o Uk whE

Overview

Probabilistic Reasoning/Graphical models
Importance Sampling

Markov Chain Monte Carlo: Gibbs Sampling
Sampling in presence of Determinism
Rao-Blackwellisation

AND/OR importance sampling



Overview

1. Probabilistic Reasoning/Graphical models



Probabilistic Reasoning;
Graphical models

Graphical models:

— Bayesian network, constraint networks, mixed network
Queries
Exact algorithm

— using inference,
— search and hybrids

Graph parameters:

— tree-width, cycle-cutset, w-cutset



Queries

* Probability of evidence (or partition function)

PEe)= Y [P pa)l. 2=2 11w

X—var(e) i=1
* Posterior marginal (beliefs):

S TP pa,)l.

P(Xi,E) _ X-var(e)-X; j=1

PE) S TIPk 1)L,

X—-var(e) j=1
 Most Probable Explanation

P(Xi |e) —

X* =argmaxP(X, e)



Approximation
* Since inference, search and hybrids are too expensive when
graph is dense; (high treewidth) then:
* Bounding inference:

* mini-bucket and mini-clustering
* Belief propagation

* Bounding search:
* Sampling

 Goal: an anytime scheme



Overview

2. Importance Sampling
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A sample

* Given a set of variables X={X,,...,X_}, a sample,
denoted by St is an instantiation of all
variables:

t t it t
S" =(X, X5,y X))

n



How to draw a sample ?
Univariate distribution

 Example: Given random variable X having
domain {0, 1} and a distribution P(X) = (0.3,
0.7).
* Task: Generate samples of X from P.
* How?
— draw random number r € [0, 1]
— If (r < 0.3) then set X=0
— Else set X=1



How to draw a sample?
Multi-variate distribution

Let X={X,,..,X,} be a set of variables
Express the distribution in product form
P(X)=P(X)xP(X, | X))x..xP(X, | X{yes X, 1)

Sample variables one by one from left to right,
along the ordering dictated by the product
form.

Bayesian network literature: Logic sampling



Sampling for Prob. Inference
Outline

Logic Sampling
Importance Sampling

— Likelihood Sampling
— Choosing a Proposal Distribution

Markov Chain Monte Carlo (MCMC)
— Metropolis-Hastings

— Gibbs sampling

Variance Reduction



Logic Sampling:
No Evidence (Henrion 1988)

Input: Bayesian network
X={X,,...,Xy}, N- #nodes, T - # samples
Output: T samples

Process nodes in topological order — first process the
ancestors of a node, then the node itself:

1. Fort=0toT
2. Fori=0toN
3. X. «<— sample x.' from P(x. | pa;)



Logic sampling (example)

P(X,, X5, X5, X,) =P(X)xP(X, | X)) xP(X; | X))xP(X, | X,, X;)

‘P(Xl) No Evidence

i /l generate samplek
1.Sample x, from P(x,)

P(X,|X,) (X;1 X)) | 2.Sample x, from P(x, | X, = X,)

3.Sample x, from P(x, | X, = X,)

P(X, | X,,X,) 4.Sample x, from P(x, | X, =X, X, =X,)

13



Logic Sampling w/ Evidence

Input: Bayesian network

X={X,,...,Xy}, N- #nodes

E —evidence, T - # samples

Output: T samples consistent with E
1. Fort=1toT
2. Fori=1toN
X. <— sample x.! from P(x; | pa,)
If X; in E and X; # x;, reject sample:

Goto Step 1.

kW



Logic Sampling (example)

@ence X, :D
P(x,)
// generate samplek
/ i 1.Sample x, from P(x,)

2.Sample x, from P(x, | x,)
P(X, | X,) 3.Sample x, from P(X, | X,)
Af x, # 0, reject sample
P(X, [ %5:%) d start from1, otherwi
5.Sample x, from P(x, | X, X;)

P(X, [ %)

15



Expected value and Variance

Expected value: Given a probability distribution P(X)
and a function g(X) defined over a set of variables X =
{Xy X, ... X}, the expected value of g w.r.t. P is

Ex[9(X)]= D 9(x)P(x)

Variance: The variance of g w.r.t. P Is:

Var,[9()] = > [9(X) - E-[g(x)]]P(x)



Monte Carlo Estimate

* Estimator:
— An estimator is a function of the samples.

— It produces an estimate of the unknown
parameter of the sampling distribution.

Giveni.i.d. samplesS', S?,...S" drawn from P,
the M ontecarlo estimate of E_[g(X)] Is given by :

1
§=—-2,96"



Example: Monte Carlo estimate

* Given:
— A distribution P(X) = (0.3, 0.7).
— g(X) =40 if X equals O
=50 if X equals 1.
* Estimate E;[g(x)]=(40x0.3+50x0.7)=47.

