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Sensitivity Analysis

Possible (single) parameter changes:

O If the false negative rate for the scanning test were about
4.63% instead of 10%.

@ If the probability of pregnancy given insemination were about
75.59% instead of 87%.

© If the probability of a detectable progesterone level given
pregnancy were about 99.67% instead of 90%.

The last two changes are not feasible since the farmer does not
intend to change the insemination procedure, nor does he control
the progesterone level.



Network Granularity

We can now build the following network in which the progesterone
level is no longer represented explicitly.

P 0 P B |6y,
(" Pregman ™ yes .8/ yes —ve | .36
no -fve | .106
P S |6,
yes —ve | .10 P U 9u|p
. 4+ .~ no e | .01 yes —ve | .27
{ffil'i.rfe_ff} {ff”?ﬁ?‘“f_‘) s Te) no —fve | .107

The question now is whether this simpler network is equivalent to
the original one from the viewpoint of answering queries.



Network Granularity
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Naive Bayes: blood and urine tests independent given pregnancy

Probability of pregnancy given two negative tests is about 45.09%,
given two positive tests is about 99.61%.

Original structure

Probability of pregnancy given these two negative tests is 52.96%,
given two positive tests is about 99.54%




Network Granularity

Bypassing a variable

Removing the variable, redirecting its parents to its children, and
then updating the CPTs of these children (as they now have
different parents).

Model accuracy

P1’(.) is the distribution after bypassing a variable in Pr(.). The
bypass procedure does not affect model accuracy in case

Pr(q,e) = Pr'(q, e) for all instantiations of query variables Q and
evidence variables E.




Network Granularity

Variable X can be bypassed if it has a child Y

The CPT for variable Y must be updated: 6’;|W = 0 Otbetine

U are the parents of variable X.
V are the parents of variable Y other than X.



Diagnosis |ll: Model from Design

A B
. Problem statement

X Ly ) Given some values for the circuit primary
P N inputs and output (test vector), decide if the
C— ‘ J — D circuit is behaving normally. If not, find the
N most likely health states of its components.
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Try it: Variables? Values? Structure?
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Evidence variables
Primary inputs and output of the circuit, A, B and E.
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A B
__ﬂ Problem statement

X Ly ) Given some values for the circuit primary
Q \“-[-""/ inputs and output (test vector), decide if the
C— ‘ l —D circuit is behaving normally. If not, find the
N most likely health states of its components.
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Evidence variables
Primary inputs and output of the circuit, A, B and E.

Health of components X, Y and Z.




Diagnosis |ll: Model from Design

A B
. Problem statement

X A, Given some values for the circuit primary
Q \““-[ g inputs and output (test vector), decide if the
C— ‘ J — D circuit is behaving normally. If not, find the
N most likely health states of its components.
'\\. Z '/r o
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Query variables
) - D
Health of components X, Y and Z. L (z) /~

Intermediary variables E
Internal wires, C and D.
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Diagnosis lll: Model from Design

B Function blocks
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Primary inputs

No direct causes for primary inputs, A and B: no parents.




Diagnosis |ll: Model from Design

) Function blocks

A B A) _
\_ﬂ (x) [ (Y) The outputs of each
LY ~ block are determined
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Health states
No direct causes for health of X, Y and Z: no parents.

Primary inputs
No direct causes for primary inputs, A and B: no parents.




Diagnosis Ill: Model from Design

Function blocks

The outputs of each
st block are determined
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Primary inputs

No direct causes for primary inputs, A and B: no parents.

Health states
No direct causes for health of X, Y and Z: no parents.

Gate output D
Direct causes of D are gate inputs, A and B, and health of Y.




Diagnosis |ll: Model from Design

D T - Values of
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Health states: ok or faulty

faulty is too vague as a component may fail in a number of modes.

@ stuck-at-zero fault: low output regardless of gate inputs.
@ stuck-at-one fault: high output regardless of gate inputs.

@ input-output-short fault: inverter shorts input to its output.

Fault modes demand more when specifying the CPTs.



Diagnosis |ll: Model from Design

Three classes of CPTs

@ primary inputs (A, B)
@ gate outputs (C, D, E)
@ component health (X, Y, Z)

CPTs for health variables depend on their values

X 0. X 0,
ok .99

ok .99

Eult 01 stuckatO | .005

ALY |- stuckatl | .005

Need to know the probabilities of various fault modes.



