Exact Inference Algorithms for
Probabilistic Reasoning;
BTE and CTE

o, SR

COMPSCI 276, Spring 2011
Set 6: Rina Dechter

(Reading: Primary: Class Notes (5,6)
Secondary: , Darwiche chapters 7,8)

i Probabilistic Inference Tasks

= Belief updating:
BEL(X,) =P(X, =X, | evidence)

= Finding most probable explanation (MPE)
X* =argmax P(X, e)

= Finding maximum a-posteriory hypothesis
* N P - Ag X
(al """ ak) =arg maaX xZ/A: (x,€) hypothesisvariables

= Finding maximum-expected-utility (MEU) decision

« « _ _ D < X : decisionvariables
(dy,...,d) =argmax XZ/D:P(X’ eU(X) U x): utilityfunction

Finding MPE = max P(x)
Algorithm elim-mpe (Dechter)i996)

+

Y isreplaced by max :
MPE = max P(a)P(c|a)P(b|a)P(d |a,b)P(e|b,c)

max H— Elimination operator
bucket B: P(bj\. P(d|b a) P(elb, c)
bucket C. P(c|a) .

\/ \ Y

bucket D: “(a,d,e)
/

bucket E: e=0 h°(ae)

. E W*=4
bucket A: P(‘@\“h/ @) "induced width”

MPE (max clique size)

‘L Generating the MPE-tuple

5. b'=arg max P(bl|a')x
xP(d'|b,a")xP(e'|b,c")

4. ¢'=arg max P(c|a')x
xh®(a' ,d',c,e")

3. d'=arg max h®(a' ,d,e")

2. e =0

1. a' =arg max P(a)-h"(a)

B: P(bla) P(dlb,a) P(e|b,c)

C: P(clay h°(ad.ce)
D: h®(a,d,e)
E: e=0 h’(ae)

A: P@ h @

Return (a',b',c' ,d',e')

i Complexity of Bucket-elimination

= Theorem:

BE is O(n exp(w*+1)) time and O(n exp(w*))
space, when w* is the induced-width of the
moral graph along d when evidence nodes are
processed (edges from evidence nodes to
earlier variables are removed.)

More accurately: O(r exp(w*(d)) where r is the number of cpts.
For Bayesian networks r=n. For Markov networks?

i Finding small induced-width

= NP-complete
s A tree has induced-width of ?

= Greedy algorithms:
= Min width
= Min induced-width
= Max-cardinality
= Fill-in (thought as the best)
= See anytime min-width (Gogate and Dechter)

$ Min-width ordering

MIN-WIDTH (MW)

input: a graph G = (V,E), V = {v(,...,v,}
output: A min-width ordering of the nodes d = (vy, ..., v,).
1. for j=nto1lby-1do

2. r « a node in GG with smallest degree.
3. put 7 in position j and G — G —r.

(Delete from V' node r and from E all its adjacent edges)
4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph
Complexity:?
O(e)

Greedy orderings heuristics

min-induced-width (miw)

input: a graph G = (VE), V={vi; :::;vn}

output: A miw ordering of the nodes @ = (vi; :::; vn).

1.for j=nto 1 by-1do

2. r € a node in V with smallest degree.

3. put r/in position J.

4. connect r's neighbors: E < E union {(vi; vj)| (vi; r) inE; (vi;r)2 inE},
5. remove r from the resulting graph: V <V - {r}.

Theorem: A graph is a
min-fill (min-fill) tree iff it has both width
input: a graph G = (VE), V = {v1; ::.; vn} and induced-width of 1.
output: An ordering of the nodes d = (v1, :::; vn).
1.for j=nto 1 by-1do
2. r €a node in V with smallest fill edges for his parents.

