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BAYESIAN NETWORKS

/Rmmuced and non-transitive dependencies

Employ meaningful parameters

. d-separation: paths that traverse converging arrows are blocked
until the consequence variable (or any of its descendents) is
instantiated.

coin I — bell « coin 2

e  d-separation is the usual cutset criterion whenever the arrows are
diverging (height « age — reading ability) or cascaded (weather
— wheat crop — wheat price).

1. Given a probability distribution P, can we construct an
edge-minimal DAG D that is an /-map of P ?

2. Given a pair (P, D) can we test whether D is a (minimal) /-
map of P ?

3. Given a DAG D, can we construct a probability distribution
P such that D is a perfect map of P?



d-speration

= To test whether X and Y are d-separated by Z in dag G, we
need to consider every path between a node in X and a node in
Y, and then ensure that the path is blocked by Z.

= A path is blocked by Z if at least one valve (node) on the path
is ‘closed’ given Z.

= A divergent valve or a sequential valve is closed if it is in Z

= A convergent valve is closed if it is not on Z nor any of its
descendants are in Z.



DEPENDENCE SEMANTICS FOR BAYESIAN NETWORKS

DEFINITION: If X, Y, and Z are three disjoint subsets of nodes in a
DAG D, then Z is said mX from ¥, denoted
<X | Z 1Y >p, if there is no path bérw anode in X and anodein¥
along which the following two conditions hold: (1) every node with
converging arrows is in Z or has a descendent in Z and (2) every other
node is outside Z.

. If a path satisfies the condition above, it is said to be active;
otherwise, it is said to be blocked by Z .

<21113>p , =<211513>,

Figure 3.10. A DAG depicting d-separation; node 1 blocks
the path 2-1-3, while node 5 activates the path 2-4-3.

No path

Is active =
Every path is
blocked



BAYESIAN NETWORKS AS I-MAPS

DEFINITION: A DAG D is said to be an I-map of a dependency
model M if every d-separation condition displayed in D corresponds to
a valid conditional independence relationship in M, i.e., if for every
three disjoint sets of vertices X, ¥, and Z we have

<XIZ\Ysp = I(X,Z,Y),.

. A DAG is a minimal [-map of M if none of its arrows can be
deleted without destroying its / -mapness.

DEFINITION: Given a probability distribution P on a set of variables
U, a DAG D =(U,E) is called a Bayesian network of P iff D is a
minimal /-map of P .



CONSTRUCTING A BAYESIAN NETWORK
FOR ANY GIVEN DISTRIBUTION P

DEFINITION: Let M be a dependency model defined on a set
U={X,X,,...X,} of elements, and let d be an ordering
(X1, X,,..., X;,...) of the elements of U,

. The boundary strata of M relative to d is an ordered set of
subsets of U, (B, B,,..., B;,...), such that each B; is a Markov
boundary of X; with respect to the set Uy = {X |, X,..... X; 1, i.e.,
B, is a minimal set satisfying B; c Uy, and I (X;, B;, U;, - B,).

. The DAG created by designating each B; as parents of vertex X, is
called a boundary DAG of M relative to d.

THEOREM 9: [Verma 1986]: Let M be any semi-graphoid (i.e., any
dependency model satisfying the axioms of Egs. (3.6a) through (3.6d)).
If D is a boundary DAG of M relative to any ordering d, then D is a
minimal /-map of M.



Constructing a Bayesian Network for
any distribution P

COROLLARY 3: Given a probability distribution P (x|, x5,..., x,) and
any ordering d of the variables, the DAG created by designating as
parents of X; any minimal set Iy of predecessors satisfying

PI:J.’; I"X.') =P(J.'I- |I1,...,.1"-_1) R l'IXi o [Xl,XQ,..,,X;_]} (3.27)

is a Bayesian network of P.
1s strictly positive, then all of the parent sets are unique (see >
&rﬁm 4) and the Bayesian network is unique (given d).

