set Y,
while derived probability functions will be denoted by As.

4.1.1 Deriving BE-bel

We next present a step-by-step derivation of a general variable-elimination algorithm for
belief updating. We will reserve the symbol P() to describe probability function of proba-
bility quantities. Sometime it will refer to a specified function, and sometime it will refer
to the semantic notion of probabilities. This algorithm is similar to adaptive-consistency;,
but the join and project operators of adaptive-consistency are replaced, respectively, with
the operations of product and summation. We begin with an example and then proceed
to describe the general case.

Let X = z; be an atomic proposition (e.g., pavement = slippery ). The problem of
belief updating is to compute the conditional probability of z; given evidence e, P(x1e),
and the probability of the evidence’s P(e). By Bayes rule we refer to P(zi|e) = Pl(f(le’)e),
% is the normalization constant denoted by «. To develop the algorithm, we
will use the previous example of a Bayesian network, 2.4.2 (Figure 2.4), and assume the

where

evidence is g = 1.
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Consider the variables in the ordering dy = A,C, B, F, D,G. We want to compute
P(A=ualg=1)or P(A=a,g=1) (note that upper case denotes variable names and

lower-case denotes a generic value for the same variable.) By definition

Pla,g=1) = Z P(a,b,c,d e, g) = Z P(g|f)P(f|b,c)P(d|a,b)P(c|a)P(bla)P(a).

C7b7e7d7g:1 C7b7f7d7g:1

We can now apply some simple symbolic manipulation, migrating each conditional prob-

ability table to the left of the summation variables that it does not reference. We get
P(a,g=1) = P(a) Y P(cla) Y P(bla) Y P(flb,c) Y P(dlb,a) Y P(glf).  (4.1)
c b f d g=1

Carrying the computation from right to left (from G to A), we first compute the right-
most summation, which generates a function over F' that we denote by Ag(F'), defined
by: Aa(f) = >_,—1 P(g]f) and place it as far to the left as possible, yielding

Pla,g=1) = ZPC| ZPb| ZPf]bc)\G ZPd\ba (4.2)

(We index a generated function by the variable that was summed over to create it; for
example, we created A\g(f) by summing over (G.) Summation removes or eliminates a
variable from the calculation.

Summing next over D (generating a function denoted Ap(B, A), defined by Ap(a,b) =
Y 4 P(dla,b)), we get

P(a,g=1) = P(a) Y _P(cla) Y P(bla)Ap(a,b) Y P(f[b,c)Aa(f) (4.3)
c b f

Next, summing over F' (generating Ar(B,C) defined by Ar(b,c) = >, P(f|b,c)Ac(f)),
we get,

P(a,g=1)=P(a) Y _P(cla) ) P(bla)Ap(a,b)Ar(b,c) (4.4)
c b
Summing over B (generating Ag(A4, C)), we get

P(a,g=1) = P(a) Z P(cla)Ag(a,c) (4.5)
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buckete = P(glf),g=1
bucketp = P(d|b,a)
bucketp = P(f|b,c)
bucketp = P(bla)
bucketc = P(c|a)
buckety = P(a)

Figure 4.1: Initial partitioning into buckets using dy = A,C, B, F, D, G

Finally, summing over C' (generating A¢(A)), we get
Pla,g = 1) = P(a)Ac(a) (46)

Summing over the values of variable A, we generate P(g = 1) = > P(a)Ac(a). The
answer to the query P(a|g = 1) can be computed by normalizing the last product. Namely,
P(alg =1) = aP(a) - \c(a) where a = ﬁ.

We can create a bucket-elimination algorithm for this calculation by mimicking the
above algebraic manipulation, using buckets as the organizational device for the various
sums. First, we partition the conditional probability tables (C'PT's, for short) into buckets
relative to the given order, dy = A,C, B, F,D,G. In bucket G we place all functions
mentioning . From the remaining C'PT's we place all those mentioning D in bucket
D, and so on. This is precisely the partition rule we used in the adaptive-consistency
algorithm for constraint networks. This results in the initial partitioning given in Figure
4.1. Note that observed variables are also placed in their corresponding bucket.

Initializing the buckets corresponds to deriving the expression in Eq. (4.1). Now we
process the buckets from last to first (or top to bottom in the figures), implementing
the right to left computation in Eq. (4.1). Processing a bucket amounts to eliminating
the variable in the bucket from subsequent computation. bucketq is processed first. We
eliminate G by summing over all values g of GG, but since we have observed that g = 1, the
summation is over a singleton value. The function Ae(f) =>_,_, P(9]f) = P(g = 1|f), is
computed and placed in bucketr. In our calculations above, this corresponds to deriving

Eq. (4.2) from Eq. (4.1)). Once we have have created a new function, it is placed in a
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Bucket G: P(G/F) G=1
Bucket D: P(D/B,A
Bucket F: P(F/B,C) ACG(F)
Bucket B: P(B/A) AP(B,A)  AF(B,C)
Bucket C: P(C/A) AB(A,C)
Bucket A: P(A) AC(A)
P(G=1)

Figure 4.2: Bucket elimination along ordering d; = A,C, B, F, D, G.

lower bucket in accordance with the same rule we used to partition the original C'PT's.

Following order d;, we proceed by processing bucketp, summing over D the product
of all the functions that are in its bucket. Since there is a single function, the resulting
function is Ap(b,a) = >, P(d|b,a) and it is placed in bucket. Subsequently, we process
the buckets for variables F, B, and C' in order, each time summing over the relevant
variable and moving the generated function into a lower bucket according to the placement
rule. Since the query here is to compute the posterior marginal on A given g = 1, and
bucket 4 contains P(a) and Ac(a), we normalize the product of those two functions to
get the answer: P(alg = 1) = a- P(a) - A¢(a). Figure 4.2 summarizes the flow of this

computation.

In this example, the generated A functions were at most two-dimensional; thus, the
complexity of processing each bucket using ordering d; is (roughly) time and space
quadratic in the domain sizes. But would this also be the case had we used a differ-
ent variable ordering? Consider ordering do = A, F, D,C, B, G. To enforce this ordering
in our algebraic calculations we require that the summations remain in order d, from right

to left, yielding (and we leave it to you to figure how the A functions are generated):
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Pla,g=1)=P(a) 321 > 4> Plcla) 32, P(bla) P(d|a,b)P(flb,c) >, P(glf)
= Pla) 22 Ac(f) 22422 Plcla) 32, P(bla) P(dla,b)P(f1b,c)

= P(a) > Aa(f) 224 2. Plcla)As(a, d, e, f)

= P(a) > A(f) Xy Acla,d, f)

= P(a)>_; Ac(f)Ap(a, f)

P(a)Ar(a)

The analogous bucket elimination schematic process for this ordering is shown in
Figure 4.3a. As before, we finish by calculating P(A = alg = 1) = aP(a)A\r(a), where

= SR

We conclude this section with a general derivation of the bucket elimination algorithm
for probabilistic networks, called BE-bel. As a byproduct, this algorithm yields the prob-
ability of the evidence. Consider an ordering of the variables d = (X, ..., X,,) and assume
we seek P(Xjle). Note that if we seek the belief for variable X; it should initiate the

ordering. Later we will see how this requirement can be relaxed. Using the notation

Z; = (x1,...,2;) and ff = (@i, Tiy1, ..., T;), we want to compute:
CEIDLEED 3P 3) 1 LT
_(n 1) x, 1
Separating X,, from the rest of the variables results in (F), is variable X, together with

= Z H P($i,e|xpai)' H P(xhelxpai)

f(n—l) X, eX—F, X, eF,
2

= Z H P(xiae|xpai) : /\n(ZL'Sn)

(=1 X, €EX—F,
2

its parents):

where

n(Ts,) Z H P(z;, e|Tpa,) (4.7)

Tn X;€EF,
and S,, denotes all the variables appearing with X, in a probability component, (excluding

X,,). The process continues recursively with X,,_;.
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Bucket G: P(GIF) G=1

Bucket B: P(FIB,C) P(DIB,A) P(BIA)
Bucket C: P(CIA) AB(A,D,C,F)
Bucket D: AS(A,D,F)
Bucket F: AP(AF) AG(F)
Bucket A: P(A) AF(A)

e

P(G=1)
(a) (b)

Figure 4.3: The bucket’s output when processing along do = A, F, D,C, B,G

Thus, the computation performed in bucket X, is captured by Eq. (4.7). Given
ordering d = X4, ..., X,,, where the queried variable appears first, the C'PT's are partitioned
using the rule described earlier. Then buckets are processed from last to first. To process
each bucket, the bucket’s functions, include two types of functions the original CPT
functions denoted by P, ..P; and the generated messages denoted by As. For convenience
we denote the product of all the original functions placed in bucketx by vx, ¥x =
[ pevucker, P> Where scope(ipx) is the union of the scopes of all the original functions in
the bucket. The messages are the A functions computed and placed there by other buckets
to which we now refer as Ay, ..., \; and defined over scopes 51, ..., S;. All these functions
in the bucket are multiplied and the bucket’s variable is eliminated by summation. The
computed function in buckety, is Ax, and is defined over scope S, = U;S; — X, by
Ax =D x, Ux - 11 Acbucketx, A. This function is placed in the bucket of its largest-index
variable in S,. Omnce processing reaches the first bucket, we have all the information to

compute the answer which is the product of those functions. If we also process the first
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bucket we get the probability of the evidence. Algorithm BE-bel is described formally in
Figure 4.4. With the above derivation we showed that:

Theorem 4.1.1 Algorithm BE-Bel applied along any ordering that starts with X; com-
putes the belief P(Xi|e). It also computes the probability of evidence P(e) as the inverse

of the normalizing constant in the first bucket. O

The bucket’s operations for BE-bel. Processing a bucket requires the two types
of operations on the functions in the buckets, combinations and marginalization. The
combination operation in this case is a product, which generates a function whose scope
is the union of the scopes of the bucket’s functions. The marginalization operation, also
called elimination, is summation, summing out the bucket’s variable. The algorithm often
refered to as beeing a sum-product algorithm. Note that we refer to the variables that we
eliminate in a bucket as the bucket’s variable.

Let’s look at an example of both of these operations in a potential bucket of B assuming
it contains only two functions P(F|B, (), and P(B|A). These functions are displayed
in Figure 4.5. To take the product of the functions P(F|B,C) and P(B|A) we create a
function over F, B, C, A where for each tuple assignment, the function value is the product
of the respective entries in the input functions. To eliminate variable B by summation,
we sum the function generated by the product, over all values in Dg. We say that we
sum out variable B. The computation of both the product and summation operators are
depicted in Figure 4.6.

The implementing details of the algorithm to perform these operations might have a
significant impact on the performance. In particular, much depends on how the bucket’s
functions are represented. If, for example, the C'PT's are represented as matrices, then

we can exploit efficient matrix multiplication algorithms.

4.1.2 Complexity of BE-bel

Although BE-Bel can be applied along any ordering, its complexity varies considerably

across different orderings. Using ordering d; we recorded A functions on pairs of variables
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ALGORITHM BE-BEL

Input: A belief network B =< X,D,G,P >, an ordering d = ( 1, ...

output: The belief P(z;|e) and probability of evidence P(e)

1.