3. put r/in position J.
4. connect r's neighbors: E <E union {(vi; vj)] (vi; r) 2 E; (vj;r)in E}
5. remove r from the resulting graph.: V <V —{r}.

i Induced-width

B C E A
D B
D
C C
E
F

(a)

© could have been generated by min-fill

‘_L Min-induced-width

MIN-INDUCED-WIDTH (MIW)

input: a graph G = (V. E), V ={v,....v,}
output: An ordering of the nodes d = (vy, ..., vp).
I. for j=nto 1 by -1 do

2.

Ll

o

r «— anode in V' with smallest degree.

put 7 in position j.

connect r’s neighbors: E «— EU{(v;,v;)|(vi,r) € E, (vj,7) € E},
remove 1 from the resulting graph: V —V — {r}.

Figure 4.3: The min-induced-width (MIW) procedure

10

Induced-width for chordal graphs

Definition: A graph is chordal if every cycle of length at least 4
has a chord

Finding w* over chordal graph is easy using the max-
cardinality ordering: order vertices from 1 to n, always
assigning the next number to the node connected to a largest
set of previously humbered nodes. Lets d be such an ordering

A graph along max-cardinality order has no fill-in edges iff it is
chordal.

On chordal graphs width=induced-width.

11

i Max-cardinality ordering

MAX-CARDINALITY (MC)

input: a graph G= (V. E), V ={vy, ...,v,}
output: An ordering of the nodes d = (vq, ..., v,).

1. Place an arbitrary node in position 0.

2. for j=1ton do

3. r + anode in G that is connected to a largest subset of nodes
in positions 1 to 7 — 1, breaking ties arbitrarily.

4. endfor

Figure 4.5 The max-cardinality (MC) ordering procedure.

12

i Which greedy algorithm is best?

= MinFill, prefers a node who add the least
number of fill-in arcs.

= Empirically, fill-in is the best among the
greedy algorithms (MW,MIW,MF,MC)

= Complexity of greedy orderings?
= MW is O(?), MIW: O(?) MF (?) MC is O(mn)

13

From Bucket elimination to

i bucket-tree elimination 3@@)

Bucket G: P(G/F) AE(/F)

Bucket F: A F/B,C) F
D
Bucket D: AD/A,B)

ycm

l

Bucket C: P(C/A)
Bucket B: A B/A)

Bucket A: R A) m

14

Propagation in a Bucket Tree

Definitions:

L

Let & be a Bayvesian network. . an ordering
and B,... B, the final bucket created processing
along = x,...x,,.

Let B, be the set of variables appearing in
bucket 7 when it 1s processed.

Bucket Tree:

-

A bucket tree has each B, cluster as a node and
there 1s an arc from B, to B, if the function
created at B, was placed 111 B

Graph-Based Definition:

.

Let &; be the induced graph along «. Each
wvariable x and it’s earlier neighbors 1in a node.
B, . There is an arc from B_to B if v is the
closest parent of x.)

From Bucket-Elimination To Bucket Trees

E

Bucket E: PrE|B,C) (PrE|B.C)| D

Bucket D: PrD|4.8B) o B | P(D|A4.8))
Bucket C: P(C|A)\ AL (B.C). i s, B JACA B
Bucket B: P(B|A4) AZ(4 B) =A%(A B) A :
Bucket A: Pr4d) TR) PiA) /i,/{:n/’

*The bucket tree is a tree of cliques of a chordal graph: the induced graph

P is decomposable relative to the chordal graph. Therefore the tree of cliques is an
i-map of P.

From Bucket elimination to

i bucket-tree elimination 3@@)

If we want the marginal on D?

Bucket G: P(G/F)
Bucket F: A(F/B,07 1 (F) y@

F
Bucket D: P(D/A,E)\ D
Bucket C: P(C/A)\ J€(B,C) C B <)

Bucket B: AB/A) ﬂB(A B) /2(AB) M\j : B”
[P(F|B,C)] Bucket A: AA) ;L’;(A) 7<(AB) m

6.0 m M

ACB
[P(CIA),P(BIA),P(A)] _POAS)

7¢ (a,b) = P(C| A)P(B| A)P(A) % (B,C)

From Bucket elimination to

i bucket-tree elimination 3@@)

If we want the marginal on C?

