
1

Exact Inference Algorithms for
Probabilistic Reasoning;
BTE and CTE

COMPSCI 276, Spring 2011

Set 6: Rina Dechter

(Reading: Primary: Class Notes (5,6)
Secondary: , Darwiche chapters 7,8)

2

Probabilistic Inference Tasks


X/A

a

*

k

*

1 e),xP(maxarg)a,...,(a

evidence)|xP(X)BEL(X iii 

 Belief updating:

 Finding most probable explanation (MPE)

 Finding maximum a-posteriory hypothesis

 Finding maximum-expected-utility (MEU) decision

e),xP(maxarg*x
x



)xU(e),xP(maxarg)d,...,(d
X/D

d

*

k

*

1 

 variableshypothesis

: XA

function utilityx

 variablesdecision

 :)(

 :

U

XD 

3


b

max
Elimination operator

MPE

W*=4
”induced width”
(max clique size)

bucket B:

P(a)

P(c|a)

P(b|a) P(d|b,a) P(e|b,c)

bucket C:

bucket D:

bucket E:

bucket A:

e=0

B

C

D

E

A

e)(a,hD

(a)hE

e)d,(a,hC

Finding
Algorithm elim-mpe (Dechter 1996)

)xP(maxMPE
x



),|(),|()|()|()(max

by replaced is

,,,,
cbePbadPabPacPaPMPE

:

bcdea

 max

4

Generating the MPE-tuple

C:

E:

P(b|a) P(d|b,a) P(e|b,c)B:

D:

A: P(a)

P(c|a)

e=0 e)(a,hD

(a)hE

e)c,d,(a,hB

e)d,(a,hC

(a)hP(a)max arga' 1. E

a


0e' 2. 

)e'd,,(a'hmax argd' 3. C

d


)e'c,,d',(a'h

)a'|P(cmax argc' 4.
B

c





)c'b,|P(e')a'b,|P(d'

)a'|P(bmax argb' 5.
b





)e',d',c',b',(a' Return

Complexity of Bucket-elimination

 Theorem:

BE is O(n exp(w*+1)) time and O(n exp(w*))
space, when w* is the induced-width of the
moral graph along d when evidence nodes are
processed (edges from evidence nodes to
earlier variables are removed.)

5

More accurately: O(r exp(w*(d)) where r is the number of cpts.
For Bayesian networks r=n. For Markov networks?

6

Finding small induced-width

 NP-complete

 A tree has induced-width of ?

 Greedy algorithms:

 Min width

 Min induced-width

 Max-cardinality

 Fill-in (thought as the best)

 See anytime min-width (Gogate and Dechter)

7

Min-width ordering

Proposition: algorithm min-width finds a min-width ordering of a graph
Complexity:?
O(e)

Greedy orderings heuristics

8

min-induced-width (miw)
input: a graph G = (V;E), V = {v1; :::; vn}
output: A miw ordering of the nodes d = (v1; :::; vn).
1. for j = n to 1 by -1 do
2. r  a node in V with smallest degree.
3. put r in position j.
4. connect r's neighbors: E  E union {(vi; vj)| (vi; r) in E; (vj ; r) 2 in E},
5. remove r from the resulting graph: V V - {r}.

min-fill (min-fill)
input: a graph G = (V;E), V = {v1; :::; vn}
output: An ordering of the nodes d = (v1; :::; vn).
1. for j = n to 1 by -1 do
2. r a node in V with smallest fill edges for his parents.
3. put r in position j.
4. connect r's neighbors: E E union {(vi; vj)| (vi; r) 2 E; (vj ; r) in E},
5. remove r from the resulting graph: V V –{r}.

Theorem: A graph is a
tree iff it has both width
and induced-width of 1.