 Generate k samples fromP:0,1,1,1,0,1,1,0,1,0

40x# samples(X = 0) +50x# samples( X =1)
#samples

g\:

_ 40x4+50x6
10

46
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Importance sampling: Main idea

* Express query as the expected value of a
random variable w.r.t. to a distribution Q.

* Generate random samples from Q.

e Estimate the expected value from the
generated samples using a monte carlo
estimator (average).



Importance sampling for P(e)

Let Z =X \E,

Let Q(Z)be a (proposal)distribution, satisfying
P(z,e)>0=0Q(z)>0

Then, we can rewrite P(e) as:

P
P(e)= 3 P(z.0) =Y. Pz )ggzi { &Zﬂ E[W(2)]

M onteCarlo estimate:

_ iiw(zt), where z' < Q(Z)



Properties of IS estimate of P(e)

* Convergence: by law of large numbers
1

ﬁ(e):?z;w(zi) 255 P(e) for T —> oo
* Unbiased.
Eo[P(e)]=P(e)
* Variance:

Var [W(z)]

var, [p(e)]-vary| 137", uz) |- YL




Properties of IS estimate of P(e)

 Mean Squared Error of the estimator

MSE, |B(e)|= E, (P(e) Pe)f

- (P(e)-E [P(e)])z +Var [P(e)]
=Var [P(e)]
_ Varg[w(x)] cstmator cauals the xpected value of g3

T

This quantity enclosed in the brackets is




Estimating P(X | e)
Let 6, (z) be a dirac - delta function, which is1if z contains x; and 0 otherwise.
5, (2)P(z.€)
HNQZE@@W“@:%{ Q) }
P(e) > P(z,€) . {P(z,e)}
Z L Q@)

Idea : Estimate numerator and denominator by IS.

S(x.e) e W9

P(e) iw(zk o

P(Xi |e) -

Ratio estimate: P (x; |€) =

Estimateis biased : E[P (x, | €)= P(x, |€)



Properties of the IS estimator for
P(X;|e)

 Convergence: By Weak law of large numbers
P(x |e) > P(x |e)asT >
* Asymptotically unbiased
lim,_ E.[P(x |e)]=P(x |€)
* Variance

— Harder to analyze

— Liu suggests a measure called “Effective sample
size”



Generating samples from Q

No restrictions on “how to”

Typically, express Q in product form:
—Q(2)=Q(Z,)xQ(Z,|Z,)x...xQ(Z,]Z,,..Z, 1)
Sample along the order Z,,..,Z_
Example:

—7,€Q(Z,)=(0.2,0.8)

~-7,€ Q(Z,|2,)=(0.1,0.9,0.2,0.8)

— 2,< Q(%4;12,,2,)=Q(Z5)=(0.5,0.5)



Outline

Definitions and Background on Statistics
Theory of importance sampling
Likelihood weighting

State-of-the-art importance sampling
techniques



Likelihood Weighting

(Fung and Chang, 1990; Shachter and Peot, 1990)

Is an instance of importance sampling!

“Clamping” evidence+
logic sampling+
weighing samples by evidence likelihood

Works well for /ikely evidence!

28



Likelihood Weighting: Sampling

Sample in topological order over X !

Pdiay ey

Clamp evidence, Sample x;. <P(X:[pa.), P(X:[pa.) is a
look-up in CPT!

29



Likelihood Weighting: Proposal Distribution

Q(X\E)= HP(Xi | pai’e)

X;eX\E Notice: Q is another Bayesian network
Example :

Given a Bayesian network : P(X, X,, X;) = P(X,) xP(X, | X,)xP(X, | X, X,) and
Evidence X, =X,.
QX X;) =P(X ) x P(X, [ Xy, X, =X,)

Weights :
Given asample: x = (xX,.., X,)

W’e)xnp(ej | paj)
_ P(X,8)  xiex\E E,cE

Q) _ TIP6stpae)

X;eX\E
= Hp(ej | paj)
E;cE




Likelihood Weighting: Estimates

;
Estimate P(e):  P(e)= Tlzw(t)

t=1

Estimate Posterior Marginals:

T
A wOq  (x®
.0 & 00D

AL T 3w

g, (x) =1if x; = x;and equals zero otherwise



Likelihood Weighting

* Converges to exact posterior marginals
* Generates Samples Fast

* Sampling distribution is close to prior
(especially if E — Leaf Nodes)

* |Increasing sampling variance
—>Convergence may be slow
—Many samples with P(x{!)=0 rejected

32
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Bounds on the Absolute Error

of an estimate Av,(&)

is the absolute difference it has with the true probability Pr(«a) we
are trying to estimate.