Bucket G: P(G/F)

G
s (F) | P(G|F
Bucket F: F(F//% AE(F) c /
Bucket D: P(D/A,B\ P(F|B,C) D
Bucket C: P(C/A)\ A(B,C) #8.C)
N

zg(A,B)l

Bucket B: AB/A) i3(A,B) A2(A B) B
e

Bucket A: AA) A5(A)

(P

o (A

75(@)= P(D|AB)P(B|A)
. 7¢ (@) =Y P(C| AP(A)% (B,C)

Sep={A} ° /(B,C)
P(D|A,B),P(BIA)
[D,A,B J [gﬁ/A)/P(A)] D(F|B,C)

18

BTE: full Execution

Bucket G: A G/F) P [TZ (F)
Bucket F: P(F/%EE(F) [1c(B,C)
Bucket D: P(D/A,})\ / T2 (A B)

Each bucket can Bucket C: P(C/A)\ A (B, % [15 (A B)

Compute its ~3
marginal probability =~ Bucket B: AB/A) 22 (AB) A2(AB) TI5(A)

Bucket A: AA) AL(A) “

G
RO b WEEG)_P(EEE JAB (a,b)7E(a)
c MTplC.) = i ., 01741 a
ZF(Bé:)\LTHE(B,C) . @ WE)(G}-, b) = P(b|a)}\§(a b)'rr:%(a b)
PCIA < ““BY neas mh(e.b) = ¥, Plela)mg(a.b)
A AP B (PEBIA) mi(f) =2 PUfIb c)mi(e,b)

“2(m)
P(A) T ; 19

TE

Theorem: When BTE terminates

The product of functions in each
bucket is the beliefs of the
variables joint with the evidence.

Top-down and bottom-up
Messages obey same rule:
Lets have one name, lambda

Algorithm bucket-tree elimination (BT E)

Input: A problem M = (X, D, F,][]}, ordering d.

Output: Angmented buckets containing the original functions and all the & and
A funetions received from neighbors in the bucket-tree.

0. Pre-processing:

Place each funection in the latest bucket, along d, that mentions a variable in its
scope. Connect two buckets B; and B if variable X; is the latest earlier neighbor
of X; in the induced graph &g

1. Top-down phase: A messages (BE)

For i = n to 1, process bucket 5y

Let Ag ... A be all the funetions in H; at the time B; is processed, including the
original functions of F'. The messape }.f sent from X; to its child Xj;, is computed

by
V= T

elim(id) kk#]
2. bottom-up phase: 7 messages
For j =1 to n, process bucket Bj:
Let Aj, .o Ay, be all the functions in B at the time Bj is processed, including the
original functions of F. B takes the 7 message received from its child X., m,
and computes a message 7 for each child bucket X; by

g i g
= E T - I I AN
el i.d) rEE

3. Answering singleton gueries (e.g., deriving beliefs)

The joint funections F'{Ex) in bucket B is computed by taking the product of
all the funections in By (the original fs, the A funetions and 7 funection): Namely,
given the functions fy, ..., fi in Bx at termination,

FEB‘L)= H f:.-,

and the belief of X is computed by

Bel(z) = z Hfj

Bx—{x}

Figure 6.2: Algorithm Bucket-Tree Elimination

Bucket tree Elimination (BTE)
Bucket-tree Propagation (BTP)

Bucket-Tree Propagation (BTP)

Input: For each node X, its bucket B; and its neighboring buckets. Let Xj be the
message sent to X; from its neighbor X; and f;,, ..., fi, the original functions in bucket
B-r'.-

The message X; sends to a neighbor X; is, once it received all the messages from its
neighbors except from Xj; is:

V= (16T

Bi—5S(i,j) i k#j

Figure 6.5: The Bucket-tree propagation (BTP) for X

TR YN | By
) i

elim(j,i) k,k#j elim(j,i T

21

i Properties of BTE

Theorem (correctness) 6.1.4 Algorithm BTE when applied to a Bayesian
or Markov network is sound. Namely, in each bucket we can exactly
compute the exact joint function of every subset of variables and the
evidence.