Diagnosis |ll: Model from Design

CPTs for component outputs determined from functionality. J
A X C Oc)ax
high ok high | 0
low ok high | 1
CPT for inverter X. high  stuckat0  high | O
low stuckat0  high | 0
high  stuckatl  high 1
low stuckatl  high 1




Diagnosis Ill: Model from Design

CPTs for component outputs determined from functionality. )
A X C | Ocjan
high ok high | 0
low ok high 1
CPT for inverter X. high  stuckat0  high | 0
low stuckatD  high | 0
high  stuckatl  high 1
low stuckatl  high 1

>
If we do not represent health states:

A X C 0

high ok high 0
low ok high 1
high  faulty  high 7
low faulty  high 7

cla,x

Commeon to use a probability of .50 in this case.




A Diagnosis Example

Given test vector e: A=high, B=high, E =low, compute MAP
over health variables X, Y and Z.
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Given test vector e: A=high, B=high, E=Ilow, compute MAP
over health variables X, Y and Z.

Network with fault modes gives two MAP instantiations:
MAP givene | X Y Z

ok stuckat0 ok each probability ~ 49.4%
ok ok stuckatO




A Diagnosis Example

Given test vector e: A=high, B=high, E =low, compute MAP
over health variables X, Y and Z.

Network with fault modes gives two MAP instantiations:

MAP givene | X Y /
ok stuckat0 ok each probability ~ 49.4%
ok ok stuckatO

Network with no fault modes gives two MAP instantiations:

MAP givene | X Y /

ok faulty ok each probability ~ 49.4%
ok ok faulty




Posterior Marginals

Consider the posterior marginals over the health variables X, Y, Z:

State | X Y Z Pr(X,Y,Z|e)
1 ok ok ok 0

2 faulty ok ok 0

3 ok faulty ok 40374

4 ok ok faulty | .49374

5 ok faulty faulty | .00499

6 faulty ok faulty | .00499

7 faulty faulty ok .00249

8 faulty faulty faulty | .00005

@ State 2 is impossible.
@ Y and Z more likely to be faulty together than Y and X.
@ States with faulty Z more likely than states with faulty Y:

Pr(Z = faulty|e) ~ 50.38% > Pr(Y = faulty|e) ~ 50.13%.




Lack of Symmetry for Double Faults

I N =il Bl E=lew
C D : :

L

\Z /

e If Y and Z are faulty, we have two possible states for C and
D: C=low, D either low or high.

o If Y and X are faulty, we have only one possible state for C

and D: C=Ilow and D =low.



Integrating Time

Suppose we have two test vectors instead of only one. )
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Integrating Time

Suppose we have two test vectors instead of only one. |

Additional evidence variables

A B and E’

Additional intermediary variables

C' and D'

Additional health variables on whether we allow intermittent faults

If health of a component can change from one test to another, we
need additional health variables X', Y’, and Z’. Otherwise, the
original health variables are sufficient.

Variables? Values? Structure?



Integrating Time: No Intermittent Faults

Two test vectors

e : A=high, B=high, E=low

e': A=low, B=Ilow, E =low.




Integrating Time: No Intermittent Faults

Two test vectors

e : A=high, B=high, E=low

e': A=low, B=Ilow, E =low.

MAP using second structure

MAP givene.e | X Y Z
‘ok ok faulty

with probability ~ 97.53%




Integrating Time: Intermittent Faults

Dynamic Bayesian network

(DBN)
) Q?i/@ Two test vectors
X._‘__ i
D

e: A=high, B=high. E=low
e': A=low, B=Ilow. E =low.

ok
faulty
ok
faulty

.99
01
001
999

healthy component becomes faulty
faulty component becomes healthy




Channel Coding

Four bits Ui, Uy, U3 and Uy are sent from a source S to a

destination D

over a noisy channel, where there is a 1% chance that a bit will be
inverted before it gets to the destination.




Channel Coding

Four bits Uy, Uy, U3 and Uy are sent from a source S to a

destination D

over a noisy channel, where there is a 1% chance that a bit will be
inverted before it gets to the destination.

To improve the reliability of this process

we will add three redundant bits X1, X2 and X3 to the message,
where X7 is the XOR of U; and U3, X5 is the XOR of U, and Uy,
and X3 is the XOR of U; and U;.




Channel Coding

Four bits Ui, Us, U3z and Uy are sent from a source S to a

destination D

over a noisy channel, where there is a 1% chance that a bit will be
inverted before it gets to the destination.