For any € > 0, we have

Pr(a)Pr(—a)

P(Avn(é) — Pr(o)| < E) L ne2

The estimate Av,(&) computed by direct sampling will fall within
the interval (Pr(a) — €, Pr(«) + €) with probability at least
1 — Pr(a)Pr(—a)/ne



Bounds on the Absolute Error

A sharper bound which does not depend on the probability Pr(«)

Hoeffding's inequality

Let Av,(f) be a sample mean, where the function f has
expectation g and values in {0,1}. For any € > 0, we have:

}P’(\Avn(f) — | < e) > 11— 2e 2

For any € > 0, we have:

P(|Ava(&) — Pr(0)] < ) > 1 - 2e720°

The estimate Av,(&) computed by direct sampling will fall within

the interval (Pr(a) — €, Pr(a) + €) with probability at least
1 —2e2n



Bounds on the Relative Error

For any € > 0, we have:

P(‘AVH(Q) o P]“(Q)‘ S E) 2 1 L 26—2."]62131‘(05)2

Pr(a)

Require the probability Pr(«) (or some lower bound on it).



Bounds on the Relative Error

of an estimate Av,(&)

[Avp(&) — Pr(a)]
Pr(a)

The bound on the absolute error becomes tighter as the probability of an
event becomes more extreme. Yet, the corresponding bound on the
relative error becomes looser as the probability of an event becomes more
extreme.

For an event with probability .5 and a sample size of 10000, there
s a 95% chance that the error is ~ 4.5%. However, for the
same confidence level, the relative error increases to ~ 13.4% if
the event has probability .1, and increases again to =~ 44.5% if the
event has probability .01
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Proposal selection

* One should try to select a proposal that is as
close as possible to the posterior distribution.

. V 2
var, [p(e))= e L zz;(Péi’;) - P(e)j Q)
P(z.€) _ P(e) =0, tohave a zero- variance estimator
Q(2)
. P(ze)
@) =Q(2)

. Q(z2)=P(z]e)



Perfect sampling using Bucket
Elimination

e Algorithm:

— Run Bucket elimination on the problem along an
ordering o=(X,,..,X,).

— Sample along the reverse ordering: (X,,..,Xy)

— At each variable X;, recover the probability
P(X.]|Xy,...,X._;) by referring to the bucket.



Bucket Elimination

(A) Query: P(ale=0)<P(a,e=0) Elimination Order: d,e,b,c
@{‘G P(a,e=0)= ZP(a)P(b|a)P(c|a)P(d|a,b)P(e|b,c)
' —-P@)> P(c|a)S P(b|a)S P(e|b,c)S P(d]|a,b)
OIRG 2.Pela POl PEIba 2.

Bucket Tree

Original Functions Messages

P(d|a,b) IfD(a,b)%;P(dla,b)
P(e|b,c) | fo(b,0)Pe=0]b,c)
w P(b|a) | faao)t zb: P(b|a) f,(a,b) f. (b,c)
P(Cla) fc(a)=:ZC:P(CIa)fB(a,C)
\A:/P(@) P(a,e=0)= p(A) . (a)

Time and space exp(w*) 41



Bucket elimination (BE)
Algorithm elim-bel (Dechter 1996)

ZH<— Elimination operator

b A

bucket B:  P(BJA) P(DIB,A) P(e|B,C)
/

bucket C. P(C|A) hB®(A,D,C,e)

\

bucket D: h“(A,D,e)

bucket E: h®(A,e)
N

bucket A: P(a) =(a)




Sampling from the output of BE

(Dechter 2002)

Set A=a, D =d,C =cin thebucket
Sample:B=b<«-Q(B|a,e,d) c P(B|a)P(d |B,a)P(e|b,c)

bucket B: P(B|A) P(D|B,A) P(e|B,C)

Set A =a, D =d in the bucket

bucket C: P(C/A) h®(A,D,C,e)

Sample:C=c« Q(C|a,e,d) c P(C|A)-h®(ad,C,e

k D: c Set A = a in the bucket
bucket h=(A,D.e) Sample:D=d < Q(D]a,e) «c h®(a,D,e)
bucket E: nh°A,e) Evidence bucket :ignore
bucket A: P(A)  hE Q(A) < P(A) xhE(A)

Sample: A=a <« Q(A)

SP2 43



Mini-buckets: “local inference”

 Computation in a bucket is time and space
exponential in the number of variables
involved

* Therefore, partition functions in a bucket into
“mini-buckets” on smaller number of variables

e Can control the size of each “mini-bucket”,
vielding polynomial complexity.



Mini-Bucket Elimination

Mini-buckets Space and Time constraints:

o Maximum scope size of the new
5 I 5 I

function generated should be

— —— bounded by 2
bucket B: P(e|B,C) P(B|A) P(D|B,A)

N

bucket C: P@|A) hB(C,?