9

Induced-width

© could have been generated by min-fill

10

Min-induced-width

11

Induced-width for chordal graphs

 Definition: A graph is chordal if every cycle of length at least 4
has a chord

 Finding w* over chordal graph is easy using the max-
cardinality ordering: order vertices from 1 to n, always
assigning the next number to the node connected to a largest
set of previously numbered nodes. Lets d be such an ordering

 A graph along max-cardinality order has no fill-in edges iff it is
chordal.

 On chordal graphs width=induced-width.

12

Max-cardinality ordering

Figure 4.5 The max-cardinality (MC) ordering procedure.

13

Which greedy algorithm is best?

 MinFill, prefers a node who add the least
number of fill-in arcs.

 Empirically, fill-in is the best among the
greedy algorithms (MW,MIW,MF,MC)

 Complexity of greedy orderings?

 MW is O(?), MIW: O(?) MF (?) MC is O(mn)

14

Bucket G: P(G|F)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)

From Bucket elimination to
bucket-tree elimination

P(F|B,C)

P(G|F)

P(D|A,B)

P(C|A)

P(A)

P(B|A)

G

F

C

A

D

B

)(FF

G

),(CBC

F

),(BAB

D

),(BAB

C

)(AA

B

D

G

A

B C

F

15

16

“Moral”
graph

A

D E

CB

•The bucket tree is a tree of cliques of a chordal graph: the induced graph
•P is decomposable relative to the chordal graph. Therefore the tree of cliques is an
i-map of P.

Bucket G: P(G|F)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)

)(FF

G

),(CBC

F

),(BAB

D),(BAB

C

)(AA

B

From Bucket elimination to
bucket-tree elimination

P(F|B,C)

P(G|F)

P(D|A,B)

P(C|A)

P(A)

P(B|A)

G

F

C

A

D

B

)(FF

G

),(CBC

F

),(BAB

D

),(BAB

C

)(AA

B
),(CBC

F

D

G

A

B C

F

A,C,B
P(C|A),P(B|A),P(A)

P(D|A,B)


C

C

F

D

C CBAPABPACPba),()()|()|(),(

If we want the marginal on D?

P(F|B,C)

18

Bucket G: P(G|F)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)

)(FF

G

),(CBC

F

),(BAB

D),(BAB

C

)(AA

B

From Bucket elimination to
bucket-tree elimination

P(F|B,C)

P(G|F)

P(D|A,B)

P(C|A)

P(A)

P(B|A)

G

F

C

A

D

B

)(FF

G

),(CBC

F

),(BAB

D

),(BAB

C

)(AA

B

D

G

A

B C

F

P(D|A,B),P(B|A)
D,A,B

P(C|A),P(A)
C,A

Sep={A}

),()()|()(CBAPACPa C

F

C

D

C  


BD

C

D ABPBADPa
,

)|(),|()(

P(F|B,C)

If we want the marginal on C?

),(CBC

F

19

Bucket G: P(G|F)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)

)(FF

G

),(CBC

F

),(BAB

D),(BAB

C

)(AA

B

)(FG

F

),(CBF

C

),(BAD

B

),(BAC

B

)(AB

A

P(F|B,C)

P(G|F)

P(D|A,B)

P(C|A)

P(A)

P(B|A)

G

F

C

A

D

B

)(FF

G

),(CBC

F

),(BAB

D

),(BAB

C

)(AA

B

)(FG

F

),(CBF

C

),(BAD

B

),(BAC

B

)(AB

A

BTE: full Execution

Each bucket can
Compute its
marginal probability

BTE

Theorem: When BTE terminates

The product of functions in each
bucket is the beliefs of the
variables joint with the evidence.

20

Top-down and bottom-up
Messages obey same rule:
Lets have one name, lambda

Bucket tree Elimination (BTE)
Bucket-tree Propagation (BTP)

21

Properties of BTE

 Theorem (correctness) 6.1.4 Algorithm BTE when applied to a Bayesian
or Markov network is sound. Namely, in each bucket we can exactly
compute the exact joint function of every subset of variables and the
evidence.