To improve the reliability of this process

we will add three redundant bits X7, X2 and X3 to the message,
where X7 is the XOR of U; and U3z, X5 is the XOR of U, and Uy,
and X3 is the XOR of U; and U;.

Given that we received a message containing seven bits at

destination D

our goal is to restore the message generated at the source S.

Try it: Variables, values, structure?



Channel Coding
In channel coding terminology

Ui, .... Uy are known as information bits;

X1i,...,X3 are known as redundant bits;

Ui,....Us, Xqi.....X3 is known as the code word or channel input;
Y1i,..., Y7 is known as the channel output.
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Yi...., Y7: bits received at destination D
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Ui, ..., Us: bits originating at source S




Channel Coding
In channel coding terminology

Ui, ..., Uy are known as information bits;

Xi,...,X3 are known as redundant bits;

Ui,..., U4, X1, ..., X3 is known as the code word or channel input;
Y1i,..., Y7 is known as the channel output.

Goal to restore the channel input given some channel output. |

Evidence variables are
Yi...., Y7: bits received at destination D

Query variables are

Ui, ..., Us: bits originating at source S

Bits Xi,.... X3 either query variables or intermediary variables.



Channel Coding

There are three CPT types in
the problem. }
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Channel Coding

There are three CPT types in
the problem. J

Ui Us X1 0

1|ug,u3

CPT for each redundant bit, say Xji:

O O = =
O = O

= = =
O = = O

Pr(xi|ui, u3) = 1 iff xg = ug % u3 (4% is the XOR function) J




Channel Coding

There are three CPT types in
the problem. }
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Channel Coding

YR
T~ There are three CPT types in
the problem.
U Y1 | 0y
CPT for a channel output bit, say Yi: 1 0 | .01
0 1 01

CPT captures the simple noise model given in the problem
statement.




Channel Coding

There are three CPT types in
the problem. }
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Channel Coding

There are three CPT types in
the problem. }

U] 6”1
CPT for information bits, such as U;: 1 5
0 5

Captures the distribution of messages sent out from the source S ]

What queries should we use here?



MAP or Posterior-Marginal (PM) Decoders?

To restore the channel input given channel output

O Compute a MAP for the channel input Uy, ..., Us, X1,...,X3

given channel output Yi,....Y7.
@ Compute the PM for each bit U;/X; in the channel input,
given channel output Y7,..., Y7, and then select the value of

Ui/ Xi which is most probable.




MAP or Posterior-Marginal (PM) Decoders?

To restore the channel input given channel output

O Compute a MAP for the channel input Uy, ..., U, X1,...,X3

given channel output Yi..... Y7.
@ Compute the PM for each bit U;/X; in the channel input,
given channel output Y7,..., Y7, and then select the value of

Ui/ Xi which is most probable.

The choice between MAP and PM decoders is a matter of the }

performance measure one is interested in optimizing.

WER (word error rate), BER (bit error rate)

MAP (MPE) minimizes WER, PM minimize BER...
What do you think?



Noise Models and Soft Evidence

A more realistic and common noise model

Transmitting our code bits x; through a channel that adds
Gaussian noise, with mean x; and standard deviation o.

Channel output Y; is a continuous variable governed by

conditional density function f(y;|x;) = —= e—(vi—xi)? /207

2o
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A more realistic and common noise model

Transmitting our code bits x; through a channel that adds
Gaussian noise, with mean x; and standard deviation o.

Channel output Y; is a continuous variable governed by

conditional density function f(y;|x;) = 2}1_0_29_(}”5_)(5)2X20'2

Can be implemented by interpreting

channel output y; as soft evidence on the channel input X;=0 with
2
a Bayes factor k = ell=2vi)/20




Noise Models and Soft Evidence

A more realistic and common noise model

Transmitting our code bits x; through a channel that adds
Gaussian noise, with mean x; and standard deviation o.

Channel output Y; is a continuous variable governed by

conditional density function f(y;|x;) = 21029_(YE_XE)2X20'2

Can be implemented by interpreting

channel output y; as soft evidence on the channel input X; =0 with
a Bayes factor k = e(1=2%)

/20°

If © = .5 and channel output y; = .1, we interpret as a soft
evidence on channel input X; =0 with a Bayes factor kK =~ 5.
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Convolutional and turbo codes

correspond to different methods for generating redundant bits.