® > ot

Partition the input functions (CPTs) into buckety, ..., bucket,
as follows: for ¢ + n downto 1, put in bucket; all unplaced
functions mentioning ;. Put each observed variable in its bucket.
Denote by 1; the product of input functions in bucket;.
backward: for p < n downto 1 do

for all the functions vs,, As,, - .., As; in bucket, do
If (observed variable) X, = z, appears in bucket,,

assign X, = x, to each function in bucket, and then

put each resulting function in the bucket of the closest variable in its scope.

else,
S, < scope(,) UL, scope(N;) — {X,}
A= 2, U [T 2s,
add A, to the bucket of the latest variable in S,,
return P(e) = a = > ¢ ¥1 - [Lepucket, A

return: P(zyle) = L1 - [T, cpuoner, A

Figure 4.4: BE-bel: a sum-product bucket-elimination algorithm

B C F | P(F|B,C) A B | P(B|A)
false | false | true 0.1 Summer | false 0.2
true | false | true 0.9 Fall false 0.6
false | true | true 0.8 Winter | false 0.9
true | true | true 0.95 Spring | false 0.4

Figure 4.5: Examples of functions in the bucket of B

(©Rina Dechter 69

,Tp) ; evidence e




A B C F | f(A,B,C,F)=P(F|B,C)- P(B|A)
summer | false | false | true 0.2 x 0.1 =0.02
summer | false | true | true 0.2 x 0.8 =0.16

fall false | false | true 0.6 x 0.1 = 0.06

fall false | true | true 0.6 x 0.8 =0.46
winter | false | false | true 0.9 x 0.1 =0.09
winter | false | true | true 0.9 x 0.8 =0.72
spring | false | false | true 0.4 x 0.1 =0.04
spring | false | true | true 0.4 x 0.8 =0.32
summer | true | false | true 0.8 x 0.9 =0.72
summer | true | true | true 0.8 x 0.95 =0.76

fall true | false | true 0.4 x 0.9 =0.36
fall true | true | true 0.4 x 0.95 =0.38
winter | true | false | true 0.1 x 0.9 =0.09
winter | true | true | true 0.1 x 0.95 =0.095
spring | true | false | true 0.6 x 0.9 =0.42
spring | true | true | true 0.6 x 0.95 =0.57
A B F | XA, B, F)=> 5f(A,B,C,F)
summer | false | true 0.02+0.72 = 0.74
fall false | true 0.06 + 0.36 = 0.42
winter | false | true 0.09 +0.09 = 0.18
spring | false | true 0.04 + 0.42 = 0.46
summer | true | true 0.72 + 0.16 = 0.88
fall true | true 0.46 + 0.38 = 0.84
winter | true | true 0.72 + 0.095 = 0.815
spring | true | true 0.32 + 0.57 = 0.89

Figure 4.6: Processing the functions in the bucket of B
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Figure 4.7: Two orderings, d; (a) and dy (b) of our example moral graph. In (c) the
induced graph along ordering ds

only, while using ds we had to record functions on as many as four variables (see Bucketc
in Figure 4.3a). The arity (i.e., the scope size) of the function generated during processing
of a bucket equals the number of variables appearing in that processed bucket, excluding
the bucket’s variable itself. Since computing and recording a function of arity r is time
and space exponential in r we conclude that the complexity of the algorithm is dominated
by its largest scope bucket and it is therefore exponential in the size (number of variables)
of the bucket having the largest number of variables. The base of the exponent is bounded

by a variable’s domain size.

Fortunately, as was observed earlier for adaptive-consistency, the bucket sizes can be
easily predicted from the elimination process along the ordered graph. Consider the primal
graph of a given Bayesian network. (see chapter 2) This graph has a node for each variable
and any two variables appearing in the same C' PT' are connected. It is often called moral
graph in the context of Bayesian networks because it can be obtained by connecting the
parents of each node in the Bayesian directed graph and ignoring the arrows. We will
use moral graph and primal graph interchangeably in the context of Bayesian networks.
The moral graph of the network in Figure 2.4(a) is given in Figure 2.4(b). If we take this
moral graph and impose an ordering on its nodes, the induced-width of the ordered graph
of each nodes captures the number of variables which would be processed in that bucket.

We demonstrate this next.
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Example 4.1.2 Recall the definition of induced graph (Definition 3.1.7). The induced
graph of the moral graph in Figure 2.4b, relative to ordering d; = A,C, B, F,D,G is
depicted in Figure 4.7a. Along this ordering the induced ordered graph was not added
any edges over the original graph, since all the earlier neighbors of each node are already
connected. The induced width of this graph is 2. Indeed, in this case, the maximum
arity of functions recorded by the algorithm is 2. For ordering ds = A, F, D, C, B, G, the
ordered moral graph is depicted in Figure 4.7b and the induced graph is given in Figure
4.7c. In this ordering, the induced width is not the same as the width. For example, the
width of C' is initially 2, but its induced width is 3. The maximum induced width over

all the variables in this ordering is 4 which is the induced-width of this ordering. |

Theorem 4.1.3 (Complexity of BE-bel) Given a Byaesian network whose moral graph
1s G, let w* be its induced width of G along ordering d, k the maximum domain size and
r be the number of input CPTs. The time complexity of BE-bel is O(r - k*" 1) and its

space complexity is O(n - k¥").

Proof. During BE-bel, each bucket creates a A function which can be viewed as a message
that it sends to a parent bucket, down the ordering (recall that we process the variables
from last to first). Since to compute this function over w* variables the algorithm needs
to consider all the tuples defined on all the variables in the bucket, whose number is
bounded by w* + 1, the time to compute the function is bounded by k*"*! and it size is
bounded by £“". For each of these k"' tuple we need to compute its value by considering
information from each of the functions in the buckets. If r; is the number of the bucket’s
input messages and deg; is the number of messages it receives from its children, then the
computation of the bucket’s function is O((r; + deg; + 1)k* ™). Therefore, summing over
all the buckets, the algorithm’s computation is bounded by
Z(ri +deg; — 1) - k.

We can argue that ) deg; < n, when n is the number of variables, because only a
single function is generated in each bucket, and there are total of n buckets. Therefore
the total complexity can be bound by O((r +n) - k*"*1). Assuming r > n, this becomes
O(r - k¥ *1). The size of each \ message is O(k*"). Since the total number of A\ messages

is bounded by n, the total space complexity is O(n - k*"). O
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4.1.3 The impact of Observations

In this section we will see that observations, which are variable assignments, can have
two opposing effects on inference. One effect is of universal simplification and applies to
any graphical model, while the other introduces complexity but is specific to Bayesian

networks.

Evidence removes connectivity

The presence of observed variables, which we call evidence in the Bayesian network con-
text, is inherent to queries over probabilistic networks. From a computational perspective
evidence is just an assignments of values to a subset of the variables. It turns out that the
presence of such partial assignments can significantly simplify inference algorithms such
as bucket-elimination. In fact we will see that this property of variable instantiations, or
conditioning, as it is sometime called, is the basis for algorithms that combine search and
variable-elimination, to be discussed in future chapters.

We will show now that observed variables can be handled in a way that case reduce
computation. Take our belief network example with ordering d; and suppose we wish
to compute the belief in A, having observed B = by.  When the algorithm arrives at
that bucket, the bucket contains the three functions P(bla), Ap(b,a), and Ag(b, c), as well
as the observation B = by (see Figure 4.2 and add B = by to bucketg). Note that by
represent a specific value in the domain of B while b stands for an arbitrary value in its
domain.

The processing rule dictates computing Ag(a, c) = P(by|a)Ap(bo, a)Ar(bg, ¢). Namely,
generating and recording a two-dimensioned function. It would be more effective, however,
to apply the assignment by to each function in the bucket separately and then put the
individual resulting functions into lower buckets. In other words, we can generate A;(a) =
P(bola) and Ay(a) = Ap(bo, a), each of which has a single variable in its scope and will be
placed in bucket A, and Ar(bo, ¢), which will be placed in bucket C'. By doing so, we avoid
increasing the dimensionality of the recorded functions. In order to exploit this feature
we introduce a special rule for processing buckets with observations: the observed value
is assigned to each function in a bucket, and each function generated by this assignment

is moved to the appropriate lower bucket.
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Considering now ordering ds, bucketp contains P(bla), P(d|b,a), P(f|c,b), and B = by
(see Figure 4.3a). The special rule for processing buckets holding observations will place
the function P(bp|a) in bucketa, P(d|by,a) in bucketp, and P(f|c,bo) in bucketr. In
subsequent processing only one-dimensional functions will be recorded. We see therefore
that the presence of observations often reduces complexity: buckets of observed variables
are processed in linear time and their recorded functions do not create functions on new
subsets of variables.

Alternatively, we could just preprocess all the functions in which B appears and assign
it the value by. This will reduce those functions scope and remove variable B altogether.
We can then apply BE to the resulting pre-processed problem. Both methods will lead
to an identical performance, but using an explicit rule for observations during BE allows
for a more general and dynamic treatment. It can later be generalized by replacing
observations by more general constraints (see xxx).

In order to see the implication of the observation rule computationally, we can modify
the way we manipulate the ordered graph and will not add arcs among parents of ob-
served variables when computing the induced graph which will permit a tighter bound
on complexity. Adding arcs unnecessarily will results in loose complexity bounds. To

capture this refinement we use the notion of conditional induced graph.

Definition 4.1.4 (conditional induced-width) Given a graph G, the conditional in-
duced graph relative to ordering d and evidence variables E, denoted w(E), is generated,
processing the ordered graph from last to first, by connecting the earlier neighbors of unob-
served nodes only. The conditional induced width is the width of the conditional induced

graph, disregarding observed nodes.

For example, in Figure 4.8(a,b) we show the ordered moral graph and the induced
ordered moral graph of the graph in Figure 2.4. In Figure 4.8(c) the arcs connected to
the observed node B are marked by broken lines and are disregarded, resulting in the
conditional induced-graph given in Figure 4.8(d). Modifying the complexity in Theorem
4.1.3, we get that,

Theorem 4.1.5 Given a Bayesian network having n variables, algorithm BE-bel when
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Figure 4.8: Adjusted induced graph relative to observing B

using ordering d and evidence E = e, is time and space exponential in the conditional in-
duced width wj(E) of the network’s ordered moral graph. Specifically, The time complezity
is O(r - kP B+ and its space complexity is O(n - k*aF)), O

It is easy to see that the conditional induced-width is the induced-width obtained by
removing the evidence variables altogether. This means that the impact of evidence can
be accounted for before we commit to a particular variable orderings. Namely, we can
remove evidence nodes and their incident edges from the moral graph, and only then

compute an ordering whose induced-width is small.

Evidence creating connectivity; relevant subnetworks

We saw that observation can simplify computation. But, in Bayesian networks observation
can also complicate inference. Belief-updating for Bayesian networks can be restricted to
a subset of the network if the evidence and the query variables are concentrated in a
certain part of the graph. When there is no evidence, computing the belief of a variable
depends only on its non-descendant portion. The portion of the network which is relevant
to a query grows as we seek to determine the belief based on a larger evidence set.
This is because Bayesian networks functions convey local 1 probability distributions, and
summation over all arguments values of a probability function is the constant 1. If we
identify the portion of the network that is irrelevant, we can skip some buckets. For

example, if we use a topological ordering from root to leaves along the directed acyclic
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graph, (where parents precede their child nodes), and assuming that the queried variable is

the first in the ordering, we can identify skippable buckets dynamically during processing.