(follows from imapness of trees)

Theorem 6.1.5 (Complexity of BTE) Let w be the induced width of G
along ordering d, let r be the number of functions and k the maximum
size of @ domain of a variable. The time complexity of BTE is O(r deg
kM w*+1}), where deg is the maximum degree in the bucket-tree.
The space complexity of BTE is O(n k"*w*.)

22

i From a bucket-tree to a join-tree

Merge non-maximal buckets into maximal clusters.

Connect clusters into a tree: each cluster to one with
which it shares a largest subset of variiables.

Separators are the intersection of variables on the
arcs of the tree.

The cluster tree is an i-map.

23

From buckets to superbucket
i to clusters

A B ows time an C
() Tﬁ/@ () égace ttradeoﬁ‘cI ()
([GF) @g (GF) ([GF)

F F F
FB.C) (DBA) —> —> (ABCDF)
B,C AB
ABC 25 BA
>

A super-bucket-tree is an i-map of the Bayesian network 24

Same Message Passing
O

~—
h(u,v)
X2 \/{J\l 4.®

cluster(u) = w(u) u{h(x;,u),h(x,,u),....n(x. ,u),h(v,u)}

Compute the message :

h(U,V) — Zenm(u,v)ercluster(u)—{h(v,u)} f

Elim(u,v) = cluster(u)-sep(u,v)

25

Tree decompositions

(more formal)
[ABC J
(@), p(bla). p(clab)

A tree decomposition for a belief network BN =< X,D,G,P >isa
triple<T, y,w >, whereT =(V,E) isa tree and y and y are labeling
functions, associating with each vertex v eV two sets, y(v) < X and [BCDF J
w(v) < P satisfying : p(dlb), p(flc,d)

BC

1. For each function p. € P there is exactly one vertex such that BF
p, < w(v) and scope(p;) < x(v)

2. For each variable X, € X the set{v eV|X, € y(v)}forms a [pEzell_:b’I]i) J
connected subtree (running intersection property) .

[EFG J
p(gle.f)

Tree decomposition

26

‘L Minimal Tree-Decompositions

Notice that it may be that sep(u,v) = y(u) (that is, all variables in vertex u belong
to an adjacent vertex v). In this case the size of the tree-decomposition can be reduced

by merging vertex u into v without increasing the tree-width of the tree-decomposition.

Definition 6.2.7 (minimal tree-decomposition) A tree-decomposition is minimal if
sep(u,v) C x(u) and sep(u,v) C x(v).

We immediately can observe that the bucket-tree is often not minimal. We can make

it minimal however, by having each subsumed bucket be absorbed into its containing

bucket, vielding super-bucket tree.

Minimal tree-decompositions are called Join-trees or junction-trees

27

i Tree Decomposition for belief updating

p(a)

28

t

Tree Decomposition for belief updating

p(a)

p(c|a,b)

|

ABC
p(a), p(bfa), p(cla,b)

|

BC

BCDF
p(d[b), p(flc,d)

|

BF

BEF
p(elo,f)

EF

EFG
p(gle.f)

29

CTE: Cluster Tree Elimination

11 ABC
| hepy®0)=Y p(a)-pbla)-p(cla,b)

BC

h(2,1) (b,c)= Z p(d[b)-p(f|c,d)- h(3,2) (b, f)

2 @DF

h(2,3) (b,) :Z p(d[b)- p(f |Cvd)'h(1,2) (b,c)
BF |
hs.z) (0,) :Z p(elb,)-hys (e)
3| BEF
his.4 (8, f)zz p(e|b, f)-hys (0, f)
EF b
T h(4,3)(e’ f)=p(G=g.lef)
4| EFG

Time: O (exp(w+1))
Space: O (exp(sep)) For each cluster P(X|e) is computed, also P(e) 30

=l

Algorithm cluster-tree elimination (CTE)

Input: A tree decomposition < Ty, > for a problem M =< X, D, F [} >,
X={Xy,..X,}, F={fi....f.}.