Convolutional Codes

Convolutional and turbo codes

correspond to different methods for generating redundant bits.

Convolutional and turbo codes

provide examples of modeling systems with feedback loops using
dynamic Bayesian networks.




Convolutional Codes

J'b b b
”«k__l_ O*Dl 1”_D2 2

Xok+1

Xok

>

An example convolutional encoder

Each node denoted with a “+" represents a binary addition, and
each box D; represents a delay where the output of D; is the input
of D; from the previous encoder state.




Convolutional Codes

U':I ; Ul E U2 ; Llr?
Dynamic Bayesian network for
S ) {8 {5} (S

o) v 2 > a convolutional code.

® ® ® ®
ONOHONG]




Convolutional Codes

Dynamic Bayesian network for
a convolutional code.

A sequence of replicated slices

where slice k is responsible for generating the codeword bits xo
and xok 41 for the information bit uy.




Convolutional Codes

Dynamic Bayesian network for
a convolutional code.

A sequence of replicated slices

where slice k is responsible for generating the codeword bits xo
and xok41 for the information bit wy.

Each slice has a variable S, representing the state of the encoder

This state is determined by the previous state variable S,_1 and
the information bit Uy.




Turbo Codes

Given four information bits ug, ..., us.



Turbo Codes

Given four information bits ug, ..., us.

In a convolutional code
we generate 4 redundant bits leading to an 8-bit codeword.




Turbo Codes

Given four information bits ug, . ... us.

In a convolutional code

we generate 4 redundant bits leading to an 8-bit codeword.

In a turbo code we apply a convolutional code twice

once on the original bit sequence wug, uy, Uz, uz, and another on
some permutation, say, ui, u3, U, ug. Ihis leads to 8 redundant
bits and a 12-bit codeword.




Turbo Codes
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Lower network represents a convolutional code

for the bit sequence wup, ...

, U3.

Upper network represents a convolutional code

for the bit sequence uy, . ..

, uy.




Turbo Codes

Edges that cross between the networks

are meant to establish the bit sequence uy, ..., u7 (upper network)
as a permutation of the bit sequence ug, ..., u3 (lower network).




Turbo Codes

CPTs for the bit sequence ug, ..., u7

L. if upy = u;;
Quk|uj — { ) J

0, otherwise.

>

Establishes equivalence between Uy in the upper network and U; in



Turbo Codes

Networks corresponding to convolutional codes are
singly-connected: there is only one (undirected) path between any two

variables in the network.

Networks corresponding to turbo codes are Multiply-connected




Commonsense Knowledge
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Parameters based on a combination of sources

@ Statistical information such as reliabilities of sensors and battery.

@ Subjective beliefs relating to how often the wife goes out, guests are
expected, the dog has bowel trouble, etc.

@ Objective beliefs regarding the functionality of sensors.




Genetic Linkage Analysis

G, (AA) [ I;l;\ John | G (@.a)
Gy (BB) \ "/ G,: (b,b)
G, (Aa) ' Tack I/;l;\l G;: (a,a)
G,:(Bb) |~ "/ Gy (bb)
Variables, values, ‘
structure? L iR _
G‘r' {AIH.J Iq_xd';\l Ifl*/Janc:‘l G‘r' {A.a,.l
Gy (bb) N\ . / Gy (Bb)

A pedigree involving six individuals

Squares represent males, circles represent females. Horizontal
edges connect spouses, while vertical edges connect couples to
their children. For example, Jack and Sue are a couple with two
daughters, Lydia and Nancy.




Genetic Linkage Analysis

A pedigree

is useful in reasoning about heritable characteristics which are
determined by genes, where different genes are responsible for the
expression of different characteristics.




Genetic Linkage Analysis
The ABO gene

is responsible for determining blood type. This gene has three
alleles: A, B and O. Since each individual must have two alleles

for this gene, we have six possible genotypes in this case.




Genetic Linkage Analysis

The ABO gene

is responsible for determining blood type. This gene has three
alleles: A, B and O. Since each individual must have two alleles
for this gene, we have six possible genotypes in this case.

There are only four different blood types

Genotype Phenotype
A/A Blood type A
A/B Blood type AB
A/O Blood type A
B/B Blood type B
B/O Blood type B
0/0 Blood type O

If someone has the blood type A, they could have the pair of
alleles A/A or the pair A/ O for their genotype.