BE generates a function having scope
size 3. So it cannot be used.

bucket D: hB(A,D)
bucket E: hC(A,e)
bucketA: P(A)  hE(A) hB(A)

Approximation of P(e)
45



Sampling from the output of MBE

bucket B:

bucket C:

bucket D:

bucket E:

bucket A:

P(e|B,C) || P(B|A) P(D|B,A)

P(CIA) hB(C,e)

hB(A,D)

hC(A,e)

hE(A) hD(A)

Sampling is same as in BE-sampling
except that now we construct Q
from a randomly selected “mini-
bucket”

SP2 46 46



1JGP-Sampling
(Gogate and Dechter, 2005)

Iterative Join Graph Propagation (1JGP)

— A Generalized Belief Propagation scheme (Yedidia
et al., 2002)

IJGP yields better approximations of P(X|E)
than MBE

— (Dechter, Kask and Mateescu, 2002)

Output of IJGP is same as mini-bucket
“clusters”

Currently the best performing IS scheme!



Current Research question

* Given a Bayesian network with evidence or a
Markov network representing function P,
generate another Bayesian network representing
a function Q (from a family of distributions,
restricted by structure) such that Q is closest to P.

e Current approaches
— Mini-buckets
— ljigp
— Both

* Experimented, but need to be justified
theoretically.



Algorithm: Approximate Sampling

1) Run IJGP or MBE

2) At each branch point compute the edge
probabilities by consulting output of 1JGP or
MBE

* Rejection Problem:

— Some assignments generated are non solutions



Adaptive Importance Sampling

Initial Proposal=Q*(Z) =Q(Z,)xQ(Z, | pa(Z,)) x...xQ(Z . | pa(Z,))
P(E=¢)=0
Fori=1tokdo

Generate samples z*,..., z" from Q"
N -

P(E=¢)=P(E :e)+%2wk(z')
j=1

UpdateQ** = Q* +,(k)|Q* - Q]
End

Return

P(E =e)
k



Adaptive Importance Sampling

General case

Given k proposal distributions

Take N samples out of each distribution

Approximate P(e)

P(e) =

1
k

k
> |Avg —weight — jth — proposal |

j=1



Estimating Q'(z)

Q(2)=Q'(Z)*xQ'(Z, | pa(Z,))x...xQ"(Z, | pa(Z,))
whereeach Q'(Z, | Z,,..,Z;,)
IS estimated by importance sampling



Overview

3. Markov Chain Monte Carlo: Gibbs Sampling



Markov Chain

© 0 0 0

* A Markov chain is a discrete random process with
the property that the next state depends only on the

current state (Markov Property):
P(x' | x', x%,.... X" ) =P(x" | x'™)

o |f P(X'|x"!) does not depend on t (time
homogeneous) and state space is finite, then it is
often expressed as a transition function (aka

transition matrix) Z P(X =x)=1

54



Example: Drunkard’s Walk

 arandom walk on the number line where, at
each step, the position may change by +1 or

-1 with equal probability

00000

D(X)={012,..}

P(n-1) P(n+1)

4

transition matrix P(X)
55



Example: Weather Model

rain rain rain

D(X) ={rainy, sunny}

sun rain

P(rainy) \ P(sunny)

rainy
sunny

transition matrix P(X)

56



Multi-Variable System
X ={X,, X,, X,}, D(X,) =discrete, finite

e state is an assignment of values to all the

variables °

X' ={X,X ..., X }




Bayesian Network System

* Bayesian Network is a representation of the
joint probability distribution over 2 or more
variables

X :{Xl,X21X3} Xt :{X;,X;,X;}

58




Stationary Distribution

Existence

* |f the Markov chain is time-homogeneous,
then the vector nt(X) is a stationary distribution
(aka invariant or equilibrium distribution, aka
“fixed point”), if its entries sum up to 1 and

satisfy:
Toax)= X a(x)PxIx;)
X;eD(X)
* Finite state space Markov chain has a unique
stationary distribution if and only if:
— The chain is irreducible

— All of its states are positive recurrent



Irreducible

e Astate xis irreducible if under the transition rule
one has nonzero probability of moving from xto

any other state and then coming back in a finite
number of steps

* |f one state is irreducible, then all the states
must be irreducible

(Liu, Ch. 12, pp. 249, Def. 12.1.1)



Recurrent

* A state xis recurrent if the chain returns to x
with probability 1

* Let M(x) be the expected number of steps to
return to state x

» State xis positive recurrent if M(x) is finite

The recurrent states in a finite state chain are positive recurrent .



Stationary Distribution Convergence

* Consider infinite Markov chain:
P™ =P(x"|x°)=P°P"
 |f the chain is both irreducible and aperiodic,

then: .
7 = lim P™

N—0o0

* |nitial state is not important in the limit

“The most useful feature of a “good” Markov
chain is its fast forgetfulness of its past...”