Proposition 4.1.6 Given a Bayesian network and a topological ordering Xy, ..., X,,, that
begins a query variable X, algorithm BE-bel, computing P(x1|e), can skip a bucket if dur-

ing processing the bucket contains no evidence variables and no newly computed messages.

Proof: If topological ordering is used, each bucket of a variable X contains initially at
most one function, P(X|pa(X)). Clearly, if there is neither evidence nor new functions

in the bucket the summation operation ) P(z|pa(X)) will yield the constant 1. O

Example 4.1.7 Consider again the belief network whose acyclic graph is given in Figure
2.4(a) and the ordering d; = A,C, B, F, D,G. Assume we want to update the belief in
variable A given evidence on F. Obviously the buckets of G and D can be skipped and
processing should start with bucketr. Once bucketrp is processed, the remaining buckets

in the ordered processing are not skippable. O

Alternatively, we can consider pruning the non-relevant portion of the Bayesian net-
work in advance, before committing to any processing ordering. The relevant subnetwork

is called ancestral subnetwork and is defined recursively as follows.

Definition 4.1.8 (ancestral graph) Given a Bayesian network’s directed graph G =
(X, E), and a query involving variables S, (including the evidence variables), the ancestral
graph of G, Gane, relative to S C X, includes all variables in S and if a node is in Ggpe,

its parents are also in Gape.

Example 4.1.9 Continuing with the example from Figure 2.4(a), and assuming we want
to assess the belief in A given evidence on F', the relevant ordered moral graph in Figure
2.4(a)(c) should be modified by deleting nodes D and G. The resulting graph has nodes
A, B, C' and F only. 0

Theorem 4.1.10 Given a Bayesian B =< X,D,G,P > and a query P(Yl|e), when
Y C X and E C X is the evidence variable set, we can compute P(Y |e) by considering

only the ancestral Bayesian network relative to Y U E.

Proof: The proof is left as an exercise. "
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4.2 Bucket elimination for optimization tasks

Having examined the task of belief-updating using the algorithmic framework of bucket
elimination, we will now focus on another primary query we often have related to a
Bayesian network, that is, finding the most probable explanation (mpe) for the evidence.
Belief-updating answers the question “what is the likelihood of a variable given the ob-
served data?” Answering that question, however, is often not enough; we want to be able
to find the most likely explanation for the data we encounter. This is an optimization
problem, and while we pose the problem here on a probabilistic network, it is a problem
that is representative of optimization tasks on many types of graphical model.

The most probable explanation (mpe) task appears in numerous applications. Exam-
ples range from diagnosis and design of probabilistic codes to haplotype recognition in
the context of family trees, and medical and circuit diagnosis. For example, given data
on clinical findings, it may suggest the most likely disease a patient is suffering from. In
decoding, the task is to identify the most likely input message which was transmitted over
a noisy channel, given the observed output. Although the relevant task here is finding
the most likely assignment over a subset of hypothesis variables which would correspond
to a map query. However the mpe is close enough and is often used in applications (
see [1] for more examples). Finally the queries of mpe/map (see Chapter 2) drive most
of the learning algorithms for graphical model [37]. Our focus here is on algorithms for

answering such queries on a given graphical model.

4.2.1 A Bucket-Elimination Algorithm for mpe

Given a Bayesian network B =< X, D, G, P >, the mpe task seeks an assignmnet to all
the variables excluding the evidence variables that has the maximal probability given the
evidence. Namely the task is to find a full instantiation 7° such that P(z°) = max, P(Z, ),
where denoting # = (x1,...,x,), P(T,e) = [[, P(2;,€|2ps,). (remember the x,,, is the
assignments to x restricted to the variables in the parent set of X;.) Let e be a set of
observations on a subset of the variables F. Given a variable ordering d = Xi, ..., X,,,
we can accomplish this task by performing maximization operation, variable by variable,
along the ordering from last to first (i.e., right to left), migrating to the left all CPTs that
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do not mention the maximizing variable. We will derive this algorithm in a similar way
to that in which we derived BE-bel. Using the notation defined earlier for operations on

functions, our goal is to find M, s.t.

M = max P(Z,,e) = max maXHP T, €|Tpq;)

Tn T(n_1) Tn

= max H P(x;, e|Tpq;) -H}caXP(a:n,e|xpan) H P(x;, e|Tp;)
n

Tn—1
X, eX—-Fy Xi€chn

= max H P 217“€|37pa ) (xSn)

Tn—1

X,€EX—F,
where

hn(zs,) = maXP (@n, €] Tpa,,) H P(x;, e|Tpa,;)
X;Echn,

and S, are the variables in the scopes of the local functions having X, in their scope
and ch,, are the child variables of X,,. Clearly, the algebraic manipulation of the above
expressions is the same as the algebraic manipulation for belief updating where summation
is replaced by maximization. Consequently, the bucket-elimination procedure BE-mpe is
identical to BE-bel except for this change.
Given ordering X7, ..., X,,, the conditional probability tables are partitioned as before.
To process each bucket, we multiply all the bucket’s functions, which in this case can
be regarded as cost functions denoted hi, ..., h; and defined over some scopes and then
eliminate the bucket’s variable by maximization. If we distinguish again between the
original function in the bucket denoted v, and the messages which in this case will be
denoted by h, the generated function in the bucket of X, is b, : S, = R, h, = maxx, 1,
J_, hi, where S, = scope(b,) U Usscope(h;) — X,. The function generated by a bucket is
placed in the bucket of its largest-index variable in S,. If the function is a constant, we
can place it directly in the first bucket; constant functions are not necessary to determine
the exact mpe value.
We define the function 2° : Ds,_x, — Dx, by 29(7s,-x,) = argmax,,h,(xs,), which
provides the optimizing assignment to X, given the assignment to the variables in the

function’s scope. This function can be recorded and placed in the bucket of X, *.

! This step is optional; the maximizing values can be recomputed from the information in each bucket.
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The bucket-processing continues with the next variable, proceeding from the last to
the first variable. Once all buckets are processed, the mpe value, M, can be extracted as
the maximizing product of functions in the first bucket. At this point we know the mpe
value but we have not generated an optimizing tuple. This requires a forward phase, which
was not needed when we computed beliefs or the probability of evidence. The algorithm
initiates a forward phase to compute an mpe tuple by assigning the variables along the
ordering from X; to X,,, consulting the information recorded in each bucket. Specifically,
the value z; is selected to maximize the product in bucket; given the partial assignment

x = (x1,...,2;_1). The algorithm is presented in Figure 4.14. Observed variables are
handled as in BE-bel.

Example 4.2.1 Consider again the belief network in Figure 2.4(a). Given the ordering
d=A,C,B,F,D,G and the evidence GG = 1, we process variables from last to first once
partitioning the conditional probability functions into buckets, as was shown in Figure 4.1.
To process G, assign G = 1, get ha(f) = P(G = 1|f), and place the result in bucketr. The
function G°(f) = argmax hg(f) may be computed and placed in bucketq as well. In this
case it is just G°(f) = 1, namely, the value of G yielding the maximum cost extension into
G is the constant G = 1. Process bucketp by computing hp(b,a) = maxy P(d|b,a) and
put the result in bucketp. Bucket F, next to be processed, now contains two functions:
P(f|b,c) and hg(f). Compute hp(b,c) = maxy p(f|b,c) - ha(f), and place the resulting
function in bucketp. To process bucketg, we record the function hp(a,c) = max, P(bla) -
hp(b,a)-hgr(b,c) and place it in bucketc. To process C, (i.e., to eliminate C') we compute
hco(a) = max. P(cla) - hp(a,c) and place it in bucket 4. Finally, the mpe value given in
bucket 4, M = max, P(a)-hc(a), is determined. Next the mpe tuple is generated by going
forward through the buckets. First, the value a° satisfying a® = argmaz,P(a)hc(a) is
selected. Subsequently the value of C, ® = argmaz.P(c|a®)hp(a’, ¢) is determined. Next
b0 = argmaxy P(bla®)hp(b, a®)hp (b, ) is selected, and so on. A schematic computation

is the same as in Figure 4.2 where A is simply replaced by h. |

The backward process can be viewed as a compilation phase in which we compile in-
formation regarding the most probable extension (cost to go) of partial tuples to variables

higher in the ordering.
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Algorithm BE-mpe

Input: A belief network B =< X,D,G,P >, where P = {Py,...,P,}; an
ordering of the variables, d = X1, ..., X,,; observations e.

Output: The most probable assignment given the evidence.

1. Initialize: Generate an ordered partition of the conditional probability
function, buckety, ..., bucket,, where bucket; contains all functions whose
highest variable is X;. Put each observed variable in its bucket. Let 1); be the

input function in a bucket and let h; be the messages in the bucket.

2. Backward: For p <— n downto 1, do

for all the functions hy, ho, ..., h; in bucket,, do

e If (observed variable) bucket, contains X, = x,, assign X, = x, to each

function and put each in appropriate bucket.

o else, S, « U, scope(h;) U scope(ih,) — {X,}. Generate functions h, <
maxy, ¥y, - IT_,h; Add h, to the bucket of the largest-index variable in S,.

3. Forward:
e Generate the mpe cost by maximizing over X7, the product in bucket;.

e (generate an mpe tuple)
For i = 1 to n along d do: Given ;1 = (x1,...,2;_1) Choose x; =

aTgmaxXi@Di . H{hje bucketi}h’j(fi—l)

Figure 4.9: Algorithm BE-mpe
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As in the case of belief updating, the complexity of BE-mpe is bounded exponentially
by the dimension of the recorded functions, and those functions are bounded by the

induced width w}(E) of the ordered moral graph conditioned on the evidence variables,
E.

Theorem 4.2.2 Algorithm BE-mpe is complete for the mpe task. Its time and space
complexity are O(r - ka1 and O(n - k¥aE)), respectively, where n is the number of
variables, k bound the domain size and wj(E) is the induced width of the ordered moral

graph along d, conditioned on the evidence E. O

4.2.2 An Elimination Algorithm for Map

The maximum a’posteriori hypothesis (map)? task is a generalization of both mpe and
belief updating. It asks for the maximal probability associated with a subset of hypothesis
variables and is likewise widely applicable especially for diagnosis tasks. Belief updating
is the special case where the hypothesis variables are just single variables. The mpe query
is the special case when the hypothesis variables are all the unobserved variables. We will
see that since it is a mixture of the previous two tasks, in its bucket-elimination algorithm
some of the variables are eliminated by summation while others by maximization.

