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Exact Inference Algorithms for 
Probabilistic Reasoning; 
BTE and CTE

COMPSCI 276, Spring 2011

Set 6: Rina Dechter

(Reading: Primary: Class Notes (5,6) 
Secondary: , Darwiche chapters 7,8)



2

Probabilistic Inference Tasks
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
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Generating the MPE-tuple
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Complexity of Bucket-elimination

 Theorem:

BE is  O(n exp(w*+1)) time and O(n exp(w*)) 
space, when w* is the induced-width of the 
moral graph along d when evidence nodes are 
processed (edges from evidence nodes to 
earlier variables are removed.)
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More accurately: O(r exp(w*(d)) where r is the number of cpts.
For Bayesian networks r=n. For Markov networks?
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Finding small induced-width

 NP-complete

 A tree has induced-width of ?

 Greedy algorithms:

 Min width

 Min induced-width

 Max-cardinality

 Fill-in (thought as the best)

 See anytime min-width (Gogate and Dechter)
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Min-width ordering

Proposition: algorithm min-width finds a min-width ordering of a graph
Complexity:?  
O(e)



Greedy orderings heuristics
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min-induced-width (miw)
input: a graph G = (V;E), V = {v1; :::; vn}
output: A miw ordering of the nodes d = (v1; :::; vn).
1. for j = n to 1 by -1 do
2. r  a node in V with smallest degree.
3. put r in position j.
4. connect r's neighbors: E  E union {(vi; vj)| (vi; r) in E; (vj ; r) 2  in E},
5. remove r from the resulting graph: V V - {r}.

min-fill (min-fill)
input: a graph G = (V;E), V = {v1; :::; vn}
output: An ordering of the nodes d = (v1; :::; vn).
1. for j = n to 1 by -1 do
2. r a node in V with smallest fill edges for his parents.
3. put r in position j.
4. connect r's neighbors: E E union {(vi; vj)| (vi; r) 2 E; (vj ; r) in E},
5. remove r from the resulting graph: V V –{r}.

Theorem: A graph is a 
tree iff it has both width 
and induced-width of 1.
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Induced-width

© could have been generated by min-fill
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Min-induced-width
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Induced-width for chordal graphs

 Definition: A graph is chordal if every cycle of length at least 4 
has a chord

 Finding w* over chordal graph is easy using the max-
cardinality ordering: order vertices from 1 to n, always 
assigning the next number to the node connected to a largest 
set of previously numbered nodes. Lets d be such an ordering

 A graph along max-cardinality order has no fill-in edges iff it is 
chordal. 

 On chordal graphs width=induced-width.
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Max-cardinality ordering

Figure 4.5  The max-cardinality (MC) ordering procedure.
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Which greedy algorithm is best?

 MinFill, prefers a node who add the least 
number of fill-in arcs.

 Empirically, fill-in is the best among the 
greedy algorithms (MW,MIW,MF,MC)

 Complexity of greedy orderings?

 MW is O(?), MIW: O(?) MF (?)  MC is O(mn)
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Bucket G:  P(G|F) 

Bucket F:  P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)

From Bucket elimination to 
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“Moral” 
graph

A

D E

CB

•The bucket tree is a tree of cliques of a chordal graph: the induced graph
•P is decomposable relative to the chordal graph. Therefore the tree of cliques is an 
i-map of P.



Bucket G:  P(G|F) 

Bucket F:  P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)
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If we want the marginal on D?

P(F|B,C)
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Bucket G:  P(G|F) 

Bucket F:  P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)
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From Bucket elimination to 
bucket-tree elimination
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Bucket G:  P(G|F)

Bucket F:  P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)
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BTE: full Execution

Each bucket can
Compute its 
marginal probability



BTE

Theorem: When BTE terminates

The product of functions in each 
bucket is the beliefs of the 
variables joint with the evidence.
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Top-down and bottom-up
Messages obey same rule:
Lets have one name, lambda



Bucket tree Elimination  (BTE) 
Bucket-tree Propagation (BTP)
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Properties of BTE

 Theorem (correctness) 6.1.4 Algorithm BTE when applied to a Bayesian 
or Markov network is sound. Namely, in each bucket we can exactly 
compute the exact joint function of every subset of variables and the 
evidence.

 (follows from imapness of trees)
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•Theorem 6.1.5 (Complexity of BTE) Let w* be the induced width of G 
along ordering d, let r be the number of functions and k the maximum 
size of a domain of a variable. The time complexity of BTE is O(r deg 
k^{w*+1}), where deg is the maximum degree in the bucket-tree. 
The space complexity of BTE is O(n  k^w*.)