(Liu, Ch. 12.1)



Aperiodic

* Define d(i)=g.c.d.{n >0 | itis possible to go
fromitoiin n steps}. Here, g.c.d. means the
greatest common divisor of the integers in the
set. If d(i)=1 for Vi, then chain is aperiodic

* Positive recurrent, aperiodic states are ergodic



Markov Chain Monte Carlo

* How do we estimate P(X), e.g., P(X]e) ?
* Generate samples that form Markov Chain
with stationary distribution 7=P(X/e)

e Estimate 7 from samples (observed states):

visited states x°,...,x" can be viewed as “samples”
from distribution

ﬁ(x)z_%z_:é(x, x")

7 = lim 77(x)

T —o0

64



MCMC Summary

Convergence is guaranteed in the limit

Initial state is not important, but... typically,
we throw away first K samples - “burn-in”

Samples are dependent, not i.i.d.

The stronger correlation between states, the
slower convergence!

65



Gibbs Sampling (Geman&Geman,1984)

* Gibbs sampler is an algorithm to generate a
sequence of samples from the joint probability
distribution of two or more random variables

 Sample new variable value one variable at a
time from the variable’s conditional
distribution:

P(X.)=P(X| X% X }=P(X. | x"\x)

* Samples form a Markov chain with stationary
distribution P(X/e)

”Il’ |+1’ "1



Gibbs Sampling: lllustration

The process of Gibbs sampling can be understood as a random walk
in the space of all instantiations of X=x (remember drunkard’s walk):

In one step we can reach instantiations
that differ from current one by value
assignment to at most one variable
(assume randomized choice of variables
X.).



Ordered Gibbs Sampler

Generate sample x'*! from xt :

Lt t ot t
Process X o X < P(Xl | X2’ X3’ XN ,6)
Al X, =X« P(X, | X", X5,..., X, , €)
Variables
In Some

Order v X —Xt+1(—P(XN| t t+1,---,Xt|\|+El,e)

In short, for i=1 to N:
X, =x"* <« sampled from P(X, | x' \ x. ,€)




Transition Probabilities in BN

Given Markov blanket (parents,
children, and their parents),
X. is independent of all other nodes

Markov blanket:
markov(X,) = pa, Uch, U( |Jpa,)

XjEChj

P(X;|x'\x)=P(X.|markoV):
P(x | X'\ %) oc P(x; | pa;) | [ P(x; | pa;)
X j ech;

Computation is linear in the size of Markov blanket!

69



Ordered Gibbs Sampling Algorithm
(Pearl,1988)

Input: X, E=e
Output: T samples {xt}
Fix evidence E=e, initialize x° at random
1. Fort=1toT (compute samples)
Fori=1to N (loop through variables)
X1« P(X. | markov})
End For
End For

SEENEIEN



Gibbs Sampling Example - BN

X ={X,, X,y XoH E ={X,}

X, =x;
X5 =Xg'
Xg = Xg'
X5 =x;
Xg = Xg'"
Xg = Xg'
X, =x,

o 0
X;5=X;

71



Gibbs Sampling Example - BN

X9}1 E :{Xg}

X, <= P(X,| X3,y Xg 4 X))

X5 <— P(X, | X{penry Xo 4 Xo)

72



Answering Queries P(x; [e) = ?

* Method 1: count # of samples where X, = x; (histogram estimator):

T / Dirac delta f-n
P (X, =%) == X 5%, x)
t=1

* Method 2: average probability (mixture estimator):
_ 1 T
P(X, =x)= ?Z P(X. = x |[markov')
t=1

* Mixture estimator converges faster (consider
estimates for the unobserved values of X;; prove via
Rao-Blackwell theorem)



Rao-Blackwell Theorem

Rao-Blackwell Theorem: Let random variable set X be
composed of two groups of variables, R and L. Then,
for the joint distribution m(R,L) and function g, the
following result applies

Var[E{g(R) | L} =Var[g(R)]
for a function of interest g, e.g., the mean or
covariance (Casella&Robert, 1996, Liu et. al. 1995).

* theorem makes a weak promise, but works well in practice!
e improvement depends the choice of Rand L



Importance vs. Gibbs

Gibbs: X'« P(X |e)
P(X |e)—=25P(X |e)

600 ==Y 9(x)

Importance: X'« Q(X |e) W,
1 & g(x)P(xY)
g:_




Gibbs Sampling: Convergence

Sample from I_J(X/e)aP(X/e)
Converges iff chain is irreducible and ergodic

Intuition - must be able to explore all states:

—if X, and X; are strongly correlated, X.=0<> X=0,
then, we cannot explore states with X;=1 and X=1

All conditions are satisfied when all
probabilities are positive

Convergence rate can be characterized by the
second eigen-value of transition matrix



Gibbs: Speeding Convergence

Reduce dependence between samples
(autocorrelation)

e Skip samples

 Randomize Variable Sampling Order
 Employ blocking (grouping)

* Multiple chains

Reduce variance (cover in the next section)



Blocking Gibbs Sampler

 Sample several variables together, as a block

 Example: Given three variables X%, Z, with domains of
size 2, group Yand Ztogether to form a variable
W={%,Z} with domain size 4. Then, given sample
(x5, 2), compute next sample:

X" «—P(X |y, zY) =PW)

(yt+1, Zt+1) — Wt+1 «— P(Y ’ Z | Xt+l)
+ Can improve convergence greatly when two variables
are strongly correlated!