Given a DAG D and a probability distribution P;

essary and sufficient condition for D to be a Bayesian network of P
is that each variable X be conditionally independent of all its non-
descendants, given its parents Ily, and that no proper subset of Tl
isfy this condition.




ayesian networks as i-maps

E: Employment

V: Investment )
H: Health

W: Wealth /

C: Charitable ©
contributions

P: Happiness

@
S ®

Are C and V d-separated give E and P?
Are C and H d-separated?



Idsep(R, EC, B)'P

_ B R and B are d-separated by E

/M/ and C. The closure of only one
- valve is sufficient to block the

GadioD :;.l_all_lh C oy -
(R @ path, therefore, establishing
| d-separation.
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/\ e R and C are not d-separated
open .
since both valves are open.

Cirgii)OD Algn)xh, Hence, the path is not blocked
— open MT_/ and d-separation does not hold.
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i D-seperation using ancestral graph

= X is d-separated from Y given Z (<X,Z,Y>qd) iff:

= Take the the ancestral graph that contains X,Y,Z and their
ancestral subsets.

= Moralized the obtained subgraph
= Apply regular undirected graph separation
= Check: (E{},V),(EP,H),(CEW,P),(CE,HP)?
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Idsep(c,s, B) =7

Visit to Asia?
(A)

Tuberculosis?

(T

P ——

Lung Cancer?
iC)
R

Tuberculosis or Cancer?

(P
Positive X-Ray?
(0




Idsep(c,s, B)

I/- Visit to Asia? -\\I /,- Smoker?
) L N

< o ) C and B are d-separated by S
since both paths between them

é—x =T are blocked by S.

uberculosis or Cancer? ™ |

b : |

. (F) - A |'I
(-r./?:—____________ closed I|
— . ]

- _c"f e SN
+ Positive K—Ra}-‘ﬁ) (’/ Dyspnoea? I
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Ipr(S1. S2,{S3, S4}) for any probability distribution Pr which is
induced by the DAG.




Any path between S; and {53, 5,4}
. ~ . _ must have the valve 5;—5,—5;

| on it, which is closed given 5.

| ‘ T | Hence, every path from $; to

{S3, 54} is blocked by S5, and we
_ have dsepg(S1. 52,153, 54}),

( ) (0,) ) O which leads to

Y N Y (51,50 {S5. 5a)),

Ipr(S1. S2,{S3, S4}) for any probability distribution Pr which is
induced by the DAG.



Capturing Independence Graphically

These examples of independence are all implied by a formal
interpretation of each DAG as a set of conditional independence
statements.

Given a variable V in a DAG G:

Parents(V') are the parents of V' in DAG G, that is, the set of
variables N with an edge from N to V.

Descendants(V) are the descendants of V' in DAG G, that is, the
set of variables N with a directed path from V' to N
(we also say that V is an ancestor of N in this case).

Non_Descendants( V') are all variables in DAG G other than V,
Parents(V) and Descendants(V'). We will call these
variables the non-descendants of V' in DAG G.




Capturing Independence Graphically

We will formally interpret each DAG G as a compact
representation of the following independence statements

(Markovian assumptions):

[(V,Parents(V), Non_Descendants(V)),

for all variables V' in DAG G.

e If we view the DAG as a causal structure, then Parents( V)
denotes the direct causes of V' and Descendants(V') denotes

the effects of V.

@ Given the direct causes of a variable, our beliefs in that
variable will no longer be influenced by any other variable
except possibly by its effects.



Completeness of d-separation

It is not a d-map
d-separation is not complete in the following sense:

@ Consider a network with three binary variables X—Y— /.
@ / is not d-separated from X.

@ / can be independent of X in a probability distribution
induced by this network.