Given a Bayesian network, a subset of hypothesized variables A = {Aq, ..., Ax}, and
some evidence e, the problem is to find an assignment to A having maximum probability
given the evidence compared with all other assignments to A. Namely, the task is to
find a® = argmax,, . 4, P(a1, ..., ax, €) (see also Definition 2.4.3). So, we wish to compute
maxg, P(ay,...,ax, €) = maxg, Zfzﬂ [1, P(z;,€e|xpy,) where T = (a1, ..., Gk, Tpy1, o) Tn)-
Algorithm BE-map in Figure 4.10 considers only orderings in which the hypothesized
variables start the ordering because summation should be applied first to the subset of
variables which are in X — A, and subsequently maximization is applied to the variables
in A. Since summation and maximization cannot be permuted we have to be restricted in
the orderings (more on this shortly). Like BE-mpe, the algorithm has a backward phase
and a forward phase, but the forward phase extends to the hypothesized variables only.

Because only restricted orderings are allowed, the algorithm may be forced to have far

2sometime map is meant to refer to the mpe, and the map task is called marginal map.
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higher induced-width than would otherwise be allowed. We can partially alleviate this
orderings restriction and allow maximization and summations to be interleaved as long

as some constraints are obeyed. (We will leave this as an exercise.)

Theorem 4.2.3 Algorithm BE-map is complete for the map task for orderings started
by the hypothesis variables. Its time and space complexity are are O(r - k¥a®)T1) and
O(n - k“’é(E)), respectively, where n is the number of variables in graph, k bounds the
domain size and w}(E) is the conditioned induced width of its moral graph along d. (prove

as an exercise.) O

4.3 Bucket-elimination for Markov Random Fields

Recalling Definition ?? of a Markov network (presented below for convenience), it is easy
to see that the bucket-elimination algorithms we presented for Bayesian networks are
immediately applicable to all the main queries over Markov networks. We only need
to do is replace the input conditional probabilities through which a Bayesian network
is specified by the collection of local functions denoted by (.) which are also know as
potentials or factors. The query of computing posterior marginals is accomplished by
BE-bel, computing mpe and map are accomplished by BE-mpe and BE-map respectively.
The task of computing Z, the partition function, is identical algorithmically to the task
of computing the probability of the evidence. Therefore BE-evidence is applicable.

If the Markov network is specified by the exponential representation, then the com-
bination function is summation rather than multiplication, but everything else stays the
same. This is also demonstrated in the following subsection. In an exercise we ask that

you will apply, BE-evidence to the Markov network in Figure 2.5.

Definition 4.3.1 (Markov Networks) A Markov network is a graphical model M = (
X, D, H []) where H= {11, ..., ¥} is a set of potential functions where each potential
¥; 18 a non-negative real-valued function defined over a scope of variables S;. The Markov

network represents a global joint distribution over the variables X given by:

P = [[ut® . 2= [Ju)

z =1
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Algorithm BE-map

Input: A Bayesian network B =< X, D, G,P > P = {P,,..., P,}; a subset of
hypothesis variables A = {4, ..., Ax}; an ordering of the variables, d, in which
the A’s are first in the ordering; observations e. ; is the input function in the
bucket of Xj.

Output: A most probable assignment A = a.

1. Initialize: Generate an ordered partition of the conditional probability func-
tions, buckety, ..., bucket,, where bucket; contains all functions whose highest
variable is X;.

2. Backwards For p < n downto 1, do

for all the message functions (i, B, ..., 5, in bucket, and for v, do

e If (observed variable) bucket, contains the observation X, = z,, assign

X, = z, to each 3, and 9, and put each in appropriate bucket.

e else, S, « scope(1,) U ULI scope(B;) — {X,}. If X, is not in A, then
By <= ZXP Yp - ng1ﬁz‘§
else, (X, € A), B, < maxx, ¥, - [[]_; B
Place 3, in the bucket of the largest-index variable in S,.

3. Forward: Assign values, in the ordering d = Ay, ..., A, using the information

recorded in each bucket in a similar way to the forward pass in BE-mpe.

Figure 4.10: Algorithm BE-map
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where the normalizing constant Z is referred to as the partition function.

4.4 Cost Networks and Dynamic Programming

As we mentioned at the outset, bucket-elimination algorithms are variations of a very well
known class of optimization algorithms known as Dynamic Programming [6, 8]. Here we
make the connection explicit, observing that BE-mpe is a dynamic programming scheme
with some simple transformations.

That BE-mpe is dynamic programming becomes apparent once we transform the mpe’s
cost function, which has a product combination operator, into the traditional additive

combination operator using the log function. For example,
Pla,b,c,d, f,g) = P(a)P(bla)P(cla)P(f|b. ) P(dla,b) P(g] )
becomes
C(a,b,c,d,e) = —logP = C(a) + C(b,a) + C(c,a) + C(f,b,c) + C(d,a,b) + C(g, )

where each C; = —logP;.

The general dynamic programming algorithm is defined over cost networks (see discus-
sion in Section 2.3). As we showed earlier a cost network is a tuple C =< X, D, C,>_ >,
where X = {Xj, ..., X,,} are variables over domains D = {Dy, ..., D, }, C is a set of real-
valued cost functions C1, ..., C}, defined over scopes C; Ny Dscop(c;) — RT. The task
is to find an assignment to the variables that minimizes ), C;.

A straightforward elimination process similar to that of BE-mpe, (where the product is
replaced by summation and maximization by minimization) yields the non-serial dynamic
programming algorithm [8]. The algorithm, called BE-opt, is given in Figure 4.11. A
schematic execution of our example along ordering d = G, A, F, D,C, B is depicted in

Figure 4.12. And, not surprisingly, we can show that

Theorem 4.4.1 Given a cost network C =< X, D,C,>" >, BE-opt is complete for find-
ing an optimal cost solution. Its time and space complexity are O(r - kaB)+1) and
O(n - kWaB)) respectively, where n is the number of variables in graph, k bounds the

domain size and w}(E) is the conditioned induced width of its moral graph along d. O
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Algorithm BE-opt

Input: A cost network C' = {C1,...,C}}; ordering d; assignment e over variables F.
Output: A minimal cost assignment.

1. Initialize: Partition the cost components into buckets. Define 1; as the sum of the
input cost functions in bucket X;.

2. Process buckets from p < n downto 1

For 1, and the cost messages hq, ho, ..., h; in bucket,, do:

o If (observed variable) X, = z,, assign X, = z,, to 1; and to each h; and put in
buckets.

e Else, (sum and minimize)
h? <= minx, (Yp + Zgzl hi).
Place hP to its designated bucket.

3. Forward: Assign minimizing values in ordering d, consulting functions in each

bucket, as in BE-mpe

Figure 4.11: Dynamic programming as BE-opt

min )
Bucket B: C(A,B,D) C(B,F) C(B,C) B
Bucket C: C(A,C) C(C,F) h®(A,D,C,F) C
Bucket D: hS(A,D,E) D
Bucket F: C(F,G) hP(AF) F
Bucket A: hE(A,G) A
|
Bucket G: h4(G) G
Width w=4
OPT Induced width w*=4

Figure 4.12: Schematic execution of BE-Opt
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Consulting again the various classes of cost networks elaborated on in Section 2.3,

algorithm, BE-opt is applicable to all including weighted-csps, max-csps and max-sat.

4.5 Mixed Networks

The last class of graphical models we will address is mixed network which were dis-
cussed and defined in Section 2.5. To refresh, these models allows the explicit represen-
tation of both probabilistic information and constraints. Therefor we assume that the
mixed network is defined by a pair of a Bayesian network and a constraint network. This
pair express a conditional probability distribution over all the variables which requires
that all the assignments that have non-zero probability will satisfy all the constraints.

We will focus only on the task that is unique for this graphical model, the constraint
probability evaluation (CPE) which can also stand for CNF probability evaluation. For
example, if we have both a Bayesian network and a cnf formula ¢, we want to compute
P(x € ¢).

Given a mixed network Mg, where ¢ is a CNF formula defined on a subset of
variables @), the CPFE task is to compute: (remember moels(y) are the assignments to

all variables satisfying ¢. Z¢ is the restriction of T to the variables in Q).

Ps(p) = Z P(zq).

TgeEmodels(p)

Using the belief network product form we get:

Plp)= >, JIPGilem.).

{z|zgemodels(p)} =1

We assume that X, is one of the CNF variables, and we separate the summation over X,
and the rest of the variables X — {X,,} as usual. We denote by 7, the set of all clauses
that are defined on X,, and by [, all the rest of the clauses. The scope of v, is denoted
by @, and we define S,, = X — @, and .9, is the set of all variables in the scopes of CPT's

3* can be skipped on a first reading
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and clauses that are defined over X,,. We get:

Pe) = > > [T P@ilap,).

{Zn-1|Zs,, €models(Bn)} {zn|Zq, Emodels(yn)} i=1

Denoting by t,, the set of indices of functions in the product that do not mention X,, and
by I, ={1,...,n}\ t, we get:

Ply) = . e > II&

{Zn—_1|Zs,, €models(Bn)} JE€tn {zn|Zq,, €models(yn)} j€lIn

Therefore:
P(p) = > (1T P -2,
{Zn-1|Ts, €EMmodels(Bn)} J€tn

where \X" is defined over S,, — {X,}, by

A = > 117 (4.8)

{znl|Zq,, €models(yn)} j€In

The case of observed variables When X, is observed, that is constrained by a literal,
the summation operation reduces to assigning the observed value to each of its CPTs and
to each of the relevant clauses. In this case Equation (4.8) becomes (assume X,, = x,, and

P_, is the function instantiated by assigning z,, to X,,):

xr =T P if 5. € M A (X = 20). (4.9)
JEln
Otherwise, A\** = 0. Since Zq, satisfies v, A (X,, = z,,) only if Zg,_x, satisfies y*» =

resolve(vn, (X, = z,)), we get:

=11 Piis, if Tg.-x. € m(ym). (4.10)
J€ln
Therefore, we can extend the case of observed variable in a natural way: CPT's are assigned
the observed value as usual while clauses are individually resolved with the unit clause
(X, = x,), and both are moved to appropriate lower buckets.
Therefore, in the bucket of X,, we should compute A*X». We need to place all CPTs and

clauses mentioning X, and then compute the function in Equation (4.8). The computation
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Algorithm 1: ELIM-CPE
Input: A belief network B = { P, ..., P,}; a CNF formula on k propositions

¢ = {ay,...a,, } defined over k propositions; an ordering of the variables,
d={Xy,..., X,}.

Output: The belief P(¢p).

1 Place buckets with unit clauses last in the ordering (to be processed first).

// Initialize

Partition B and ¢ into bucket, ..., bucket,, where bucket; contains all the CPTs

and clauses whose highest variable is X;.

Put each observed variable into its appropriate bucket. (We denote probabilistic

functions by As and clauses by as).