Output: An augmented tree whose vertices are clusters containing the original
functions as well as messages received from neighbors. A solution computed from
the augmented clusters.

Compute messages:

For every edge (u,v) in the tree, do

e Let m,,) denote the message sent by vertex u to vertex v.
o Let cluster(u) = (u) U {mgw|(i,u) € T}.

e If vertex u has received messages from all adjacent vertices other than v,

then compute and send to v,

SEPE..“:“} fECEuStET{u}'.f?Em{v,u}

Endfor

Note: functions whose scope does not contain elimination variables do not need
to be processed, and can instead be directly passed on to the receiving vertex.
Return: A tree-decomposition augmented with messages, and for every v € T

31

A G T ={A80
) wil) ={pla), plb|a), picia,B)

<2> 1@ =(B.C.D.F}
v =(p(dit), p{ flcd)

C) rA=(BEF)
3 vy ={ple|b £}

@ 1T =[EF.G)
=/ yit)=(plgle N}

(b)

1| anc | _
o | hy . (b.c) = : pla)- p(bla)- plc|a.b)
BC =
o hey(bc)=3 pld|b)- p(f|c.d)- By, (b 1)
2|BCDF "

e (b, £) =Y p(d]b)- p(f]|c.d) Bz (b.c)
c 4

BH -
‘o Ban (b £)=Y ple|b. [)-hyyle F)
gt BeoleN) =Y ple|b £)-hys (b, 1)

s b e, D =BG =g |&.F)
erc] :

(c)

Let Ci and Cj two adjacent clusters and sep(i,j) be their separator

bel(sep)= > []f= D []f

elim(i, j) f<C, elim(j,i) feC;

32

CTE - properties

= Correctness and completeness: Algorithm CTE is correct, i.e. it
computes the exact joint probability in each cluster and
therefore of every single variable and the evidence.

= Time complexity: O (deg x (n+N) x kW1)

= Space complexity: O (N x k=)
where deg = the maximum degree of a node in the cluster-tree
n = number of variables (= number of CPTs)
/N = number of nodes in the tree decomposition
k = the maximum domain size of a variable
w* = the induced width
sep = the separator size 33

‘L Treewidth & Separator

The width (also called tree-width) of a tree-decomposition < 7T, x, 1» >

o (o). (S (1 o adpecn

vertices v and v of a tree-decomposition, a separator of v and v is
defined as sep(u, v) = y(u) N x(v).

Good Tree-width can be generated using good induced-
width ordering heuristics

34

GRAPH TRIANGULATION (FILL-IN) ALGORITHM: Tarjan
and Yannakakis [1984]

1.

Compute an ordering for the nodes, using a maximum cardinality
search, i.e., number vertices from 1 to | VI, in increasing order,
always assigning the next number to the vertex having the largest
set of previously numbered neighbors (breaking ties arbitrarily).

From n = |Vl to n = 1, recursively fill in edges between any two
nonadjacent parents of n, i.e., neighbors of n having lower ranks
than n (including neighbors linked to n in previous steps). If no
edges are added the graph is chordal; otherwise, the new filled
graph is chordal.

Given a graph G = (V, E) we can construct a join tree using the
following procedure.