Choose the CPT for variable Y so that 0, = 6,x.
Y independent of X since

e Pr(y) = Pr(y|x) = Pr(y|x) and
o Pr(y) = Pr(y[x) = Pr(y[x).
Z is also independent of X.




i Perfect Maps for Dags

= Theorem 10 [Geiger and Pearl 1988]: For any dag D
there exists a P such that D is a perfect map of P
relative to d-separation.

= Corollary 7: d-separation identifies any implied
independency that follows logically from the set of
independencies characterized by its dag.

19



GENERALIZATION OF CELEBRATED
MARKOV CHAIN PROPERTY

¢ Ifin a sequence of n trials X |, X,...., X,, the outcome of any trial
Xy (where 2 <k < n) depends only on the outcome of the directly
preceding trial X, _,, then, given the entire sequence, the outcome
of X depends only on its predecessor and successor, X;_, and
Xyt

T X, Xy X)) = TXL X X Xy - X0 Xpin 0 X))

] Theorem 9 generalizes the Markov chain property to non-
probabilistic dependencies and to structures that are not chains.

COROLLARY 6: In any Bayesian network, the union of the following
three types of neighbors is sufficient for forming a Markov blanket of a
node X: the direct parents of X, the direct successors of X, and all
direct parents of X 's direct successors.

The ancestral undirected graph G of a directed graph D is
An i-ma of D. Is it a Markov network of D?



Blanket Examples

If Pr is induced by DAG G, then a Markov blanket for variable X
with respect to Pr can be constructed using its parents, children,
and spouses in DAG G. Here, variable Y is a spouse of X if the
two variables have a common child in DAG G.

0,) (0,) (0,

{S¢1,S¢11, O¢} is @ Markov

{S,P, T} is a Markov blanket for blanket for every variable S;,
. where t > 1

variable C B - -




Capturing Independence Graphically

Eatrthql.la\keﬂ'r Gul‘g aryﬁ
(B ® 7 . )

— I(C,A {B,E,R)}
I(R.E,{A,B,C})
- (A {B,E},R)
. I(B.0.{E.R})
T I(E,0,B)
CCil-ﬁ
©_

Note that variables B and E have no parents, hence, they are
marginally independent of their non-descendants.
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Capturing Independence Graphically
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/ Radio? ™
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Every independence which is declared (or implied) by the second
DAG is also declared (or implied) by the first one. Hence, if we
accept the first DAG, then we must also accept the second.



Bayesian networks as
i Knowledge-bases

= Given any distribution, P, and an ordering we can
construct a minimal i-map.

= The conditional probabilities of x given its parents is
all we need.

= In practice we go in the opposite direction: the
parents must be identified by human expert... they

can be viewed as direct causes, or direct influences.
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BAYESIAN NETWORK AS A KNOWLEDGE BASE

STRUCTURING THE NETWORK

Given any joint distribution P (x, ..., x,) and an ordering d of the
variables in U, Corollary 4 prescribes a simple recursive
procedure for constructing a Bayesian network.

Choose X | as a root and assign to it the marginal probability P (x )
dictated by P (x,..., x,, ).

If X, is dependent on X |, a link from X, to X, is established and
quantified by P(x,lx;). Otherwise, we leave X; and X,
unconnected and assign the prior probability P (x,) to node X ,.

At the i-th stage, we form the node X;, draw a group of directed
links to X; from a parent set Ily defined by Eq. (3.27), and
quantify this group of links by the conditional probability
P (x; Iny ).

The result is a directed acyclic graph that represents all the
independencies that follow from the definitions of the parent sets.



Conversely, the conditional probabilities P (x; lmy ) on the links of

the DAG contains all the information necessary for reconstructing
the original distribution function.

P Xy Xo0 X, ) =P (X, 1, g5, X)) P (X _y 1 Xy 90y X 1)

o Pxglxg, x ) P(xslx) Pxy)

= ﬂ P l:xi' I'I'lxi}. (3.28)
i
For example, the distribution corresponding to the DAG of Figure
3.11 can be written by inspection:
P(x), x4, X3, X4, X5, Xg) (3.29)

=Pxglxs) Plxslxs, xq) Plxglxy, x50 Plxglx ) Plxsylxy) Pixy).