- Domain of the block variable grows exponentially with
the #variables in a block!

78



Gibbs: Multiple Chains

* Generate M chains of size K
* Each chain produces independent estimate P, :

L K
HADEES I ICTPATS
t=1
. Estimate P(x./e) as average of P_(x;[e):

() = 2 Pal®)

Treat P,, as independent random variables.



Gibbs Sampling Summary

 Markov Chain Monte Carlo method
(Gelfand and Smith, 1990, Smith and Roberts, 1993, Tierney, 1994)

 Samples are dependent, form Markov Chain
e Sample from P (X | €) which converges to P (X | €)
* Guaranteed to converge whenall P >0

 Methods to improve convergence:
— Blocking
— Rao-Blackwellised



Overview

5. Rao-Blackwellisation



Sampling: Performance

Gibbs sampling
— Reduce dependence between samples

Importance sampling

— Reduce variance

Achieve both by sampling a subset of variables
and integrating out the rest (reduce
dimensionality), aka Rao-Blackwellisation

Exploit graph structure to manage the extra cost



Smaller Subset State-Space

* Smaller state-space is easier to cover

X :{X11X2’X3’X4} X :{Xl’XZ}

D(X) =16
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Smoother Distribution

P(X1, X2, X3,X,) P(X.,X,)

m0-0.1 m0.1-0.2 mO0.2-0.26 m0-0.1 m0.1-0.2 mO0.2-0.26

01 00
10 !
11

84



Speeding Up Convergence

* Mean Squared Error of the estimator:

MSE, [P |= BIAS 2 +Var,|P|
* In case of unbiased estimator, BIAS=0
MSE[P] =Var,[P] = (EQ [IS]2 — EQ[P]Z)

* Reduce variance = speed up convergence !



Rao-Blackwellisation
X =R JL

6(x) =${h<xl)+---+h<xT)}

g(x) = %{E[h(x) [1°]+---+E[h(x) | 1" T}

Var{g(x)} =Var{E[g(x) | 1]} + E{var[g (x) 1]}
Var{g(x)}>Var{E[g(x)| ]}
var{g(oy - Y20} , Var(ElCO 1

Liu, Ch.2.3

=Var{g(x)}




Rao-Blackwellisation

“Carry out analytical computation as much as possible” - Liu
e X=RUL
* Importance Sampling:
P(R, L P(R
ar.{ ( )} ar {0 X ( )}
Q(R,L) Q(R)" Ly, ch2s5s

* Gibbs Sampling:

— autocovariances are lower (less correlation
between samples)

— if X; and X; are strongly correlated, X;=0 <> X;=0,
only include one fo them into a sampling set
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Blocking Gibbs Sampler vs. Collapsed

e Standard Gibbs:

P(x]Yy,2),P(y|% 2),P(z] X, y) (1)
* Blocking:

P(x]y,z),P(y,z[X) (2)
e Collapsed:

P(x|y), P(y|x) (3)
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Collapsed Gibbs Sampling

Generating Samples

Generate sample c**! from ct:

C,=¢," « P(c,|c;,C;,...,Cp , €)

C,=c" <« P(c,|c™,c,...,Cp . €)

C Ct+1 «— P(CK |Ct+1 t+1 -’CL+_11’e)

In short, for i=1 to K:
C. =c™ «sampledfrom P(c, |c' \¢, ,e)




Collapsed Gibbs Sampler

Input: Cc X, E=e
Output: T samples {ct}
Fix evidence E=e, initialize c° at random
1. Fort=1toT (compute samples)
Fori=1to N (loop through variables)
¢!t <« P(C. | ct\c)
End For
End For

SEENEIEN



Calculation Time

* Computing P(c./ ct\c,e) is more expensive
(requires inference)
* Trading #samples for smaller variance:

— generate more samples with higher covariance
— generate fewer samples with lower covariance

* Must control the time spent computing
sampling probabilities in order to be time-
effective!