Genetic Linkage Analysis

The phenotype is not always determined precisely by the genotype. |
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A disease gene with two alleles H and D

Genotype | Phenotype
H/H healthy
H/D healthy
D/D ill with probability .9
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The phenotype is not always determined precisely by the genotype. |

A disease gene with two alleles H and D

Genotype | Phenotype
H/H healthy
H/D healthy
D/D ill with probability .9

Penetrance

The conditional probability of observing a phenotype (e.g., healthy,
ill) given the genotype (e.g., H/H, H/D, D/D).




Genetic Linkage Analysis

The phenotype is not always determined precisely by the genotype. |

A disease gene with two alleles H and D

Genotype | Phenotype
H/H healthy
H/D healthy
D/D ill with probability .9

Penetrance

The conditional probability of observing a phenotype (e.g., healthy,
ill) given the genotype (e.g., H/H, H/D, D/D).

Penetrance is always 0 or 1 for the ABO gene.
Penetrance is .9 for the phenotype ill given the genotype D /D.




Recombination Events

Haplotype

The alleles received by an individual from one parent. Each
individual has two haplotypes, one paternal and another maternal.

G,: (AA) / o

\ G faa)
G, (B.B) ") fon |+ ,_E.E;
Gpr(Aa) || (o) O (9 Gene Gjp has alleles A and a.
G, (B.b) ) Gy (b
Gene Gy has alleles B and b.

G (Aa) (7 ™ N Gy (Aa)
.t Lydia | | Nancy ! .
G, (bb) ‘\'_J/’ ‘\ /’ G, (Bb)



Recombination Events

@ Mary can pass only one

G, (AA) /7 G (aa) ]
Gy (B.8) M) dohn | haplotype to her child
Jack: AB.
Gy: (Aa) 7N Gy (aa)
G BB | ™ (5%) G (b @ John can pass only one
haplotype to Jack: ab.

@ Jack can pass one of four
haplotypes to his children:

G, (Aa) /7 7N Gy (Aa)
G;: (b.;;l "\%dfj;' xr\qf"fjf' Gi-‘ (B.b) AB Ab BB._ ab.




Genetic Linkage and Gene Maps

If two genes are inherited independently

the probability of a recombination is expected to be 1/2.

Genetic linkage

Two alleles which were passed in the haplotype from a grandparent
to a parent tend to be passed again in the same haplotype from
the parent to a child.

Goal of genetic linkage analysis

Is to estimate the extent to which two genes are linked.




Genetic Linkage and Gene Maps

The extent to which genes Gi and Gy are linked

Is measured by a recombination fraction or frequency, 6, which is
the probability that a recombination between G; and Gy will occur.

Genes that are inherited independently

are characterized by a recombination frequency 6 = 1/2 and are
said to be unlinked. Linked genes on the other hand are
characterized by a recombination frequency 6 < 1/2.




Genetic Linkage and Gene Maps
_~Genell Linkage between genes

i s B1 . . .
 Gemea- Is related to their locations on

e 2 a chromosome within the cell
nucleus. These locations are
typically referred to as loci
(singular: locus).




Genetic Linkage and Gene Maps

Gene2 Is related to their locations on

§ -0, a chromosome within the cell
nucleus. These locations are
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Genetic Linkage and Gene Maps

- Genel Linkage between genes

i >“91 . . .
 Gene2- Is related to their locations on

S 0, a chromosome within the cell
nucleus. These locations are
typically referred to as loci
(singular: locus).

For genes that are closely located on a chromosome

linkage is inversely proportional to distance between their locations.

The recombination frequency can provide direct evidence

on the distance between genes on a chromosome.




The Likelihood of a Hypothesis

Given a pedigree, together with some information about the
genotypes and phenotypes of involved individuals

we want to develop a Bayesian network which can be used to
assess the likelihood of a particular recombination frequency.
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A Bayesian network structure corresponding to a simple pedigree

involving three individuals numbered 1,2 and 3. Each individual
has three genes numbered 1,2 and 3, which are assumed to be in
this order on a chromosome.
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If SP;; = p then individual / will inherit the allele of gene j
that his father obtained from the grandfather.

If SPjj = m then individual / will inherit the allele of gene j

that his father obtained from the grandmother.
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For each i and gene j, the CPTs for genotype variables

GPU and GMU

are usually obtained from population statistics collected by
geneticists.