Figure 3.11. A Bayesian network representing the distribution
Plxglxs) Plxslxgxs) Plxglxsxs)
Plxslx)) Plxylx,) Pix)).



e  Inpractice, P (x,,...,x, ) is not available.
e  The parent sets Iy must be identified by human judgment.

. To specify the strengths of influences, assess the conditional
probabilities P(x; Iny ) by some functions F;(x;,ny) and make
sure these assessments satisfy

Y Filg,ng)=1, (3.30)
X

where 0< F(x;,ny) <1

. This specification is complete and consistent because the product
form

Po(xy, o x, ) =11 F;(x;, ny ) (3.31)
i

constitutes a joint probability distribution that supports the
assessed quantities.

b P (xq...x,)
Pa(x;, ny,) x; & (x; wily)

P, (ny)

Py (x; Iny,) = =F; (x;, my Y332

Y Pixq..x,)
J:Ji & "x"

. DAGs constructed by this method will be called Bayesian belief
networks or causal networks interchangeably.



Assessing the parameters of P (x; |Ily) requires estimating the
likelihood that the event X; =x; will occur, given every
instantiation of the variables in Ty

If the number of parents k is large, estimating P (x | ny ) may

require canonical models, i.e., prototypical clusters of variables;
each requiring about k parameters.

Common examples of such structures are noisy OR-gates (i.e., any
variable is likely to trigger the effect), noisy AND-gates, and
various enabling mechanisms (i.e., variables having no influence
of their own except that they enable other influences to take
effect).



Parameterizing the Independence Structure

— T
o .
¢ Winter? \I
1

AN (4) /
o A B Op|a A C Ocla
Py P true  true | .2 true  true | .8
e e N /" Rain?
( Sp“{rg‘}'e" ) \ "o ) true  false | .8 true false | .2
\Hﬁ_____x_____/ \“:;;«;--"/ false  true | .75 false true | .1
~_ 7\ false false | .25 false false | .9
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true true true .95
true  true false | .05 C E OF|c
A ‘ ©a true false true .9 true  true i
true 6 true false false | .1 true  false | .3
false | .4 false true true .8 false true 0
false true false | .2 false false | 1
false false true 0
false false false | 1




Parameterizing the Independence Structure

@ The CPT ©x)y is exponential in the number of parents U.

@ If every variable can take up to d values, and has at most k
parents, the size of any CPT is bounded by O(d**1).

@ If we have n network variables, the total number of Bayesian
network parameters is bounded by O(n- d**+1).

@ This number is quite reasonable as long as the number of
parents per variable is relatively small.



The role of causality

i, L

In thas case, we gel our original network {Juh.“.:”_.'
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THE ROLE OF CAUSALITY

The topology of a Bayesian network can be extremely sensitive to
the node ordering d.

€.g., a tree in one ordering might become a complete graph if that
ordering is reversed.

Why do people agree on whether two propositions are directly or
indirectly related?

Social convention of adopting a standard ordering of events that
conforms to the flow of time and causation.
Why, do we use temporal ordering to organize our memory?

Information about temporal precedence is more readily available
than other indexing information?

Networks constructed with temporal ordering are inherently more
parsimonious?



DECOMPOSABLE MODELS

Consider a distribution P having a Markov network in the form of
a chain

X —Xr—X X,
Expand P in the order dictated by the chain,

P(xy,x5,x3,x)=P(x{) P(x,1x) P(x,4 1x 1, %) P(x4lxy, x,, x3),

Using the conditional independencies encoded in the chain, we
obtain

P(xy,x5,x3,%x4)=P(xy) P(xylxy) P(x; lx5) P(x4lxy).