ASSEMBLING A JOIN TREE

1. Use the fill-in algorithm to generate a chordal graph G’ (if G is
chordal, G =G").

2. Identify all cliques in G’. Since any vertex and its parent set
(lower ranked nodes connected to it) form a clique in G’, the
maximum number of cliques is | VI,

3. Order the cliques C,, C,,..., C, by rank of the highest vertex in each
clique.

4. Form the join tree by connecting each C; to a predecessor C i G <i)
sharing the highest number of vertices with C;.

35

‘Example of tree-clustering

[| A

F
B C E
D

D
E C
F B
A

Inference on trees is
easy and distributed

mMZ(Z) = Z P(M|2)
mLZ(Z) = Z P(L|Z)

mzx(x) - Z P(Z | X) ’ mMZ(Z) ’ mLZ(Z)

_ _ A tree of binary functions
Belief updating = sum-prod Is 3 chordal graph with clusters of size -

Inference is time and space linear on trees
37

Acyclic-Networks:
‘L Belief Propagation is easy on

P(E)
P(B) P(E P(B|E)
2 P(A|B,E) P(A|B,E)

P(R|E)

P(CIA) P(R|E,A) P(CIAR)

38

i Polytrees and Acyclic networks

Polytree: a BN whose undirected skeleton is a tree

Acyclic network: A network is acyclic if it has a
tree-decomposition where each node has a single
original CPT.

Dual network: each scope-cpt is a node and each arc
IS denoted by intersection.

Acylic network (alternative definition): when the dual
graph has a join-tree
BP is exact on an acyclic network.

Tree-clustering converts a network into an acyclic

one.
39

A Glimpse into Pearl’s BP

(a)

Figure 4.18. (a) A fragment of a polytree and (b) the parents and chil-
dren of a typical node X.

EVIDENCE DECOMPOSITION

ri-“}-j stands for evidence contained in the subnetwork on the head side of the link
X —}F’J, .

er x stands for evidence contained in the subnetwork on the tail side of the link

r

Figure 4.19. Variables, messages, and evidence sets used in the derivation of
?ux {ui}.

Step 1 - Belief updating: When node X is activated, it simul-

taneously inspects the messages 7y (i;), i =1,...,n communi-

cated by its parents and the messages Ay (x), j = 1,.., m com-
!

municated by its children. Using this input, it updates its belief
measure to

BEL (x)=o Alx) m(x), (4.49)
where
AMx) =TI l}rj (x), (4.50)
J
nx)= ¥ Pxluy,..., un)ﬂnx(uf), (4.51)
Mogyen iy !

and o 1s a normalizing constant rendering ¥ BEL (x) = 1.

X

Step 2 - Bottom-up propagation: Using the messages received,
node X computes new A messages to be sent to its parents. For
example, the new message Ay (1;) that X sends to its parents U,
1s computed by

Ay (W) =B ¥ Alx) Y Pxlug,..,u,) H Ty () . s

x Wy k-l

Step 3 - Top-down propagation: Each node computes new m
messages to be sent to its children. For example, the new Ty (x)
)

message that X sends to its child Y, 1s computed by

EFI(I}=H I—[?L'F {I }j| E F':.I |H]_,....,. Hﬂ} l_llﬂxl:ui}-#-ﬂ}
[

#] U gy Uy,

_ BEL(x)
e :'I"—}'}. (x)

SUMMARY OF PROPAGATION RULES
FOR POLYTREES

The steps involved in polytree propagation are similar to
those used with trees. We shall now summarize these steps
by considering a typical node X having m children,
Y,...Y,,and n parents, U,,..., U, , as in Figure 4.18b.

The belief distribution of variable X can be computed if
three types of parameters are made available:

The current strength of the causal support © contributed by
each incoming link U; -X:

My (“f] =P{H§ Iﬂ'ﬁlx) . {4.47)
The current strength of the diagnostic support, A, contribut-
ed by each outgoing link X' — ¥;:

lfj (x)=P (ef}rj lx). (4.48)

The fixed conditional-probability matrix P(x luy,..., u,)
that relates the variable X to its immediate parents.

Belief propagation is easy on polytree:
Pearl’s Belief Propagation

A polytree: a tree with 2, (U,) = -
Larger families P(lz) l |,1zz(u2) V%(UB)
A polytree decomposition || 2
}
QD

Running CTE = running Pearl’s BP over the dual graph
Dual-graph: nodes are cpts, arcs connect non-empty
intersections.