From Pedigrees to Bayesian Networks

g g £ ™
\GFu) (G D, ’:?_T,v
; \ /7
— - “""-\.\__ - — —

(Pu - - Child:3 _——"— >
TN e ) \, (SM) TN TN
NG AN \Epjuﬂf’/{;;\l E\;\f'ﬁ e \G ) \GMz)

WL [T Ny

) TR T @&
o N (g \5 ) TN N @M"‘Q CHICD
\GFis ) '\E:M_E/ __f{"._G i‘;} f)\/étfyr" T N EATT

T —p S ! ."'
%"EE'L };’3_:{/ _-__4—-"'{5"#&'}{‘{
P T 1y
Father: 1 kﬁ_jjac:\ PR Maother: 2
GFy;) L\‘-—"_Mii "
= 7_/
(p.)
N3

For each individual 7 and gene j, the CPT for the phenotype P;

may be deterministic or probabilistic as we have seen earlier.
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For each

variables GP;; and GMj;

follow deterministically from the semantics of selector variables.
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1, if sp; = p and gp; = gpy;
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(1, if spj = p and gpj = gpy;
1, if spjj = m and gp;; = gmy;;
0, otherwise.

Qgpg |8Pkjs&Mkj,SPij \
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(1. if spj = p and gpji = gpy;
1, if sp;j = m and gp;; = gmy;;
0, otherwise.

Oap;lepig.emig.sp; = <

If SP;; = p then the allele GPj; for individual / and gene j

will be inherited from the paternal haplotype of his father k, GPy;
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(1, if spj = p and gpjj = gpy;
1, if sp;j = m and gpj; = gmy;;
0, otherwise.

Oep;lepig.amig.spy =

If SP;; = p then the allele GP;; for individual / and gene j

will be inherited from the paternal haplotype of his father k, GP;

If SP;; = m then the allele GP;; for individual / and gene j

will be inherited from the maternal haplotype of his father k, GM|;
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CPTs of selector variables

host our hypotheses about recombination frequencies.

To produce a distance map for genes

we need the distance between genes 1 and 2, and the distance
between genes 2 and 3 which are indicated by recombination

frequencies #12 and 3.
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Selectors of first gene SP31 and SM31 have uniform CPTs

This means that parents pass paternal or maternal alleles with
equal probability for this gene.
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CPT for selector variable SPs3

encodes the recombination
frequency 612
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CPT for selector variable SP35

encodes the recombination
frequency 612

recombination between genes 1 and 2
recombination between genes 1 and 2
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Putting the Network to Use

Given network that induces distribution Pr(.)

If g is evidence about the genotype and p is evidence about the
phenotype, then Pr(g, p) represents the likelihood of
recombination frequencies included in the network CPTs.

By changing the CPTs for selector variables (which host the
recombination frequencies) and recomputing Pr(g, p)

we will be able to compute the likelihoods of competing
hypotheses about genetic linkage.

For a given hypothesis 8;; the score log Pr%(g,p)/Pr>(g, p)

s typically used to quantify the support for this hypothesis, which
Is meant to be normalized across different pedigrees.




Linkage analysis with pedigree data

GIVEN:

e A set of pedigrees, and some trait of interest.

e A set of DNA markers, with known genetic model
(genetic map, and allele frequencies).

e Data on trait(s) and at markers,
for some subset of the individuals. Trt?

QUESTION: Testing and estimation.

e Does any DNA on the chromosome of the
markers affect the trait? Hpy @ No.

e [T 50, what is the likely location of this DNA,
relative to markers.

M1
M2

M3

V4

M5

M6

M7



Bayesian Network for Recombination

Locus 1

Locus 2

1-6 6

[]
P(S,,, | 5;5,0) = wheret [J {m,
(Szc | S13,0) EH 9% {m,f}

101



Dealing with Large CPTs

The size of a CPT

for binary variable E with binary parents Cq..... C,
Number of Parents: n | Parameter Count: 2"
2 4
3 3
6 64
10 1024
20 1,048,576
30 1,073,741,824




Micro Model

A noisy-or circuit

A micro model

details the relationship between a variable E and its parents

Ci,..., Ch.

We wish to specify cpt with less parameters



Noisy-or Model

L |l
| _| |\.___,,f' S
|
L
\1____ s
E!

@ Cause (; is capable of establishing effect E, except under some
unusual circumstances summarized by suppressor Q;.

@ When suppressor Q; is active, C; is no longer able to establish E.