 (follows from imapness of trees)

22

•Theorem 6.1.5 (Complexity of BTE) Let w* be the induced width of G
along ordering d, let r be the number of functions and k the maximum
size of a domain of a variable. The time complexity of BTE is O(r deg
k^{w*+1}), where deg is the maximum degree in the bucket-tree.
The space complexity of BTE is O(n k^w*.)

From a bucket-tree to a join-tree

 Merge non-maximal buckets into maximal clusters.

 Connect clusters into a tree: each cluster to one with
which it shares a largest subset of variiables.

 Separators are the intersection of variables on the
arcs of the tree.

 The cluster tree is an i-map.

23

24

F

B,C A,B

A,B

G,F

A,B,C

D,B,A

B,A

A

F,B,C

(A)

F

G,F

A,B,C,D,F

(C)

From buckets to superbucket
to clusters

D

G

A

B C

F

A super-bucket-tree is an i-map of the Bayesian network

F

B,C

G,F

A,B,C

D,B,AF,B,C

(B) Allows time and
space tradeoff

25

u v

x1

x2

xn

  


),()},({)(
),(

:message theCompute

vu uvhuclusterf
fvuh

elim

Same Message Passing

h(u,v)

)},(),,(),...,,(),,({)()(21 uvhuxhuxhuxhuucluster n

Elim(u,v) = cluster(u)-sep(u,v)

26

Tree decompositions
(more formal)

property)on intersecti (running subtree connected

 a forms set the bleeach variaFor 2.

 and

such that vertex oneexactly is therefunction each For 1.

:satisfying

and sets, twox each verte with gassociatin functions,

labeling are and and treea is where,,, triple

 a is network belief afor A

χ(v)}V|X{vXX

χ(v))scope(pψ(v)p

Pp

Pψ(v)

Xχ(v)Vv

ψχ(V,E)TT

X,D,G,PBNiondecomposit tree

ii

ii

i

















A B C

p(a), p(b|a), p(c|a,b)

B C D F

p(d|b), p(f|c,d)

B E F

p(e|b,f)

E F G

p(g|e,f)

EF

BF

BC

G

E

F

C D

B

A

Belief network Tree decomposition

Minimal Tree-Decompositions

27

Minimal tree-decompositions are called Join-trees or junction-trees

28

G

E

F

C D

B

A

)p(b|a

)p(a

),| bap(c

),dp(f|c

)P(d|b

),| fbp(e

), fp(g|e

Tree Decomposition for belief updating

29

G

E

F

C D

B

A

)p(b|a

)p(a

),| bap(c

),dp(f|c

)P(d|b

),| fbp(e

), fp(g|e

Tree Decomposition for belief updating

A B C

p(a), p(b|a), p(c|a,b)

B C D F

p(d|b), p(f|c,d)

B E F

p(e|b,f)

E F G

p(g|e,f)

EF

BF

BC

30

),|()|()(),()2,1(bacpabpapcbh
a



),(),|()|(),()2,3(

,

)1,2(fbhdcfpbdpcbh
fd



),(),|()|(),()2,1(

,

)3,2(cbhdcfpbdpfbh
dc



),(),|(),()3,4()2,3(fehfbepfbh
e



),(),|(),()3,2()4,3(fbhfbepfeh
b



),|(),()3,4(fegGpfeh e
G

E

F

C D

B

A

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

BCDF

Time: O (exp(w+1))
Space: O (exp(sep))

CTE: Cluster Tree Elimination

For each cluster P(X|e) is computed, also P(e)

31

32

Let Ci and Cj two adjacent clusters and sep(i,j) be their separator

   
 


),lim(),lim(

)(
jie Cf ije Cfi j

ffsepbel

33

CTE - properties

 Correctness and completeness: Algorithm CTE is correct, i.e. it
computes the exact joint probability in each cluster and
therefore of every single variable and the evidence.