From a bucket-tree to a join-tree

 Merge non-maximal buckets into maximal clusters.

 Connect  clusters into a tree: each cluster to one with 
which it shares a largest subset of variiables.

 Separators are the intersection of variables on the 
arcs of the tree.

 The cluster tree is an i-map.
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F

B,C A,B

A,B

G,F

A,B,C

D,B,A

B,A

A

F,B,C

(A)

F

G,F

A,B,C,D,F

(C)

From buckets to superbucket
to clusters

D

G

A

B C

F

A super-bucket-tree is an i-map of the Bayesian network

F

B,C

G,F

A,B,C

D,B,AF,B,C

(B) Allows time and 
space tradeoff
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Elim(u,v) = cluster(u)-sep(u,v)
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Tree decompositions
(more formal)

property)on intersecti (running subtree connected       

 a forms set   the bleeach variaFor  2.   

 and       
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B E F

p(e|b,f)

E F G

p(g|e,f)

EF

BF

BC

G

E

F

C D

B

A

Belief network Tree decomposition



Minimal Tree-Decompositions
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Minimal tree-decompositions are called Join-trees or junction-trees
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G

E
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C D
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Tree Decomposition for belief updating
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Tree Decomposition for belief updating

A B C
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1
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EFG
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Time: O ( exp(w+1 ))
Space: O ( exp(sep))

CTE: Cluster Tree Elimination

For each cluster P(X|e) is computed, also P(e)
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Let Ci and Cj two adjacent clusters and sep(i,j) be their separator

   
 


),lim( ),lim(

)(
jie Cf ije Cfi j

ffsepbel
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CTE - properties

 Correctness and completeness: Algorithm CTE is correct, i.e. it 
computes the exact joint probability in each cluster and 
therefore of every single variable and the evidence.

 Time complexity: O ( deg  (n+N)  k w*+1 )

 Space complexity: O ( N  k sep)
where deg = the maximum degree of a node in the cluster-tree

n = number of variables (= number of CPTs)

N = number of nodes in the tree decomposition

k = the maximum domain size of a variable

w* = the induced width

sep = the separator size
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Treewidth & Separator

Good Tree-width can be generated using good induced-
width ordering heuristics 
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Example of tree-clustering
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P(X)

P(Y|X) P(Z|X)

P(T|Y) P(R|Y) P(L|Z) P(M|Z)

)(XmZX

)(XmXZ

)(ZmZM)(ZmZL

)(ZmMZ)(ZmLZ

)(XmYX

)(XmXY

)(YmTY

)(YmYT
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











Z

LZMZZX

L

LZ

M

MZ

(Z)m(Z)mXZP(X)m

ZLP(Z)m

ZMP(Z)m

)|(

)|(

)|(

Inference on trees is
easy and distributed











X

LZXZZM

X

MZXZZL

YXXZ

(Z)mXmXZPZm

(Z)mXmXZPZm

(X)mXPXm

)()|()(

)()|()(

)()(

Belief updating =  sum-prod

Inference is time and space linear on trees

A tree of binary functions 
Is a chordal graph with clusters of size 2

X

Y
Z

MLRT



Acyclic-Networks:
Belief Propagation is  easy on
P(E)
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P(R|E)

E

A

C

B

R

P(B)

P(A|B,E)

P(C|A)

E

A

C

B

R

•P(B|E)

P(A|B,E)

P(C|A,R)

P(E)

P(R|E,A)

P(E) P(B)

P(A|B,E)

P(C|A)
P(R|E)

E
E B

A

P(A|B,E)

P(B|E)

P(E)

P(C|A,R)P(R|E,A)

A,E

E

B,E

A,R
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Polytrees and Acyclic networks 

 Polytree: a BN whose undirected skeleton is a tree

 Acyclic network: A network is acyclic if it has a 
tree-decomposition where each node has a single 
original CPT.

 Dual network: each scope-cpt is a node and each arc 
is denoted by intersection.

 Acylic network (alternative definition): when the dual 
graph has a join-tree

 BP is exact on an acyclic network.

 Tree-clustering converts a network into an acyclic 
one.