@ The leak variable L represents all other causes of E which were not
modeled explicitly.

@ When none of the causes C; are active, the effect E may still be
established by the leak variable L.



Noisy—or Model

!
L_J | | The noisy-or model requires }

n+ 1 parameters.




Noisy—or Model

| ] . .
NN J N The noisy-or model requires
n + 1 parameters. J

To model the relationship between headache and ten different
conditions

@ 0, = Pr(Q;=active): probability that suppressor of C; is active.

@ 6 = Pr(L=active): probability that leak is active.
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Noisy-or Model

@ Let /, be the indices of causes that are active in «.

o If
«v: (1 =active, (o =active, (3 =passive, (4 = passive, (5 = active,

then I, = {1,2,5}.
@ We then have
Pr(E =passive|ar) = (1—6)) H Oq,

i€la
Pr(E =active|a) = 1 — Pr(E=passive|a).



Noisy-or Model

@ Let /, be the indices of causes that are active in a.

o If
«v: (7 =active, (o = active, (3 =passive, (4 = passive, Cg = active,

then [, ={1,2,5}.
@ We then have
Pr(E =passive|ar) = (1 —16)) H O,

icly
Pr(E =active|a) = 1 — Pr(E=passive|a).

The full CPT for variable E, with its 2" parameters, can be
induced from the n + 1 parameters of the noisy-or model.
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Sore throat (S) has three causes: cold (C), flu (F), tonsillitis (T).




Noisy-or Model

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis ( T).

If we assume that S is related to its causes by a noisy-or model

we can then specify the CPT for S by the following four probabilities:

@ [ he suppressor probability for cold, say .15
@ [he suppressor probability for flu, say, .01

@ [ he suppressor probability for tonsillitis, say .05

@ [he leak probability, say .02
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Sore throat (S) has three causes: cold (C), flu (F), tonsillitis ( T).




Noisy-or Model

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis (T).

The CPT for sore throat is then determined completely as follows:

C F T S Osic.f.t

true true true true 0.9999265 | 1 — (1 —.02)(.15)(.01)(.05)
true true false true 0.99853 1 —(1—-.02)(.15)(.01)

true false true true 0.99265 1 —(1—.02)(.15)(.05)
false false false true .02 1—(1—-.02)
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If-Then Rules

A CPT for variable E can be represented using a set of if-then

rules of the form

If v then Pr(e) = pj, for each value e of variable E, where a; is a
propositional sentence constructed using the parents of variable E.




If-Then Rules

A CPT for variable E can be represented using a set of if-then

rules of the form

If vj then Pr(e) = pj, for each value e of variable E, where «; is a
propositional sentence constructed using the parents of variable E.

If =1 then Pr(E=1)=0.0
If G=0A G =1 then Pr(E=1)=0.9
If G=0ACG=0ACs=1 then Pr(E=1)=0.3

|f C1:O/\C2:O/\C3:O/\C4:1 then PI(E:].):Oﬁ
|f C]_:O/\ CQIO/\C3:0/\C4:0 then PI‘(E:].):OS
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If-Then Rules

A CPT for variable E can be represented using a set of if-then

rules of the form

If aj then Pr(e) = p;, for each value e of variable E, where «; is a
propositional sentence constructed using the parents of variable E.

For the rule-based representation to be complete and consistent

@ The premises cv; must be mutually exclusive. That is, a; A «;
is inconsistent for / # j. This ensures that the rules will not
conflict with each other.

@ The premises a; must be exhaustive. That is, \/; @; must be
valid. This ensures that every CPT parameter 0, is implied
by the rules.




Deterministic CPTs

A deterministic, or functional CPT

is one in which every probability is either 0 or 1

A deterministic CPT for variable E with values e1, ..., en

can be represented by a set of propositional sentences of the form:
[} <— E—=¢.

where we have one rule for each value ¢ of E, and the premises [
are mutually exclusive and exhaustive.

o

The CPT for variable E is then given by

1, if parent instantiation « is consistent with [;;
Oeia = i
0, otherwise.




Deterministic CPTs

A X C 0c|a,x
high ok high 0
low ok high 1
high stuckatO high O
low stuckatO high O
high stuckatl high 1
low stuckatl high 1

We can represent this CPT as follows

(X =0k AN A=high) vV X =stuckat0 <= C=low
(X=o0ok N A=low) V X =stuckatl <= C=high
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