2 for p < n downto 1 do // Backward
L Let A,...,A; be the functions and a4, ..., a, be the clauses in bucket,

Process-bucket,(d, (A1,...,Aj),(a1,...,a;))

3 return P(p) as the result of processing bucket;.

of the rest of the expression proceeds with X,,_; in the same manner. This yields algorithm
Elim-cpe (described in Algorithm 1 and Procedure Process-bucket,). The elimination
operation is summation for the current query. Thus, for every ordering of the propositions,
once all the CPTs and clauses are partitioned, we process the buckets from last to first,
in each applying the following operation. Let Aq,...\; be the probabilistic functions in
bucket P and o, ..o, be the clauses. The algorithm computes a new function A’ over
S, = scope(Ay, ...\t) U scope(ay, ...a,) — {X,} defined by:

AP = > IR

{zp|Zgemodels(ay,...,ar)} J
Example 4.5.1 Consider the belief network in Figure 4.13, which is similar to the one in
Figure 2.4, and the query ¢ = (BVC)A(GV D)A(=DV=B). The initial partitioning into
buckets along the ordering d = A,C, B, D, F, G, as well as the output buckets are given
in Figure 4.14. The initial partitioning can be gleaned from Figure 4.15. We compute:

In bucket G:  A9(f,d) = 3 51 pvactruey P91 )
In bucket F': /\F(b, c,d) = Zf P(flb, C))\G(ﬁ d)
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Procedure Process-bucket, (>, (A1,...,A\), (a1,..., ;) )

if bucket, contains evidence X, = x, then
1. Assign X, = z, to each \; and put each resulting function in the bucket of

its latest variable

2. Resolve each a; with the unit clause, put non-tautology resolvents in the
buckets of their latest variable and move any bucket with unit clause to
top of processing

else

Add AP to the bucket of the latest variable in S, where
Sp = Uiy scope(Xi)) Uiy scope(ai) — { X}

(&) A
/ VAR
/

@

(a) Directed acyclic graph (b) Moral
graph

Figure 4.13: Belief network

In bucket D:  AP(a,b,c) = > (dmdv—b=true) (dla, LN (b, ¢, d)

In bucket B:  MB(a,c) = D (blpve=true) P(bla)\P(a, b, c)\F (b, c)

In bucket C:  X%(a) = >, P(cla)A\P(a,c)

In bucket A: M =3 P(a)\(a)

P(p) = 2. O

For example \9(f,d = 0) = P(g = 1|f), because if D = 0 g must get the value “1”,
while \9(f,d =1) = P(g = 0|f) + P(g = 1|f). In summary,

Theorem 4.5.2 (Correctness and Completeness) Algorithm Elim-cpe is sound and
complete for the CPFE task.
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Bucket G: P(G|F.D) (GLD) Bucket G: P(G|F.D) (GLD) -G

o e

Bucket F: P(F|B,C) A°(F,D) Bucket D: P(D|AB) (- DO=B), A°(F,D) * D

/i

Bucket D: P(D|AB) (~DC-B) ™ A'(B,C,D) Bucket B: P(BJA),P(FIB.C), (BLC)[™ ’°(AB)[*-B
Bucket B: P(B|A)(¥C)\:1D(»A/B,C) Bucket C: [ P(C|A)
|/
Bucket C: P(C|A)\AAB(A,C) Bucket F: \ A°(F)
Bucket A: P(A)\/‘I}A) BucketA:  AP(A)  AZ(A) TAC(A) AN

P(#) P(¢)

Figure 4.14: Execution of ELIM-CPE Figure 4.15: Execution of ELIM-CPE

(evidence =G)

Notice that algorithm Elim-cpe also includes a unit resolution step whenever possible
(see Procedure Process-bucket,) and a dynamic reordering of the buckets that prefers
processing buckets that include unit clauses. This may have a significant impact on
efficiency because treating observations (namely unit clauses) in a special way can avoid

creating new dependencies as we already observed.

Example 4.5.3 Let’s now extend the example by adding =G to the query. This will place
=G in the bucket of G. When processing bucket G, unit resolution creates the unit clause
D, which is then placed in bucket D. Next, processing bucket F' creates a probabilistic
function on the two variables B and C'. Processing bucket D that now contains a unit
clause will assign the value D to the CPT in that bucket and apply unit resolution,
generating the unit clause =B that is placed in bucket B. Subsequently, in bucket B we
can apply unit resolution again, generating C' placed in bucket C, and so on. In other
words, aside from bucket F', we were able to process all buckets as observed buckets,
by propagating the observations. (See Figure 4.15.) To incorporate dynamic variable
ordering, after processing bucket GG, we move bucket D to the top of the processing list
(since it has a unit clause). Then, following its processing, we process bucket B and then
bucket C, then F, and finally A. 0

Since unit resolution increases the number of buckets having unit clauses, and since
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those are processed in linear time, it can improve performance substantially. Such buck-
ets can be identified a priori by applying unit resolution on the CNF formula or arc-
consistency on the constraint expression. In general, any level of resolution can be applied
in each bucket. This can yield stronger CNF expressions in each bucket and may help

improve the computation of the probabilistic functions.

4.6 The General Bucket Elimination

We now summarize and generalize the bucket elimination algorithm using the two oper-
ators of combination and marginalization. As defined in Chapter 2, the general task can
be defined over a graphical model M = (X, D, F,®), where: X = {X3,..., X,,} is a set
of variables having domain of values D = {Dy,...,D,} and F = {fi,..., fx} is a set of
functions, where each f; is defined over S; = scope(f;). Given a function h and given
Y C scope(h), the (generalized) projection operator |y h is defined by enumeration as
Uy h € {maxs_yh,ming_yh,ls_yh,) s \ h} and the (generalized) combination opera-
tor ®;f; defined over U = U,scope(f;), ®§:1fj € {H?Zlfj, 2?21 fi» ™ f;}. All queries
require computing {y ®7_; f;. Such problems can be solved by a general bucket-elimination
algorithm stated in Figure 4.16. For example, BE-bel is obtained when {y= )  and
®; = II;, BE-mpe is obtained when |}y = maxg_y and ®; = 11, and adaptive consistency
corresponds to {y= mg_y and ®; =X;. Similarly, Fourier elimination and directional

resolution can be shown to be expressible in terms of such operators.

4.7 Combining Elimination and Conditioning

In this section we temporarily departure from inference algorithm and have a glimpse
into a search scheme via the cutset-conditioning idea. Search methods will be presented
in details later on. It is natural to mention the idea of search now by focusing on the
notion of observations which simplify inference (section 4.1.3). Specifically, we observed
that when some variables are assigned, connectivity in the graph reduces yielding saving in
computation. The magnitude of saving is reflected through the conditioned induced-graph.

Cutset-conditioning is a scheme that exploits this property in a systematic way. We
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Algorithm General bucket-elimination (GBE)

Input: A set of functions F' = {f1,..., fn}, an ordering of the variables,
d=Xq,..,.X,; Y C.

Output: A new compiled set of functions

from which the query |y ®], f; can be derived in linear time.

1. Initialize: Generate an ordered partition of the functions into
buckety, ..., bucket,, where bucket; contains all the functions whose highest
variable in their scope is X;. An input function in each bucket ;.

2. Backward: For p < n downto 1, do

for all the functions ¥, A1, Ag, ..., A; in bucket,, do

e If (observed variable) X, = z, appears in bucket,, assign X, = z, in v,

and to each \; and put each resulting function in appropriate bucket.

e else, S, « (ngl scope(N;)) U scope(vy) — {Xp}. Generate A, =g,
Wy ®§:1 A; and add A, to the largest-index variable in S,.

3. Return: all the functions in each bucket.

Figure 4.16: Algorithm bucket-elimination
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ALGORITHM VEC-EVIDENCE

Input: A belief network B =< X, D,G,P >, an ordering d =
( x1,...,x,) ; evidence e over E, a subset C' of conditioned vari-
ables;
output: The probability of evidence P(e)
Initialize: A\ = 0.
1. For every assignment C' = ¢, do
e )\ < The output of BE-bel with ¢ U e as observations.
e )\ < A+ \;. (update the sum).

2. Return P(e) = a- A (« is a normalization constant. )

Figure 4.17: Algorithm vec-evidence

can select a subset of variables, which we call cutset, assign them values (i.e., condition on
them), solve the conditioned problem by an inference algorithm such as BE, and repeat
this process for all assignments to the cutset. The cutset can be explored by brute-force
enumeration of all its assignments. We give a highlevel description of the algorithm, called
Variable elimination and Conditioning or V EC for short in Figure 4.17.

However, the enumeration process can be done more efficiently using a search over
the tree of all variables assignments. In particular, using depth-first-search (dfs) the

assignments to the cutset variables can be enumerated in linear space only.

In the extreme, if we condition on all the variables (namely the custet is the whole set)
we will get a brute-force dfs search that traverses the full search-tree and accumulates the
appropriate sums of probabilities. For example, we can compute expression 4.11 below
for the probability of evidence in the network of Figure 2.4 by traversing the search-tree

in Figure 4.18 along the ordering, from first variable to last variable.

P(A=a)= ) P(glf)P(f|b,c)P(d|a,b)P(cla)P(bla)P(a)

c7b7f7d7g

— P(0) Y P() 3 Pl Y PUIB O Y Pl ) S Pls), (@D
c b f d g
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P(d=1]b,a)P(g=0|f=0)
P(d=1]b,a)P(g=0|f=1)

P(d=1|b,a)P(g=0|f=0)

P(d=1]b,a)P(g=0|f=1)

Figure 4.18: probability tree

The idea of cutset-conditioning search however, is to limit search to only a subset of
variables: to the cutset variables. Let C' be a cutset C' C X, and V = X — C. (as usual,

we denote by v an assignment to V' and by ¢ an assignment to C.) Obviously,

P(e) = ZP(:c,e) = Z Z P(c,v,e) = ZHP(xi\xm“ c,v,e)
@ c€D¢ veEDy co i
For every C' = ¢, we can compute ) |, P(v, ¢, e) using Bucket-Elimination over variables V/,
while treating the conditioned variables, C', as observed variables. This basic computation
will be enumerated for all value combinations of the conditioned variables, and the sum
is accumulated (see the algorithm in Figure 4.17).

Clearly,

Theorem 4.7.1 Algorithm VEC-bel is sound and complete for computing the belief of
the first variable and the probability of evidence.

Given an assignment C' = ¢, the time and space complexity of computing the condi-
tioned probability by BE is bounded exponentially by the induced-width of the ordered
moral graph along ordering d conditioned for both observed (E) and conditioned (C)
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nodes, (namely when both C and E are removed from the graph). This parameter is
denoted by wi(E U C).

Theorem 4.7.2 (complexity) Given a set of conditioning variables, C', the space com-
plexity of algorithm VEC-bel is O(n-k™a(CYE) “while its time complexity is O(n-kWalEYCFICD)
O

Proof: see exercises |

If, removing the variables F U C' yields a cycle-free graph, we call C' a cycle-cutset.
Recall that in this case the conditioned induced-width is 1, and therefore the remaining
subproblem can be solved efficiently by BE. This specific case yields the cycle-cutset

algorithm [17], or loop-cutset algorithm [43] which we will discuss in detail later.

Definition 4.7.3 (cycle-cutset) Given an undirected graph G a cycle-cutset is a subset

of the nodes that breaks all its cycles. Namely, when removed, the graph has no cycles.
Theorem 4.7.2 calls for a secondary optimization task on graphs:

Definition 4.7.4 (Find a minimal w-cutset) Given a graph G = (V, E) and a con-
stant r, find a smallest subset of nodes C,, such that G/, the subgraph of G restricted to

V — Cy, has induced-width less than or equal r.