Exploiting Graph Properties

Recall... computation time is exponential in the
adjusted induced width of a graph

* g-cutset is a subset of variable s.t. when they
are observed, induced width of the graph is w

 when sampled variables form a w-cutset,
inference is exp(w) (e.g., using Bucket Tree
Elimination)

e cycle-cutset is a special case of w-cutset

Sampling w-cutset = w-cutset sampling!
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What If C=Cycle-Cutset ?

c’ ={X2,X§}, E :{Xg}

P(x,,Xs,Xg) — can compute using Bucket Elimination

—»

—»

=)

P(x,,Xs,Xq) — cOmputation complexity is O(N)
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Computing Transition Probabilities
Compute joint probabilities:

BE : P(X, =0, X;, X,)
BE : P(X, =1, X;, X,)

Normalize:

o =P(X, =0,X;, %) +P(X, =1, X;,X,)
P(X, =0]X%;) =aP (X, =0,X;, %)
P(X; =1]X3) = aP(X; =1, %3, %)
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Cutset Sampling-Answering Queries
* Query: Vc, €C, P(c, |e)=? same as Gibbs:

T
P(cle) == Y P(C I¢\c, e)
t=1

\computed while generating sample t
using bucket tree elimination

* Query: Vx, €X\C, P(x, |e)=?

PlxJe) = Y P(x [c'e)

compute after generating sample t
using bucket tree elimination
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Cutset Sampling vs. Cutset Conditioning

Cutset Conditioning

P(x[e) = Ceg(;:)P(xi c.e) ><

Cutset Sampling

POxJe) = Y P(x, ')

_ Z P(x [C.e)x count(c)
ceD(C) T

Cg(:cl)D(xi | c,e) ><




Cutset Sampling Example
Estimating P(x, | e) for sampling node X, :

X POl X %) S

Xp < POl Xg%0) e

Sample 3
X5 < P(X;] X5.X,)
_ . _

P(le X5 ’Xg)

+P(xy] Xé’xg)

— 1
P(X2|X9)=§

T P(x,] X52 ’Xg)_




Cutset Sampling Example

Estimating P(x; | e) for non-sampled node Xj:

C" ={Xz, X5} = P(X; | Xz, X5, %)

¢ ={X;, X%} = P(X; | X3, X5 Xo)

c” ={;, %} = P(X; | X3, %3, %)

P(Xs | Xg) — 3

1

P (X | X5, X2, Xo)

+P(X3 | X22’X§’X9)

_+ P(XB | XS’ X53’ X9)
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CPCS54 Test Results

0.004

0.003 -

0.002

0.001 A

CPCS54, n=54, |C|=15, |E|=3

—e— Cutset —8— Gibbs |

1000 2000 3000
# samples

4000

5000

0.0008

0.0006

0.0004

0.0002

CPCS54, n=54, |C|=15, |E|=3

—e— Cutset —8— Gibbs

\

S

5 10

15 20 25

Time(sec)

MSE vs. #samples (left) and time (right)
Ergodic, [X|=54, D(X))=2, |C|=15, |[E|=3

Exact Time = 30 sec using Cutset Conditioning




CPCS179 Test Results

0.012

0.01

0.008

0.006

0.004

0.002

CPCS179, n=179, |C|=8, |E|=35

|—0— Cutset —8— Gibbs |

m
100 500 1000 2000 3000 4000

#samples

0.012

0.01
0.008
0.006
0.004

0.002

CPCS179, n=179, |C|=8, |E|=35

—e— Cutset —8— Gibbs

=

20 40 60

Time(sec)

MSE vs. #samples (left) and time (right)
Non-Ergodic (1 deterministic CPT entry)
|X| = 179, |C| = 8, 2<= D(X;)<=4, |E| = 35

Exact Time = 122 sec using Cutset Conditioning




CPCS360b Test Results

CPCS360b, n=360, |C|=21, |E|=36 CPCS360b, n=360, |C|=21, |E|=36
| —e— Cutset —8— Gibbs | —e— Cutset —m— Gibbs
0.00016 0.00016

0.00012 \ 0.00012
0.00008 \\\. 0.00008
0.00004 'S

\.\'\-—-——- 0.00004 -

0

0 200 400 600 800 1000 1 2 3 5 10 20 30 40 50 60

# samples Time(sec)

MSE vs. #samples (left) and time (right)
Ergodic, |X| = 360, D(X,)=2, |C| = 21, |E| = 36
Exact Time > 60 min using Cutset Conditioning

Exact Values obtained via Bucket Elimination



Random Networks

0.0035
0.003
0.0025
0.002
0.0015
0.001
0.0005

RANDOM, n=100, |C|=13, |E|=15-20

—e— Cutset —8— Gibbs

\-\-\'\'—'—4—\-;._.7

*

4
L 2

*—o—0o—0o—o o

200 400 600 800 1000 1200

# samples

0.001
0.0008
0.0006
0.0004

0.0002

RANDOM, n=100, |C|=13, |E|=15-20

—e— Cutset —8— Gibbs

e

1

2

3

4

5 6 7 8 9

Time(sec)

10 11

MSE vs. #samples (left) and time (right)