P 1s a product of three functions, pairwise conditional
probabilities.

Expand P in the order (X4, X5, X4, X 1), we get
P(x3,x2,x4,x1)=P(x3)P(lex3)P(x4!x3,x2)P(x11x3,x2,x4)

=P(x3) P(xylx3) P(xylxs) P(xqlxy),

As we order the variables from left to right, every variable except
the first should have at least one of its graph neighbors to its left.

(X1, X4, X5, X3) would not yield the desired product form because
X 4 1s positioned to the left of its only neighbor, X ;.



‘L Product form over Markov trees

* Two ways to find product-form distribution for Markov Trees:
directed trees and product division.

1 5
e O
7 7

Figure 3.7. An undirected tree of seven variables.




Choose node 3 as a root and assign to the links arrows pointing

away from the root. Write the product distribution by inspection,
going from parents to children:

P(1,..7=PB)P(I3)PRIZPMAIZNP(5I4)P6I4)P(T14). (3.20)

Figure 3.8. A directed tree with root 3.



The second method: divide the product of the marginal
distributions on the edges (i.e., cliques) by the product of the
distributions of the intermediate nodes (i.e., the intersections of the
cliques).

) = P(,3)P(2,3)P(3,4)P (4,5 P(4,6)P(4,7)

P(1,..7
P3) P3) PM@) P@H PH# ’

(3.21)

Each variable in the denominator appears one more time than it
appears 1n the numerator.

Trees are not the only distributions that have product
meaningful forms. They can generalize to join-trees



JOIN TREES

P(a,b,c,d,e)=P@)PWla)P(cla,b)P(dla,b,c)P(ela,b,c,d)

(a)

=Pla)yPbla)Plcla,b)P(dIb,c)Plelc)

=P(a,b,c)P{b,c,d) Pilc,e)
P(b.c) P(c) (322

(b) (c)

Figure 3.9. Two join trees, (b) and (c),

constructed from the cliques of the graph in (a).

The numerator is a product of the distributions of the cliques, and
the denominator is a product of the distributions of their

intersections.

P (c ) appears only once in the denominator.

The unique feature of the graph in Figure 3.9a: there is a tree that
is an / -map of P, with vertices corresponding to the cliques of G.
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DEFINITION: An undirected graph G = (V, E) is said to be chordal if

every cycle of length four or more has a chord, i.e., an edge joining two
nonconsecutive vertices.

THEOREM 7: Let & be an undirected graph & =(V,E). The
following four conditions are equivalent:

l. & is chordal.

Any induced
graph is chordal

converging arrows emanates from two adjacent vertices.

(2. The edges of G can be directed acyclically so that every pair of J

3. All vertices of G can be deleted by arranging them in separate
piles, one for each clique, and then repeatedly applying the
following two operations:

. Delete a vertex that oceurs in only one pile.

o  Delete a pile if all its vertices appear in another pile.

4. There is a tree T (called a join tree) with the cliques of G as
vertices, such that for every vertex v of &, if we remove from T
all cliques not containing v, the remaining subtree stays connected,
In other words, any two cliques containing v are either adjacent in
T or connected by a path made entirely of cliques that contain v, )

The running intersection property



GRAPH TRIANGULATION (FILL-IN) ALGORITHM: Tarjan
and Yannakakis [1984]

1.

Compute an ordering for the nodes, using a maximum cardinality
search, i.e., number vertices from 1 to | VI, in increasing order,
always assigning the next number to the vertex having the largest
set of previously numbered neighbors (breaking ties arbitrarily).

From n = |Vl to n = 1, recursively fill in edges between any two
nonadjacent parents of n, i.e., neighbors of n having lower ranks
than n (including neighbors linked to n in previous steps). If no
edges are added the graph is chordal; otherwise, the new filled
graph is chordal.

Given a graph G = (V, E) we can construct a join tree using the
following procedure.