Finding a minimal r-cutset, for any r is known to be hard.

4.8 Summary and Bibliographical Notes

In the last two chapters, we showed how the bucket-elimination framework can be used
to unify variable-elimination algorithms for both deterministic and probabilistic graphical
models The chapters described the bucket-elimination framework which unifies variable-
elimination algorithms deterministic and probabilistic reasoning as well as for optimiza-
tion tasks. The algorithms take advantage of the structure of the graph. Most bucket-
elimination algorithms* are time and space exponential in the induced-width of the un-

derlying dependency primal graph of the problem.

4all, except Fourier algorithm.
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The chapter is based on Dechter’s Bucket-elimination algorithm that appeared in [19]
and [20]. Among the early variable elimination algorithms we find the peeling algo-
rithm for genetic trees [13], Zhang and Poole’s VE1 algorithm [58] and SPI algorithm by
D’Ambrosio et.al., [46] which preceded both elim-bel and VE1 and provided the principle
ideas in the context of belief updating. Decimation algorithms in statistical physics are
also related and were applied to Boltzmann trees [50].

In [45] the connection between optimization and constraint satisfaction and its re-
lationship to dynamic programming is explicated. In the work of [41, 53] and later in
[11] an axiomatic framework that characterize tasks that can be solved polynomially over
hyper-trees, is introduced. functions, and satisty a certain set of axioms.

The axiomatic framework [53] was shown to capture optimization tasks, inference
problems in probabilistic reasoning, as well as constraint satisfaction. Indeed, the tasks
considered in this paper can be expressed using operators obeying those axioms and there-
fore their solution by tree-clustering methods follows. Since, as shown in [24] and here,
tree-clustering and bucket elimination schemes are closely related, tasks that fall within
the axiomatic framework [53] can be accomplished by bucket elimination algorithms as
well. In [11] a different axiomatic scheme is presented using semi-ring structures showing
that impotent semi-rings characterize the applicability of constraint propagation algo-

rithms. Most of the tasks considered here do not belong to this class.

4.9 Exercises

1. Consider the Markov network in Figure 2.5.
(a) Show schematically how you compute the partition function of this network
using BE-evidence.

(b) Assume that you use exponential representation. Show what will be the spec-

ification of this network using exponential notation
(c) Compute th empe using the exponential representation

(d) How would you compute the partition function with that representation as-

suming that variable E is assigned the value 0.
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2. Consider the Bayesian network in Figure 2.4(a). What porion of the Bayesian
network do you need to consider to compute the belief given evidence 1. A =0, 2.
D=13.G=0,4. D=1,G=0.

3. Prove Theorem 4.1.10.

4. Perform the numerical computation fully of the example of 4.2.1. Assume the ev-
idence is G = 1. Find the mpe value and the corresponding assignment along the

order of variables specified.
5. Prove the completeness of Algorithm BE-map. Namely prove Theorem ?77.

6. In Algorithm BE-map (Figure 4.10), the ordering of the variables is restricted so
that the hypothesis variables A C X appear first in the ordering and therefore
process last by BE-mao. Devise a more general constraints of the feasible orderings
for which the algorithm would still be complete. Namely for which it will provide

the exact map value and map assignment.

7. . Cost networks are defined by ... define a bucket elimination algorithm that finds
the optimal solution for a const network. Prove the correctness of your algorithm

and analyze its complexity.

8. (conditioning) Consider the following belief network and assume we want to compute

the probability of Z = a. Describe your algorithm and analyze its complexity.
9. A question on irrelevant subnetworks

10. Prove the complexity of Algorithm V EC — evidence (see Theorem 4.7.2).
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Chapter 5

The Graphs of Graphical Models

As we saw, and as we will see throughout the book, the structure of graphical models can
be described by graphs that capture dependencies and independencies in the knowledge-
base. These graphs are useful because they convey information regarding the interaction
between variables and allow efficient query processing. In this chapter we provide a general
overview of the graph properties that are relevant to the algorithms that we encounter.
We will focus on a graph parameter called induced-width or treewidth and cycle-cutset
decomposition that captures well the complexity of reasoning algorithms for graphical
models.

Although we already assumed familiarity with the notion of a graph, we take the

opportunity to define it formally now.

Definition 5.0.1 (Directed and undirected graphs) A directed graph is a pair G =
{V.E}, where V = {Xy,...,X,} is a set of vertices, and E = {(X;, X;)|X;, X; € V} is
the set of edges (arcs). If (X;,X;) € E, we say that X; points to X;. The degree of a
variable is the number of arcs incident to it. For each variable X;, pa(X;) or pa;, is the
set of variables pointing to X; in G, while the set of child vertices of X;, denoted ch(X;),
comprises the variables that X; points to. The family of X;, F;, includes X; and its parent
variables. A directed graph is acyclic if it has no directed cycles. An undirected graph
1s defined similarly to a directed graph, but there is no directionality associated with the

edges.
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A graphical model can be represented by a primal graph.

Definition 5.0.2 (primal graph) The primal graph of a graphical model is an undi-
rected graph that has variables as its vertices and an edge connects any two variables that

appear in the scope of the same function.

The absence of an arc between two nodes indicates that there is no direct function
specified between the corresponding variables. We observed earlier primal graphs for a
variety of graphical models depicting both constraints and probabilistic functions.

The primal graph (also called moral graph for Bayesian networks) is an effective way
to capture the structure of the knowledge. In particular, graph separation is a sound way
to capture conditional independencies relative to probability distributions over directed
and undirected graphical models. In the context of probabilistic graphical models, pri-
mal graphs are also called i-maps (independence maps[43]). In the context of relational
databases [40] primal graphs capture the notion of embedded multi-valued dependencies
(EMVDs).

All advanced algorithms for graphical models exploit their graphical structure. Besides
the primal graph, other graph depictions include hyper-graphs, dual graphs and factor
graphs.

5.1 Types of graphs

Although the arcs in a primal graph are defined over pairs of variables in a function
scopes, they are well defined for functions whose scopes is larger than two. It’s arcs do
not provide a one to one correspondence with scopes. Hypergraphs and dual graphs are

such representations:

Definition 5.1.1 (hypergraph) A hypergraph is a pair H = (V,.S) where V= {vy,..,v,}
is a set of nodes and S = {S1,...,S}, S; CV, is a set of subsets of V' called hyperedges.

In the hypergraph representation of a graphical model, nodes represent the variables,
and hyperarcs (drawn as regions) are the scopes of functions. They group those variables

that belong to the same scope.
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A related representation is the dual graph. Unlike a hypergraph, the dual graph is just
a regular graph structure; it represents each function scope by a node and associates a
labeled arc with any two nodes whose scopes share variables. The arcs are labeled by the

shared variables.

Definition 5.1.2 (a dual graph) A hypergraph H = (V,S) can be mapped to a dual
graph denoted H%™. The nodes of the dual graph are the hyperedges (or edges if we have
a graph), and a pair of such nodes is connected if they share vertices in V. The arc that
connects two such nodes is labeled by the shared vertices. Formally, given a hypergraph
H = (V,S), H™! = (S,E) where S = {Sy,...,S;} are edges in H, and (S;,S;) € E iff
S;nS; #0.

Definition 5.1.3 (A primal graph of a hypergraph) A primal graph of a hypergraph
H = (V,5) has V as its set of nodes, and any two nodes are connected if they appear in

the same hyperedge.

Note that if all the functions in the graphical model are binary, then its hypergraph

is identical to its primal graph.

Graphical models and hypergraphs

Any graphical model R =< X, D,G, F >, F = {fs,,..., fs,} can be associated with a
hypergraph Hr = (X, H), where X is the set of nodes (variables), and H is the scopes of
the functions in F, namely H = {5}, ..., S;}. Therefore, the dual graph of the hypergraph
of a graphical model associates a node with each function’s scope and an arc for each two

nodes sharing variables.

Example 5.1.4 Figure 5.1 depicts the hypergraph (a), the primal graph (b) and the dual
graph (c) representations of a graphical model with variables A, B, C, D, E, F and
with functions on the scopes (ABC), (AEF), (CDE) and (ACE). The specific functions
are irrelevant to the current discussion; they can be arbitrary relations over domains of
{0,1}, such as C = AV B, F = AV E, CPTs or cost functions. The meaning of graph
(d) will be described shortly. |
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ABC AEF CDE ACE

(e)

CE
(c) (d)

Figure 5.1: (a)Hyper, (b)Primal, (c)Dual and (d)Join-tree of a graphical model having
scopes ABC, AEF, CDE and ACE. (e) the factor graph

A factor graph is also a popular graphical depiction of a graphical model.

Definition 5.1.5 (factor graph) Given a graphical model and its hypergraph H = (V, 5)
defined by the functions scopes, the factor graph has function nodes and variable nodes.
FEach scope is associated with a function node and it is connected to all the variable nodes

appearing in the function.

Figure 5.1e depicts the factor graph of the hypergraph in part (a).
We have seen that there is a tight relationship between the complexity of inference
algorithms such as bucket elimination and the graph concept called induced width. All

inference algorithms are time and space exponential in the induced-width along the order
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of processing. This motivates finding an ordering with a smallest induced width, a task
known to be hard [4]. However, useful greedy heuristics algorithms are available and we

will briefly review these in the next few paragraphs [22, 5, 54].

5.2 The induced width

Definition 5.2.1 (width) Given an undirected graph G = (V, E), an ordered graph is
a pair (G,d), where V- = {vq,...,v,} is the set of nodes, E is a set of arcs over V, and
d = (v1,...,0,) 18 an ordering of the nodes. The nodes adjacent to v that precede it in the
ordering are called its parents. The width of a node wn an ordered graph is its number
of parents. The width of an ordering d of G, denoted wq(G) (or wq for short) is the
mazimum width over all nodes. The width of a graph is the minimum width over all the

orderings of the graph.

Example 5.2.2 Figure 5.2 presents a graph G over six nodes, along with three orderings
of the graph: dy = (F, E,D,C, B, A), its reversed ordering dy = (A, B,C, D, E, F), and
ds = (F,D,C,B, A, E). Note that we depict the orderings from bottom to top, so that
the first node is at the bottom of the figure and the last node is at the top. The arcs of
the graph are depicted by the solid lines. The parents of A along d; are {B,C, E}. The
width of A along d; is 3, the width of C' along d; is 1, and the width of A along d3 is 2.
The width of these three orderings are: wgy, = 3, wg, = 2, and wg, = 2. The width of
graph G is 2. 0

Definition 5.2.3 (induced width) The induced width of an ordered graph (G,d), de-
noted w*y), is the width of the induced ordered graph along d obtained as follows: nodes
are processed from last to first; when node v is processed, all its parents are connected.
The induced width of a graph, denoted by w*, is the minimal induced width over all its

orderings. Formally

w'(G)= min w4 (G)

deorderings

Example 5.2.4 Consider again Figure 5.2. For each ordering d, (G,d) is the graph
depicted without the broken edges, while (G*, d) is the corresponding induced graph that
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Figure 5.2: (a) Graph G, and three orderings of the graph; (b) d; = (F,E,D,C, B, A),
(c)dy = (A, B,C,D,E,F), and (d) d3 = (F,D,C, B, A, E'). Broken lines indicate edges
added in the induced graph of each ordering.

includes the broken edges. We see that the induced width of B along d; is 3, and that the
overall induced width of this ordered graph is 3. The induced widths of the graph along
orderings do and ds both remain 2, and, therefore, the induced width of the graph G is 2.
|

Trees.