A Glimpse into Pearl’s BP
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Belief propagation is easy on polytree: 
Pearl’s  Belief Propagation

1Z 2Z 3Z

1U 2U 3U

1X

1Y

)|(

)(

11

11

uzP

uZ 
)( 22

uZ
)( 33

uZ
A polytree: a tree with
Larger families

A polytree decomposition

P(z1|u1) P(z2|u2) P(z3|u3)

P(u3)P(u1) P(u2)

P(X1|,u1,1,u2,u3)

P(y1|x1)

Running CTE = running Pearl’s BP over the dual graph
Dual-graph: nodes are cpts, arcs connect non-empty
intersections.
BP is Time and space linear 
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From exact to approximate:
Iterative Belief Propagation
 Belief propagation is exact for poly-trees

 IBP - applying BP iteratively to cyclic networks

 No guarantees for convergence

 Works well for many coding networks

)( 11
uX

1U 2U 3U

2X1X

)( 12
xU

)( 12
uX

)( 13
xU

) BEL(U

 update  

:step One

1



Dual graphs, join-graphs
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Dual join-graphs examples

48
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Iterative Belief propagation
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Exact Reasoning by Search

 Why consider search?

 Can we do any better in search?

 Can we combine search and inference?
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Conditioning generates 
the probability tree





0

),|(),|()|()|()()0,(
ebcb

cbePbadPacPabPaPeaP

Complexity of conditioning: exponential time, linear space
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Conditioning+Elimination





0

),|(),|()|()|()()0,(
edcb

cbePbadPacPabPaPeaP

Idea: conditioning until        of a (sub)problem gets small*w
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Loop-cutset decomposition

 You condition until you get a polytree

B

CB

F

A

B

CB

F

A=0 A=0 A=0

B

CB

F

A=1 A=1 A=1

P(B|F=0) = P(B, A=0|F=0)+P(B,A=1|F=0)

A=0 A=1

Loop-cutset method is time exp in loop-cutset size
and linear space. For each cutset we can do BP



Conditioning and Cycle cutset
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Search over the Cutset (cont)

A=yellow A=green

B=red B=blue B=red B=blueB=green B=yellow
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• Inference may require too much memory

• Condition on some of the variables

A
C

B K

G

L

D

F
H

M

J

E

Graph
Coloring
problem
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Variable elimination with conditioning;
w-cutset algorithms

 VEC-bel:

 Identify a w-cutset, c_w,  of the network

 For each assignment to the cutset solve by 
CTE the conditioned sub-problem

 Aggregate the solutions over all cutset
assignments.

 Time complexity: exp(|C_w|+w)

 Space complexity: exp(w)
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Time vs Space for w-cutset

• Random Graphs (50 nodes, 200 edges, average degree 8, w*23)

Branch and bound

Bucket 
elimination

0

10

20

30

40

50

60

w

W
+

c
(w

)

space

time

(Dechter and El-Fatah, 2000)
(Larrosa and Dechter, 2001)
(Rish and Dechter 2000)

W-cutset time O(exp(w+cutset-size))
Space O(exp(w))



Hybrid of Variable-elimination and Search

 Tradeoff space and time

58



59

X1

X3

X5X4

X2

Search Basic Step: 
Conditioning
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X1

X3

X5X4

X2
• Select a variable

Search Basic Step: 
Conditioning
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X1

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

…...

…...

X1  a

X1  b

X1  c

Search Basic Step: 
Conditioning
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X1

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

…...

…...

X1  a

X1  b

X1  c

General principle:

Condition until tractable

Then solve sub-problems

efficiently

Search Basic Step: 
Variable Branching by Conditioning
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X1

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

…...

…...

X1  a

X1  b

X1  c

Example: solve subproblem 

by inference, BE(i=2)

Search Basic Step: 
Variable Branching by Conditioning
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The Cycle-Cutset Scheme:
Condition Until Treeness

• Cycle-cutset

• i-cutset

• C(i)-size of i-cutset

Space: exp(i), Time: O(exp(i+c(i))
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Eliminate First
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Eliminate First
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Eliminate First

Solve the rest of the problem

by any means
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Hybrids Variants

 Condition, condition, condition … and then 
only eliminate (w-cutset, cycle-cutset)

 Eliminate, eliminate, eliminate … and then 
only search

 Interleave conditioning and elimination (elim-
cond(i), VE+C)
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Interleaving Conditioning and Elimination
(Larrosa & Dechter, CP’02)
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination



74

Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination

...

...



Algorithm VEC (Variable-
elimination with conditioning)
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VEC

BE



Complexity of w-cutset (VEC)
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What hybrid should we use?

 w=1? (loop-cutset?)

 w=0? (Full search?)

 w=w* (Full inference)?

 w in between?

 depends… on the graph

 What is relation between cycle-cutset
and the induced-width?