 Time complexity: O (deg  (n+N)  k w*+1)

 Space complexity: O (N  k sep)
where deg = the maximum degree of a node in the cluster-tree

n = number of variables (= number of CPTs)

N = number of nodes in the tree decomposition

k = the maximum domain size of a variable

w* = the induced width

sep = the separator size

34

Treewidth & Separator

Good Tree-width can be generated using good induced-
width ordering heuristics

35

Example of tree-clustering

37

P(X)

P(Y|X) P(Z|X)

P(T|Y) P(R|Y) P(L|Z) P(M|Z)

)(XmZX

)(XmXZ

)(ZmZM)(ZmZL

)(ZmMZ)(ZmLZ

)(XmYX

)(XmXY

)(YmTY

)(YmYT

)(YmRY

)(YmYR













Z

LZMZZX

L

LZ

M

MZ

(Z)m(Z)mXZP(X)m

ZLP(Z)m

ZMP(Z)m

)|(

)|(

)|(

Inference on trees is
easy and distributed











X

LZXZZM

X

MZXZZL

YXXZ

(Z)mXmXZPZm

(Z)mXmXZPZm

(X)mXPXm

)()|()(

)()|()(

)()(

Belief updating = sum-prod

Inference is time and space linear on trees

A tree of binary functions
Is a chordal graph with clusters of size 2

X

Y
Z

MLRT

Acyclic-Networks:
Belief Propagation is easy on
P(E)

38

P(R|E)

E

A

C

B

R

P(B)

P(A|B,E)

P(C|A)

E

A

C

B

R

•P(B|E)

P(A|B,E)

P(C|A,R)

P(E)

P(R|E,A)

P(E) P(B)

P(A|B,E)

P(C|A)
P(R|E)

E
E B

A

P(A|B,E)

P(B|E)

P(E)

P(C|A,R)P(R|E,A)

A,E

E

B,E

A,R

39

Polytrees and Acyclic networks

 Polytree: a BN whose undirected skeleton is a tree

 Acyclic network: A network is acyclic if it has a
tree-decomposition where each node has a single
original CPT.

 Dual network: each scope-cpt is a node and each arc
is denoted by intersection.

 Acylic network (alternative definition): when the dual
graph has a join-tree

 BP is exact on an acyclic network.

 Tree-clustering converts a network into an acyclic
one.

A Glimpse into Pearl’s BP

45

Belief propagation is easy on polytree:
Pearl’s Belief Propagation

1Z 2Z 3Z

1U 2U 3U

1X

1Y

)|(

)(

11

11

uzP

uZ 
)(22

uZ
)(33

uZ
A polytree: a tree with
Larger families

A polytree decomposition

P(z1|u1) P(z2|u2) P(z3|u3)

P(u3)P(u1) P(u2)

P(X1|,u1,1,u2,u3)

P(y1|x1)

Running CTE = running Pearl’s BP over the dual graph
Dual-graph: nodes are cpts, arcs connect non-empty
intersections.
BP is Time and space linear

46

From exact to approximate:
Iterative Belief Propagation
 Belief propagation is exact for poly-trees

 IBP - applying BP iteratively to cyclic networks

 No guarantees for convergence

 Works well for many coding networks

)(11
uX

1U 2U 3U

2X1X

)(12
xU

)(12
uX

)(13
xU

) BEL(U

 update

:step One

1

Dual graphs, join-graphs

47

Dual join-graphs examples

48

49

Iterative Belief propagation

50

Exact Reasoning by Search

 Why consider search?

 Can we do any better in search?

 Can we combine search and inference?