A rather important observation is that a graph is a tree (has no cycles) iff it has an
ordering whose width is 1. The reason a width-1 graph cannot have a cycle is because,
for any ordering, at least one node on a cycle would have two parents, thus contradicting
presumption of having a width-1 ordering. And vice-versa: if a graph has no cycles, it
can always be converted into a rooted directed tree by directing all edges away from a
designated root node. In such a directed tree, every node has exactly one node pointing
to it; its parent. Therefore, any ordering in which, according to the rooted tree, every
parent node precedes its child nodes, has a width of 1. Notice that given an ordering
having width of 1, its induced-ordered graph has no additional arcs, yielding an induced

width of 1, as well. In summary;,
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Proposition 5.2.5 A graph is a tree iff it has width and induced width of 1. O

Finding a minimum-width ordering of a graph can be accomplished by the greedy
algorithm min-width (see Figure 5.3). The algorithm orders variables from last to first as
follows: in the first step, a variable with minimum degree is selected and placed last in
the ordering. The variable and all its adjacent edges are then eliminated from the original
graph, and selection of the next variable continues recursively with the remaining graph.

Ordering dy of G in Figure 5.2(c) could have been generated by a min-width ordering,.

MIN-WIDTH (MW)
input: a graph G = (V, E), V = {vy, ..., 0.}
output: A min-width ordering of the nodes d = (vy, ..., v,).
1. for j=nto 1 by-1do
2. r < a node in V with smallest degree.
3. put r in position j and G < G — {r}.
(delete from V' node r and from E all its adjacent edges)
4. endfor

Figure 5.3: The min-width (MW) ordering procedure

Proposition 5.2.6 [29] Algorithm min-width (MW) finds a minimum width ordering of
a graph and its complexity is O(|E|) when E are the edges in the graph. O

Though finding the min-width ordering of a graph is easy, finding the minimum induced
width of a graph is hard ( NP-complete [4]). Nevertheless, deciding whether there exists
an ordering whose induced width is less than a constant k, takes O(n"*) time [48]. The
property follows from the fact that a graph having a treewidth bounded by k must have a
seperator of size bounded by k£ + 1 such that the resulting components created when the
separator is removed each has a tree-width of size k. Enumerating all subgraph of size k
in order to consider them as appropriate separators is O(n*). For details see [48] and also

[55).
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A decent greedy algorithm, obtained by a small modification to the min-width al-
gorithm, is the min-induced-width (Miw) algorithm (Figure 5.4). It orders the variables
from last to first according to the following procedure: the algorithm selects a variable
with minimum degree and places it last in the ordering. The algorithm next connects
the node’s neighbors in the graph to each other, and only then removes the selected node
and its adjacent edges from the graph, continuing recursively with the resulting graph.
The ordered graph in Figure 5.2(c) could have been generated by a min-induced-width
ordering of GG. In this case, it so happens that the algorithm achieves w*, the minimum
induced width of the graph.

Another variation yields a greedy algorithm known as min-fill. It uses the min-fill set,
that is, the number of edges needed to be filled so that the node’s parent set be fully
connected, as an ordering criterion. This min-fill heuristic described in Figure 5.5, was
demonstrated empirically to be somewhat superior to min-induced-width algorithm [36].
The ordered graph in Figure 5.2(c) could have been generated by a min-fill ordering of G
while the ordering d; or ds in parts (a) and (d) could not.

MIN-INDUCED-WIDTH (MIW)

input: a graph G = (V, E), V = {vy, ..., 0.}
output: An ordering of the nodes d = (vy, ..., vy,).
1. for j =nto 1 by-1do

r <— a node in V with smallest degree.
put r in position j.

connect 7’s neighbors: E < E U {(v;,v,)|(v;,r) € E, (vj,1) € E},

DA

remove r from the resulting graph: V <V — {r}.

Figure 5.4: The min-induced-width (MIwW) procedure

What is the complexity of MIW and MIN-Fill? It is easy to see that their complexity
is bounded by O(n?).
The notions of width and induced width and their relationships to various graph

parameters, have been studied extensively and will be briefly discuss next.
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MIN-FILL (MIN—FILL)

input: a graph G = (V, E), V = {vy, ..., 0.}

output: An ordering of the nodes d = (vy, ..., vy,).

1. for j=nto 1 by-1do

r <— a node in V' with smallest fill edges for his parents.

put r in position j.

connect 7’s neighbors: E < E U {(v;,v,)|(vi,7) € E, (vj,7) € E},

DA

remove 7 from the resulting graph: V « V — {r}.

Figure 5.5: The min-fill (MIN-FILL) procedure

5.3 Chordal graphs

For some special graphs such as chordal graphs, computing the induced-width is easy.
A graph is chordal if every cycle of length at least four has a chord, that is, an edge
connecting two nonadjacent vertices. For example, G in Figure 5.2(a) is not chordal since
the cycle (A, B, D,C, A) does not have a chord. The graph can be made chordal if we
add the edge (B, C) or the edge (A, D).

Many difficult graph problems become easy on chordal graphs. For example, finding
all the maximal (largest) cliques (completely connected subgraphs) in a graph, an NP-
complete task on general graphs, is easy for chordal graphs. This task (finding maximal
cliques) is facilitated by using yet another ordering procedure called the maz-cardinality
ordering [56]. A maz-cardinality ordering of a graph orders the vertices from first to last
according to the following rule: the first node is chosen arbitrarily. From this point on, a
node that is connected to a maximal number of already ordered vertices is selected, and
so on. Ordering dy in Figure 5.2(c) is a max-cardinality ordering.

A max-cardinality ordering can be used to identify chordal graphs. Namely, a graph
is chordal iff in a max-cardinality ordering each vertex and all its parents form a clique.
One can thereby enumerate all maximal cliques associated with each vertex (by listing
the sets of each vertex and its parents, and then identify the maximal size of a clique).

Notice that there are at most n maximal cliques: each vertex and its parents is one such
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clique. In addition, when using a max-cardinality ordering of a chordal graph, the ordered
graph is identical to its induced graph, and therefore its width is identical to its induced

width. It is easy to see that,

Proposition 5.3.1 If G is the induced graph of a graph G, along some ordering d, then
G is chordal. O

Proof: One way to show this is to realize that the ordering d can be realized by a

max-cardinality ordering of G. ]

Example 5.3.2 We see again that G in Figure 5.2(a) is not chordal since the parents of
A are not connected in the max-cardinality ordering in Figure 5.2(d). If we connect B

and C', the resulting induced graph is chordal. O

MAX-CARDINALITY (MC)

input: a graph G = (V. E), V = {vy, ..., 0.}

output: An ordering of the nodes d = (vy, ..., vy,).

1. Place an arbitrary node in position 0.

2. for j=1tondo

3. r <— a node in G that is connected to a largest subset of nodes
in positions 1 to j — 1, breaking ties arbitrarily.

4. endfor

Figure 5.6: The max-cardinality (MC) ordering ordering procedure

Proposition 5.3.3 [56] Given a graph G = (V,E) the complexity of maz-cardinality
search is O(n +m) when |V| =n and |E| = m.

Definition 5.3.4 (k-trees) A subclass of chordal graphs are k-trees. A k-tree is a chordal
graph whose maximal cliques are of size k+1, and it can be defined recursively as follows:
(1) A complete graph with k wvertices is a k-tree. (2) A k-tree with r vertices can be
extended to r + 1 vertices by connecting the new vertex to all the vertices in any clique of
size k. A partial k-tree is a k-tree having some of its arcs removed. Namely it will clique

of size smaller than k.
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5.4 From linear orders to tree orders

5.4.1 Elimination trees

We can associate with any ordering with a partial order that can be captured by a tree
rather than by a chain. This tree is called an elimination tree and is related to the notion
of a pseudo-tree defined subsequently. Given an ordering d of a graph GG, we can designate
as a parent of node n its closest earlier neighbor in the induced order graph graph (G*, d).

Fromally,

Definition 5.4.1 (elimination trees) Given an ordered induced graph (G*,d), its elim-
ination tree has the nodes of G and every node has a directed arc from its preceding neigh-
bor in the induced graph (G*,d) that appears latest in the order. The root of the tree is the
first node in the ordering. The height (or depth) of an ordering is the height (or depth)

of its elimination tree.

Example 5.4.2 consider the graph in Figure 5.7(a). An elimination tree for the ordering
d=(1,2,3,4,7,5,6) is depicted in Figure 5.7(b). O

5.4.2 Pseudo Trees

It turns out that elimination trees of a graph are a special case of what is known as a
pseudo-trees of a graph. As we will show, a pseudo-tree includes depth-first search (dfs)

spanning trees of a graph as a special case.

Definition 5.4.3 (pseudo tree, extended graph) [30] Given an undirected graph G' =
(V,E), a directed rooted tree T = (V, E') defined on all its nodes is a pseudo tree if any
arc of G which is not included in E" is a back-arc in T, namely it connects a node in T
to an ancestor in T. The arcs in E' may not all be included in E. Given a pseudo tree
T of G, the extended graph of G relative to T includes also the arcs in G that are not in
T. Namely the extended graph is defined as GT = (V,EU E").

It is well known [27] that a spanning tree of G that is generated by a DF'S traversal

of the graph, has all its non-tree arcs as back-arcs.
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Figure 5.7: (a) A graph; (b) a DFS tree 77; (c) a pseudo tree 73; (d) a chain pseudo tree
T3

Clearly, a tree generated by a dfs traversal of a graph is a pseudo-tree whose arcs are
all included in G.

Example 5.4.4 Consider the graph G displayed in Figure 5.7(a). Ordering d; = (1,2,3,4,7,5,6)
is a DF'S ordering of a DFS tree T} having the smallest DFS tree depth of 3 (Figure 5.7(b)).
The tree T5 in Figure 5.7(c) is a pseudo tree and has a tree depth of 2 only. The two
tree-arcs (1,3) and (1,5) are not in G. The tree T3 in Figure 5.7(d), is a chain. The
extended graphs G, G™* and G”* are presented in Figure 5.7(b),(c),(d) when we ignore
directionality and include the dotted arcs. The tree T} is also an elimination tree along
the order d = (1,2,3,4,7,5,6). T3 is an elimination tree along d = (1,3,4,2,5,7,6).
However the chain T3 is not an elimination tree because 7 is not connected to 4 in the

induced graph along that ordering. O
Proposition 5.4.5 An elimination-tree is a pseudo-tree.

Proof: We have to show that a non-tree arcs in the elimination-tree are back-arcs (left

as exercise) "

Generating low height elimination trees It is desirable to get orderings that have
a small height of their pseudo-tree. Finding a minimal height ordering is also known to
be hard. We can use a DF'S tree traversal of the induced-width of a graph to generate

a small tree. The tree height is dependant on the initial ordering used. Note that every
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elimination-tree is a pseudo-tree. Generating an elimination-tree is easy since they are

defined constructively, and they are also pseudo-trees.