ASSEMBLING A JOIN TREE

1. Use the fill-in algorithm to generate a chordal graph G’ (if G is
chordal, G =G").

2. Identify all cliques in G’. Since any vertex and its parent set
(lower ranked nodes connected to it) form a clique in G’, the
maximum number of cliques is | VI,

3. Order the cliques C,, C,,..., C, by rank of the highest vertex in each
clique.

4.  Form the join tree by connecting each C; to a predecessor C i G <i)
sharing the highest number of vertices with C;.

41



() (b o)

EXAMPLE: Consider the graph in Figure 3.9a2. One maximum
cardinality ordering is (A, B, C, D, E).

. Every vertex in this ordering has its preceding neighbors already
connected, hence the graph is chordal and no edges need be added.
e The cliques are ranked €, C;, and C as shown in Figure 3.95.

¢ C;={C, E) shares only vertex C with its predecessors C, and C,
so either one can be chosen as the parent of C;.

e  These two choices yield the join trees of Figures 3.95 and 3.9¢.

e  Now suppose we wish to assemble a join tree for the same graph
with the edge (8, C) missing.

. The ordering (A,B,C,D,E) is still a maximum cardinality
ordering, but now when we discover that the preceeding neighbors
of node D (i.e., 8 and C) are nonadjacent, we should fill in edge
(&, C).

. This renders the graph chordal, and the rest of the procedure yields
the same join trees as in Figures 3,95 and 3.9¢,



-Decomposable models have a
probability distribution expressible
in product form

-To make P decomposable relative
to some chordal graph G, it is
enough to triangulate its Markov
network (which originally may not
be chordal.

.Lemma 1 is important because we
have a tree of clusters that is an i-
map of the original distribution and
allows the product form.

-As we will see: this tree of clusters,
allows message propagation for
query processing along the tree of
clusters.

DECOMPOSABLE DISTRIBUTIONS

DEFINITION: A probability model P is said to be decomposable if it
has a minimal I-map that is chordal. P is said to be decompaosable
relative to a graph G if the following twe conditions are met:

I Goisan l-map of P.
ii. G is chordal.

LEMMA 1: If P is decomposable relative to G, then any join tree T of
the cliques of G is an /-map relative to P. In other words, if Cy, Cy,
and Cy are three disjoint sets of vertices in T, and X, ¥, and Z are their
corresponding sets of variables in G, then /(X, Z, ¥)p whenever C,
separates Cy from Cy in T (written < Cy | Cpl Cy > 7).

THEOREM 8: If P is decomposable relative to &, then the join
distribution of P can be written as a product of the distributions of the

cligues of & divided by a product of the distributions of their
intersections.

Proof: Let T be the join tree of the cliques of G, and let
(C), Cy,..., C;,...) be an ordering of the cliques that is consistent with T

Pl:.l'., L TR In} = " F{{.'i_ | Clrneen Ei.—l.:] = I'TI .Fl:ﬂ'.l 1 c_fl:l':l:l (3.24)
] I

= n .P{f'l [ fi ™ c_f{f:l:} (3.2%)
|
Picy)

P{C-l ™ E;-[;]} )

=11 (3.2
i



HOW EXPRESSIVE ARE BAYESIAN NETWORKS?

Can all dependencies that are representable by a Markov network
also be represented by a Bayesian network?

How well can Bayesian networks represent the type of
dependencies induced by probabilistic models?

. A diamond-shaped Markov network asserts / (A, BC, D) and
{(B,AD,C).
No Bayesian network can express these two relationships

simultaneously and exclusively.

. Every chordal graph can be oriented so that the tails of every
pair of converging arrows are adjacent.

Hence, every dependency model that is isomorphic to a
chordal graph is also isomorphic to a DAG.

Chordal Graphs Undirected
DAGS Graphs
-
—
Probabilisitic
Dependencies
Markov
Fields
Causal Models

Decomposable Models