IX| = 100, D(X)) =2,|C| = 13, |E| = 15-20

Exact Time = 30 sec using Cutset Conditioning




Coding Networks

Cutset Transforms Non-Ergodic Chain to Ergodic

Coding Networks, n=100, |C|=12-14
|—e—IBP —a— Gibbs —0—Cutset|
OEOND
i i i a

1T 1 ] —

0.001 T T T T T
0 10 20 30 40 50 60

MSE vs. time (right)
Non-Ergodic, [X]| = 100, D(X;)=2, |C| = 13-16, |E| = 50
Sample Ergodic Subspace U={U,, U,,...U,}

Exact Time = 50 sec using Cutset Conditioning
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Non-Ergodic Hailfinder

0.1

0.01

0.001

0.0001

HailFinder, n=56, |C|=5, |E|=1

—e— Cutset —a— Gibbs |

B—5 5 =5 5 8 =B =B BB

\—N_.M‘ﬁ—

500 1000 1500

# samples

0.1

0.01

0.001

0.0001

HailFinder, n=56, |C|=5, |[E|=1

—e— Cutset —8— Gibbs

1 2 3 4 5 6 7 8 9

Time(sec)

MSE vs. #samples (left) and time (right)

Non-Ergodic, [X]| = 56, |C| =5, 2 <=D(X;) <=11, |E| =0

Exact Time = 2 sec using Loop-Cutset Conditioning




CPCS360b - MSE

cpcs360b, N=360, |E|=[20-34], w*=20, MSE
—8— Gibbs
0.000025 5 BP —
" —a— |C|=26,fw=3
000002 —a— [Cl=48,w=2]
0.000015
0.00001 \./"\./"vé
0.000005 W
O oo o o & 45_%@%
Ny —a—2
0 T T T T T T T
0 200 400 600 800 1000 1200 1400 1600
Time (sec)
MSE vs. Time

Ergodic, |X| = 360, |C| = 26, D(X;)=2
Exact Time = 50 min using BTE




Cutset Importance Sampling
(Gogate & Dechter, 2005) and (Bidyuk & Dechter, 2006)

* Apply Importance Sampling over cutset C

SCRENEAE WY

where P(ct,e) is computed using Bucket Elimination

;
P(c |e) :a%Z“d(ci,ct)wt
t=1

. T
P(x |e) =0¢%ZP(Xi |ct,e)w!
t=1



Likelihood Cutset Weighting (LCS)

e /=Topological Order{C,E}
* Generating sample t+1:

ForZ,eZ do: - computed while generating
If 7 cE sample t
! using bucket tree
zit+1 =7.,2 €e elimination
Else
41 1 1 - can be memoized for some
z;- <« P(Z |27, 7 number of instances K
End If (based on memory available
End For

KL[P(C[e), Q(C)] < KL[P(X]e), Q(X)]
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Pathfinder 1

MSE

—a— W
- = *- = —
PathFinder 1, N=109, w*=6, |[LC|=9, |[E|=11 PR
0002 —e— LWLCBUF
0.0016 —x— BP
0.0012
0.0008
0.0004
0
0 2 4 6 8 10 12
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Pathfinder 2

0.002

PathFinder2, N=135, |LC|=4, |E|=17

Time (sec)

—a— LW
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Link

MSE

Link, N=724, w*=15, |LC|=142, |E|=10
0.003

0.002

0.001

0.000

10

12

110



Summary

Importance Sampling

i.i.d. samples
Unbiased estimator
Generates samples fast

Samples from Q

Reject samples with
zero-weight

Improves on cutset

Gibbs Sampling
Dependent samples

Biased estimator

Generates samples
slower

Samples from E(Xle)

Does not converge in
presence of constraints

Improves on cutset



CPCS360b

cpcs360b, N=360, [LC|=26, w*=21, |E|=15

1.E-02 - W
—o— AIS-BN
—a— Gibbs
1.E-03 . A—LCS
> ‘\ﬁ\‘\‘\‘_\‘
1.E-04
“M
1E'05 I I I I I I
0 2 4 6 8 10 12 14
Time (sec)

LW — likelihood weighting
LCS — likelihood weighting on a cutset
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CPCS422b

MSE

1.0E-02

1.0E-03

1.0E-04

1.0E-05

cpcsd22b, N=422, |LC|=47, w*=22, |E|=28

—a— LW
—B8— AIS-BN
—a— Gibbs
—&— LCS
—*— IBP

Time (sec)

LW — likelihood weighting
LCS — likelihood weighting on a cutset
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Coding Networks

MSE

coding, N=200, P=3, [LC|=26, w*=21
1.0E-01

—a— W

—B8— AIS-BN
—a— Gibbs

a L L u B

A—LCS

10E-02 _w -

1.0E-03

K—hK—K—K—k—k——X
1.0E-04 kf\er

\A\A_A_H_H
1.0E-05 . . . .
0 2 4 6 8
Time (sec)

10

LW — likelihood weighting
LCS — likelihood weighting on a cutset
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