Proposition 5.4.6 1. Any DFS tree of the induced graph (G*,d) is a pseudo-tree. 2.

There exists a DF'S ordering of the induced-graph that is an elimination-tree.

Proof: Exercise n

Another greedy algorithm called hypergraph decomposition aims to generate small
hight elimination orderings and is sometime also used to generate small induced-width.
It is based on the recursive decomposition of the dual hypergraph and it uses the notion

of hypergraph separator.

Definition 5.4.7 (hypergraph separators) Given a dual hypergraph H = (V,E) of a
graphical model, a hypergraph separator decomposition is a pair (H,S) where: S C E,

and the removal of S separates H into more than 2 disconnected components;

The algorithm works by partitioned the hypergraph into two balanced (roughly equal-
sized) parts, while minimizing the number of hyperedges across. A small number of
crossing edges translates into a small number of variables shared between the two sets
of functions. Each part is then recursively partitioned in the same fashion, until they
contain a single vertex. This yields a tree of hypergraph separators where each separator
corresponds to a subset of variables chained together.

Since the above hypergraph partitioning heuristic can select the separations in many
ways it is a non-deterministic algorithm ( see software hMeTiS!.) and the height and
induced width of the resulting elimination tree may vary significantly from one run to the
next.

In Table5.1 we illustrate the induced width and depth of the elimination tree ob-
tained with the hypergraph and min-fill heuristics for 10 Bayesian networks graphs from
the Bayesian Networks Repository? and 10 constraint networks graphs derived from the
SPOT5 benchmark [7]. It was generally observed that the min-fill heuristic generates
lower induced width elimination trees, while the hypergraph heuristic produces much

smaller height elimination trees.

! Available at: http://www-users.cs.umn.edu/karypis/metis/hmetis
2 Available at: http://www.cs.huji.ac.il/labs/compbio/Repository
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Network | hypergraph min-fill Network | hypergraph min-fill
width depth | width depth width depth | width depth

barley 7 13 7 23 spot_5 47 152 39 204
diabetes 7 16 4 77 spot_28 108 138 79 199
link 21 40 15 53 spot_29 16 23 14 42
mildew 5 9 4 13 spot_42 36 48 33 87
muninl 12 17 12 29 spot_54 12 16 11 33
munin?2 9 16 9 32 spot_404 19 26 19 42
munind 9 15 9 30 spot_408 47 52 35 97
muning 9 18 9 30 spot_503 11 20 9 39
water 11 16 10 15 spot_505 | 29 42 23 74
pigs 11 20 11 26 spot_507 | 70 122 59 160

Table 5.1: Bayesian Networks Repository (left); SPOT5 benchmarks (right).

5.5 'Tree-decompositions

Another important parameter that is highly related to the induced-width called treewidth.
It aims at capturing how close a graph is to a tree by embedding the graph in a tree of

clusters, yielding a tree-decomposition.

Definition 5.5.1 (tree decomposition) A tree decomposition of a hypergraph H =
(X,S) where S = {S1,...,5}, isatreeT = (V, E) where V is the set of nodes, also called
“clusters”, and E is the set of edges, together with a labeling function x that associates

with each vertex v € V' a set (a cluster) x(v) C X satisfying:
1. For each S; € S there exists a vertex v € V' such that S; C x(v);

2. (running intersection property) For each X; € X, the set {v € V | X; € x(v)}
induces a connected subtree of T.
Definition 5.5.2 (treewidth, pathwidth) The treewidth of a tree decomposition of a

graph is the size of its largest cluster minus 1. Namely tw(T) = max, |x(v)| — 1. The
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x(1) = {4, B,0} (1) i (3) x(3) = {B,C, D}
AB D
x(2) ={A,B,E}(2) (4) x(4) = {D, F}
Figure 5.8: Tree decomposition example

treewidth of a hypergraph is the minimum treewidth over all possible tree-decompositions.
The pathwidth is the treewidth over the restricted class of chain decompositions (namely

when T is a chain.)

Example 5.5.3 We will look at two graph examples. First consider the hypergraph in
Figure 5.9(a) where H = (V. = {A,B,C,D,E,F},S = {AEF, ABC,CDE, ACE}. The
tree in Figure 5.9(d) is a depiction of a tree-decomposition, where each hyperedge is
its own cluster. You can verify that the property of connectedness is satisfied. In this
case we did not need to combine different hyperedges into a single cluster. The actual
hypergraph is already a (hyper)tree. Consider now the second example in Figure 5.2(a).
In this case we have a simple graph. A tree-decomposition is given by the tree whose
nodes are V = {1,2,3,4} and edges are F = {(1,2),(1,3),(3,4) and x(1) = {A, B,C},
x(2)={A,B,E}, x(3) ={B,C,D}. x(4) ={D, F'}. See Figure 5.8 O

How can we construct a tree decomposition? Interestingly, we can show that
the set maximal cliques of an induced-graph provides a tree decomposition of the graph.
Namely, the maximal cliques of the induced graph can be connected into a tree structure
that satisfies the running intersection property (property 2 of definition 5.5.1). This is
because an induced-graph is a chordal graph. All that remains is to show then is that the

maximal cliques of a chordal graph provide a tree-decomposition.

Proposition 5.5.4 Given a hypergaph H = (X, S) whose primal graph G is chordal, the

mazimal cliques of G constitute a tree-decomposition.
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Proof: Let’s use a maximal cardinality order d of the chordal graph. It is easy to identify
the maximal cliques and enumerate them going from the last to the first node. Let this
order be C' = {C},...C.}. Then the tree T" = (C, E), is built as follows. For every j
connect C; to Cf, where k < j iff clique C}, shares a maximum number of variables with
C;. Clearly property 1 of the tree decomposition definition is satisfied by the tree 7" since
ever S; € H appears as a clique in the primal graph G and is therefore subsumed in one of
the maximal cliques. property 2, the running intersection property, is also satisfied. This
is less straightforward and we leave it to the reader to explore (see literature on chordal

graphs). n

Consequently, a popular way of generating a tree-decomposition of a hypergraph is
to embed it in an induced-graph that is chordal (i.e., select an ordering and generate the
induced graph along that ordering) and then select the maximal cliques and connect them
into a tree. By definition, the induced width of that ordering and the treewidth of that
ordering are identical, both coincide with the size of the maximal clique - 1. Consequently
the minimum over all orderings, of the induced-width and the treewidth are identical as
well. Indeed, the induced-width and the tree-width for any graph are the same parameter.
(For mode see [24]). For various relationships between these and other graph parameters
see [4, 32, 12].

Example 5.5.5 Consider the hypergraph H = (V,S) where V' = {1,2,...,13} and S =
{{1,2,3,4,5},{3,6,9,12},{12,13},{5,7,11},{8,9,10,11}, {10, 13}. The primal graph of
this hypergraph is given in Figure 5.9(a). The hypergraph is given in 5.9(b), and its dual
graph is depicted in Figure 5.9(c). The reader is encouraged to compute the induced
width along two orderings and speculate what the treewidth of this hypergraph might be.

Suggest a tree-decomposition. |
Definition 5.5.6 (hypertree) A hypergraph whose primal graph is chordal, and whose
mazimal ciques correspond to the hyperedges is a hypertree

Definition 5.5.7 (connectedness, join-trees, hypertrees and acyclic networks)
Given a dual graph of a hypergraph, an arc subgraph of the dual graph satisfies the con-

nectedness property iff for each two nodes that share a variable, there is at least one path
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Figure 5.9: A hypergraph represented by (a) a primal graph, (b) a hypergraph, and (c) a
dual graph.

of labeled arcs, each containing the shared variables. An arc subgraph of the dual graph
that satisfies the connectedness property is called a join-graph. A join-graph that is a tree

15 called a join-tree. A hyper-tree is also called an acyclic graph.
It can be shown that
Proposition 5.5.8 A hypergraph whose dual-graph has a join-tree is a hypertree.

Example 5.5.9 Considering again Figure 5.1 We see that the arc between (AEF) and
(ABC) in Figure 5.1(c) is redundant because variable A also appears along the alternative
path (ABC) — AC — (ACE) — AE — (AEF). A consistent assignment to A is thereby
ensured by these constraints even if the constraint between AEF and ABC' is removed.
Likewise, the arcs labeled E and C' are also redundant, and their removal yields the
graph in 5.1(d). We also see that the join-tree in Figure 5.1(d) satisfies the connectedness
property. The hypergraph in Figure 5.1(a) has a join-tree and is therefore a hypertree. O

5.6 The cycle-cutset and w-cutset schemes

We descibed earlier the treewidth parameter as a measure capturing how close is a graph
to a tree as reflected via a tree of clusters of nodes. Here we will focus on alternative

way of transforming a graph into a tree called cycle-cutset and more generally, w — cutset,
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(a (b)

Figure 5.10: An instantiated variable cuts its own cycles.

decomposition. A cutset is a set of nodes that can be removed from the graph. We showed
at the end of Chapter 4 that we can consider conditioning on a subset of the variables,
namely, assigning them values and solve the rest of the problem as if its graph does not
include the cutset. Cutset-decomposition is a class of algorithms that we will focus on in
later chapters. The graph parameter that controls its promise and complexity is w if we

use a w — cutset decomposition.

Definition 5.6.1 (cycle-cutset,w-cutset) Given a graph G, a subset of nodes is called
a w-cutset iff when removed from the graph the resulting graph has an induced-width less
than or equal to w. A minimal w-cutset of a graph has a smallest size among all w-cutsets

of the graph. A cycle-cutset is a 1-cutset of a graph.

A cycle-cutset is known by the name a feedback vertex set and it is known that finding
the minimal such set is NP-complete [31]. However, we can always settle for approx-
imations, provided by greedy schemes. Cutset-decomposition schemes call for a new

optimization task on graphs:

Definition 5.6.2 (finding a minimal w-cutset) Given a graph G = (V, E) and a con-
stant w, find a smallest subset of nodes U, such that when removed, the resulting graph

has induced-width less than or equal w.

Finding a minimal w-cutset is hard, but various greedy heuristic algorithms were

investigated. In particular several greedy algorithms for the special case of cycle-cutset can
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be found [2]. The general task of finding a minimal w-cutset was addressed in recent papers
(28, 9]. Note that verifying that a given subset of nodes is a w-cutset can be accomplished
in polynomial time (linear in the number of nodes), by deleting the candidate cutset from
the graph and verifying that the remaining graph has an induced width bounded by w
[4].

It can be shown that the size of the smallest cycle-cutset (1-cutset), ¢ and the smallest
induced width, w*, obey the inequality ¢j > w* — 1. Therefore, 1 + ¢j > w*. In general,

if ¢}, is the size of a minimal w-cutset then,
Theorem 5.6.3
l+ci>24c¢> . b+c,...>2w" +c. =w"

Proof: exercise n

5.7 Summary and Bibliographical Notes

5.8 Exrecises

1. Show what is the factor graph of the hypergraph in Figure 5.17

2. Analyze the complexity of the the greedy algorithms, MW, MIW, MF, MC, appear-
ing in this chapter.
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