BP is Time and space linear

45

From exact to approximate:
[terative Belief Propagation

= Belief propagation is exact for poly-trees
= IBP - applying BP iteratively to cyclic networks

One step :
update

BEL(U,)
IR\

= No guarantees for convergence
= Works well for many coding networks

46

‘L Dual graphs, join-graphs

Definition 6.4.5 (dual graphs, join dual graphs, arc-minimal dual-graphs) Given
a graphical model M =< X, D, F.I] =.

e The dual graph Dg of the graphical model M, is an arc-labeled graph defined over
the its functions. Namely, it has a node for each function labeled with the func-
tion’s scope and a labeled are connecting any two nodes that share a variable in the
function’s scope. The arcs are labeled by the shared variables.

¢ 4 dual join-graph is a labeled are subgraph of Dy whose arc labels are subsets of the
labels of Dy such that the running intersection property, s satisfied.

o An arc-minimal dual join-graph is a dual join-graph for which none of its labels can
be further reduced while maintaining the connectedness property.

47

‘L Dual join-graphs examples

) l !
o &8 G
a) b) c)

Figure 6.13: a) A belief network; b) A dual join-graph with singleton labels; ¢) A dual

jomn-graph which is a join-tree

Proposition 6.4.6 The dual graph of any Bayesian network has an arc-minimal dual
join-graph where each arc s labeled by a single variable,

48

Iterative Belief propagation

Algorithm IBP
Imput: An arc-labeled dual join-graph DJ = (V.E.L) for a graphical model A =<

X, D, F] =
Output: An augmented graph whose nodes include the original functions and the messages
received from nelghbors. Denote byv: hf the message from u to v; nelu) the neighbors of u In
Viney(u) = ne(u) — {v}; Ly the label of (w,v) € E; elim{u,v) = scope(u) — scope(v).
s Une iteration of IBP
For every node u in I).J in a topological order and back, do:
1. Process observed variables
Aszsign evidence variables to the each p; and remove them from the labeled arcs.
2. Compute and send to v the function:

he= % (-]I m

eldm | u,w) {hi dcneo{u)}

Endfor
¢ Compute approximations of P(Fj|e), PiX;|e):
For every X; € X let u be the vertex of family F; in DV.J,
PLF;,_lE*j = Hl‘xl—[.h,"-uEﬂe[;j- h’?:l “Pus
PiX;le) = Eseope-j-n]—-{.‘:g} P(F;le).

49

i Exact Reasoning by Search

= Why consider search?
= Can we do any better in search?
= Can we combine search and inference?

50

Conditioning generates
the probability tree

P(a,e=0)=P(a))> P(b|a)d P(cla)d P(d|a,b)> P(e|b,c)

N ¥
Picla) ———— e
T’{dla,ﬁ Pielb.c) Pi{aP{bla)P{cla)yP{dla. by elb.c)

Complexity of conditioning: exponential time, linear space

51

Conditioning+Elimination

P(a,e=0)=P(a)> P(b|a)> P(c|a)d P(d|ab)> P(e|b,c)

A B C D E
AN Piblay Pcla) Pidla,b) Pielb,c)

Piae=0 b=0,c=0)

sam Piae=0b=0)
O P
piema) _Pd_______-——-”_# I’{af_:l.'ll b=},c=0)
pl0la Piim) ——
il 1l
S i [) Pia.e=0Mb=1)
E’Mm _______———__________
(e

Idea: conditioning until W™ of a (sub)problem gets small

52

‘L Loop-cutset decomposition

= You condition until you get a polytree

gy

P(B|F=0) = P(B, A=0|F=0)+P(B,A=1|F=0)

Loop-cutset method is time exp in loop-cutset size

and linear space. For each cutset we can do BP o3

i Conditioning and Cycle cutset

Cycle cutset = {A,B,C}

eaa :g .

