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Exact Inference Algorithms 
Bucket-elimination

COMPSCI 276, Spring 2011

Class  5: Rina Dechter

(Reading: class notes chapter 4 , Darwiche chapter 6)
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Belief Updating

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea

P (lung cancer=yes | smoking=no, dyspnoea=yes ) = ?
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Probabilistic Inference Tasks
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 Belief updating: E is a subset {X1,…,Xn}, Y subset X-E, P(Y=y|E=e)

 P(e)?

Finding most probable explanation (MPE) 

 Finding maximum a-posteriory hypothesis

 Finding maximum-expected-utility (MEU) decision  
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Belief updating is NP-hard

 Each sat formula can be mapped to a 
Bayesian network query.

 Example:  (u,~v,w) and (~u,~w,y) sat?
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Motivation

 How can we compute P(D)?,  P(D|A=0)? P(A|D=0)?

 Brute force O(k^4)

 Maybe O(4k^2)

A DB CGiven: 
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Belief updating: P(X|evidence)=?

“Moral” graph

A

D E

CB

P(a|e=0)  P(a,e=0)=


 bcde ,,,0

P(a)P(b|a)P(c|a)P(d|b,a)P(e|b,c)=
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d

),,,( ecdah B
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B C
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Variable Elimination

P(c|a)
c
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“Moral” 
graph
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D E

CB
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Bucket elimination 
Algorithm BE-bel (Dechter 1996)


b

Elimination operator

P(a|e=0)

W*=4
”induced width” 
(max clique size)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

e=0

B
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D

E
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e)(a,hD

(a)hE
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e)d,(a,hC
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BE-BEL



IntelligenceDifficulty

Grade

Letter

SAT

Job

Apply

Student Network example

 P(J)?
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Complexity of elimination

))((exp ( * dwnO

ddw  ordering along graph moral of  widthinduced the)(* 

The effect of the ordering:
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More accurately: O(r exp(w*(d)) where r is the number of cpts.
For Bayesian networks r=n. For Markov networks?

BE-BEL
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The impact of observations

Induced graph
Ordered graph Ordered conditioned graph
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Use the ancestral graph only

BE-BEL

“Moral” 
graph

A

D E

CB
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Probabilistic Inference Tasks
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 Belief updating:

 Finding most probable explanation (MPE) 

 Finding maximum a-posteriory hypothesis

 Finding maximum-expected-utility (MEU) decision  
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
b

max
Elimination operator

MPE

W*=4
”induced width” 
(max clique size)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

e=0

B
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e)c,d,(a,hB

e)d,(a,hC
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Algorithm elim-mpe  (Dechter 1996)
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Generating the MPE-tuple

C: 
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Algorithm BE-MPE
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Algorithm BE-MAP
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Variable ordering:
Restricted: Max buckets should
Be processed after sum buckets
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More accurately: O(r exp(w*(d)) where r is the number of cpts.
For Bayesian networks r=n. For Markov networks?
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Finding small induced-width

 NP-complete

 A tree has induced-width of ?

 Greedy algorithms:

 Min width

 Min induced-width

 Max-cardinality

 Fill-in (thought as the best)

 See anytime min-width (Gogate and Dechter)
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Min-width ordering

Proposition: algorithm min-width finds a min-width ordering of a graph



Greedy orderings heuristics
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min-induced-width (miw)
input: a graph G = (V;E), V = {1; :::; vn}
output: An ordering of the nodes d = (v1; :::; vn).
1. for j = n to 1 by -1 do
2. r  a node in V with smallest degree.
3. put r in position j.
4. connect r's neighbors: E  E union {(vi; vj)| (vi; r) in E; (vj ; r) 2  in E},
5. remove r from the resulting graph: V V - {r}.

min-fill (min-fill)
input: a graph G = (V;E), V = {v1; :::; vn}
output: An ordering of the nodes d = (v1; :::; vn).
1. for j = n to 1 by -1 do
2. r a node in V with smallest fill edges for his parents.
3. put r in position j.
4. connect r's neighbors: E E union {(vi; vj)| (vi; r) 2 E; (vj ; r) in E},
5. remove r from the resulting graph: V V –{r}.

Theorem: A graph is a 
tree iff it has both width 
and induced-width of 1.
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Different Induced-graphs
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Min-induced-width
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Min-fill algorithm

 Prefers a node who add the least 
number of fill-in arcs.

 Empirically, fill-in is the best among the 
greedy algorithms (MW,MIW,MF,MC)
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Chordal graphs and Max-
cardinality ordering

 A graph is chordal if every cycle of length at least 4 has a chord

 Finding w* over chordal graph is easy using the max-cardinality 
ordering

 If G* is an induced graph it is chordal chord

 K-trees are special chordal graphs (A graph is a k-tree if all its 
max-clique are of size k+1, created recursively by connection a 
new node to k earlier nodes in a cliques

 Finding the max-clique in chordal graphs is easy (just 
enumerate all cliques in a max-cardinality ordering
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Max-cardinality ordering

Figure 4.5  The max-cardinality (MC) ordering procedure.