51

Conditioning generates
the probability tree





0

),|(),|()|()|()()0,(
ebcb

cbePbadPacPabPaPeaP

Complexity of conditioning: exponential time, linear space

52

Conditioning+Elimination





0

),|(),|()|()|()()0,(
edcb

cbePbadPacPabPaPeaP

Idea: conditioning until of a (sub)problem gets small*w

53

Loop-cutset decomposition

 You condition until you get a polytree

B

CB

F

A

B

CB

F

A=0 A=0 A=0

B

CB

F

A=1 A=1 A=1

P(B|F=0) = P(B, A=0|F=0)+P(B,A=1|F=0)

A=0 A=1

Loop-cutset method is time exp in loop-cutset size
and linear space. For each cutset we can do BP

Conditioning and Cycle cutset

C
P

J A

L

B

E

DF M

O

H

K

G N

C
P

J

L

B

E

DF M

O

H

K

G N

A

C
P

J

L

E

DF M

O

H

K

G N

B

P

J

L

E

DF M

O

H

K

G N

C

Cycle cutset = {A,B,C}

C
P

J A

L

B

E

DF M

O

H

K

G N

C
P

J

L

B

E

DF M

O

H

K

G N

C
P

J

L

E

DF M

O

H

K

G N

C
P

J A

L

B

E

DF M

O

H

K

G N

55

Search over the Cutset (cont)

A=yellow A=green

B=red B=blue B=red B=blueB=green B=yellow

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

• Inference may require too much memory

• Condition on some of the variables

A
C

B K

G

L

D

F
H

M

J

E

Graph
Coloring
problem

56

Variable elimination with conditioning;
w-cutset algorithms

 VEC-bel:

 Identify a w-cutset, c_w, of the network

 For each assignment to the cutset solve by
CTE the conditioned sub-problem

 Aggregate the solutions over all cutset
assignments.

 Time complexity: exp(|C_w|+w)

 Space complexity: exp(w)

57

Time vs Space for w-cutset

• Random Graphs (50 nodes, 200 edges, average degree 8, w*23)

Branch and bound

Bucket
elimination

0

10

20

30

40

50

60

w

W
+

c
(w

)

space

time

(Dechter and El-Fatah, 2000)
(Larrosa and Dechter, 2001)
(Rish and Dechter 2000)

W-cutset time O(exp(w+cutset-size))
Space O(exp(w))

Hybrid of Variable-elimination and Search

 Tradeoff space and time

58

59

X1

X3

X5X4

X2

Search Basic Step:
Conditioning

60

X1

X3

X5X4

X2
• Select a variable

Search Basic Step:
Conditioning

61

X1

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

…...

…...

X1  a

X1  b

X1  c

Search Basic Step:
Conditioning

62

X1

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

…...

…...

X1  a

X1  b

X1  c

General principle:

Condition until tractable

Then solve sub-problems

efficiently

Search Basic Step:
Variable Branching by Conditioning

63

X1

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

X3

X5X4

X2

…...

…...

X1  a

X1  b

X1  c

Example: solve subproblem

by inference, BE(i=2)

Search Basic Step:
Variable Branching by Conditioning

64

The Cycle-Cutset Scheme:
Condition Until Treeness

• Cycle-cutset

• i-cutset

• C(i)-size of i-cutset

Space: exp(i), Time: O(exp(i+c(i))

65

Eliminate First

66

Eliminate First

67

Eliminate First

Solve the rest of the problem

by any means

68

Hybrids Variants

 Condition, condition, condition … and then
only eliminate (w-cutset, cycle-cutset)

 Eliminate, eliminate, eliminate … and then
only search

 Interleave conditioning and elimination (elim-
cond(i), VE+C)

69

Interleaving Conditioning and Elimination
(Larrosa & Dechter, CP’02)

70

Interleaving Conditioning and Elimination

71

Interleaving Conditioning and Elimination

72

Interleaving Conditioning and Elimination

73

Interleaving Conditioning and Elimination

74

Interleaving Conditioning and Elimination

75

Interleaving Conditioning and Elimination

...

...

Algorithm VEC (Variable-
elimination with conditioning)

76

VEC

BE

Complexity of w-cutset (VEC)

77

78

What hybrid should we use?

 w=1? (loop-cutset?)

 w=0? (Full search?)

 w=w* (Full inference)?

 w in between?

 depends… on the graph

 What is relation between cycle-cutset
and the induced-width?