Search over the Cutset (cont)

Graph e Inference may require too much memory

Coloring

problem e Condition on some of the variables

w-cutset algorithms

i Variable elimination with conditioning;

s VEC-bel:
= Identify a w-cutset, c_w, of the network

= For each assignment to the cutset solve by
CTE the conditioned sub-problem

= Aggregate the solutions over all cutset
assignments.

= Time complexity: exp(|C_w]|+w)
= Space complexity: exp(w)

56

Time vs Space for w-cutset

(Dechter and El-Fatah, 2000)
(Larrosa and Dechter, 2001)
(Rish and Dechter 2000)

« Random Graphs (50 nodes, 200 edges, average degree 8, w*=23)

60

50

40

30

W+c(w)

20

time 10

0

P Branch and bound

Bucket
7 «— elimination

W-cutset time O(exp(w+-cutset-size)) w Space
Space O(exp(w))

57

i Hybrid of Variable-elimination and Search

= [radeoff space and time

58

Search Basic Step:
‘L Conditioning

59

Search Basic Step:
‘L Conditioning

ct a variable

60

Search Basic Step:
‘L Conditioning

Xi¢a X« C
X« Db

61

Search Basic Step:
Variable Branching by Conditioning
@ @ General principle:
S~ Condition until tractable
@ Then solve sub-problems
@ @ efficiently

Xi¢a X« C
X« Db

62

i

Search Basic Step:
Variable Branching by Conditioning

@‘ Example: solve subproblem
@ e by inference, BE(i1=2)

63

The Cycle-Cutset Scheme:
Condition Until Treeness

* Cycle-cutset
* |-cutset

» C(i)-size of i-cutset

(a) (b) (c)

Space: exp(i), Time: O(exp(i+c(i))

64

‘L Eliminate First

v

65

‘L Eliminate First

v

66

‘L Eliminate First

by any means

Solve the rest of the problem

67

i Hybrids Variants

= Condition, condition, condition ... and then
only eliminate (w-cutset, cycle-cutset)

= Eliminate, eliminate, eliminate ... and then
only search

= Interleave conditioning and elimination (elim-
cond(i), VE+C)

68

Interleaving Conditioning and Elimination
(Larrosa & Dechter, CP'02)

69

Interleaving Conditioning and Elimination

+

A/

70

Interleaving Conditioning and Elimination

+

A/

/1

Interleaving Conditioning and Elimination

+

A/

72

i Interleaving Conditioning and Elimination

A/

73

i Interleaving Conditioning and Elimination

A/

74

i Interleaving Conditioning and Elimination

S AN 24

75

Algorithm VEC (Variable-
elimination with conditioning)

A]gorithm%
Input: A belief networ N = {P,,...,P,}; an ordering of the

variables, d; a subset C of conditioned variables; observations e.
Output: Bel(A).

Initialize: A = 0,

1. For every assignment C' = ¢, do
e \; — The output of [BEJ-bel with ¢ U e as observations.
e A — A+). (update the sum).

2. Return A.

76

‘L Complexity of w-cutset (VEC)

Theorem 6.5.1 Given a set of conditioning variables, C, the space complexity of algo-
rithm elim-cond-bel is O(n-exp(w*(d, cUe)), while its time complexity is O(n-exp(w*(d, el
c)+ |C])), where the induced width w*(d,c Ue), is computed on the ordered moral graph
that was adjusted relative to e and c. O

Definition 6.5.3 (secondary-optimization task) Given a graph G = (V,E) and a
constant 1, find a smallest subset of nodes C,, such that G1 = (V — C,, El), where EI

includes all the edgs in E' that are not incident to nodes in C,, has induced-width less or
equal r.

Pl |

77

i What hybrid should we use?

= W=1? (loop-cutset?)

= w=07? (Full search?)

= W=w* (Full inference)?
= W in between?

= depends... on the graph

= What is relation between cycle-cutset
and the induced-width?

78

