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Capturing Independence 
Graphically; Undirected Graphs

COMPSCI 276, Spring 2011

Set 2: Rina Dechter

(Reading: Pearl chapters 3, Darwiche chapter 4)
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The Qualitative Notion of Depedence
motivations and issues

 The traditional definition of independence uses equality of numerical 
quantities as in P(x,y)=P(x)P(y)

 People can easily and confidently detect dependencies, but not provide 
numbers

 The notion of relevance and dependence are far more basic to human 
reasoning than the numerical

 Assertions about dependency relationships should be expressed  first. 
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Dependency graphs

 The nodes represent propositional variables and the arcs represent 
local dependencies among conceptually related propositions.

 Graph concepts are entrenched in our language (e.g., “thread of 
thoughts”, “lines of reasoning”, “connected ideas”). One wonders if 
people can reason any other way except by tracing links and arrows 
and paths in some mental representation of concepts and relations.

 What types of (in)dependencies are deducible from graphs?

 For a given probability distribution P and any three variables X,Y,Z,it is 
straightforward to verify whether knowing Z renders X independent of 
Y, but P does not dictates which variables should be regarded as 
neighbors.

 Some useful properties of dependencies and relevancies cannot be 
represented graphically.



Conditional Independence
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Implied independencies
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Properties of Conditional Independance
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Ipr(X,Y,Z)



Properties of independence

 Symmetry:
 I(X,Z,Y)  I(Y,Z,X)  

 Decomposition: 

 I(X,Z,YW) I(X,Z,Y) and I(X,Z,W)

 Weak union: 
 I(X,Z,YW)I(X,ZW,Y)

 Contraction: 
 I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW)

 Intersection:
 I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)
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Example: Two coins and a bell











Graphs vs Graphoids

 Symmetry:
 I(X,Z,Y)  I(Y,Z,X)  

 Decomposition: 

 I(X,Z,YW) I(X,Z,Y) and I(X,Z,W)

 Weak union: 
 I(X,Z,YW)I(X,ZW,Y)

 Contraction: 
 I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW)

 Intersection:
 I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)

 Graphoid: satisfy all 5 axioms

 Semi-graphoid: sayisfies the first 4.

 Decomposition is only one way while 
in graphs it is iff.

 Weak union states that w should be 
chosen from a set that, like Y should 
already be separated from X by Z
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Why axiomatic characterization?

 Allow deriving conjectures about independencies that 
are clearer

 Axioms serve as inference rules

 Can capture the principal differences between various 
notions of relevance or independence
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I-map and D-maps
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• A model with induced dependencies cannot cannot be i-map and d-map
• Example: two coins and a bell… try it
• How we then represent  two causes leading to a common consequence?



Axiomatic characterization of Graphs

 Definition: A model M is graph-isomorph if there exists a graph 
which is a perfect map of M.

 Theorem (Pearl and Paz 1985): A necessary and sufficient 
condition for a dependency model  to be graph–isomorph is that 
it satisfies

 Symmetry:  I(X,Z,Y) I(Y,Z,X)  

 Decomposition:  I(X,Z,YW) I(X,Z,Y) and I(X,Z,Y)

 Intersection:  I(X,ZW,Y) and I(X,ZY,W)I(X,Z,YW)

 Strong union: I(X,Z,Y)  I(X,ZW, Y)

 Transitivity: I(X,Z,Y)  exists t s.t. I(X,Z,t) or (I(t,Z,Y)

 This properties are satisfied by graph separation
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Markov Networks

 Graphs and probabilities:

 Given P, can we construct a graph I-map with minimal 
edges?

 Given (G,P) can we test if G  is an I-map? a perfect map?

 Markov Network: A graph G which is a minimal I-
map of  a dependency model P, namely deleting any 
edge destroys its i-mapness, is called a Markov 
network of P.
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Markov Networks

 Theorem (Pearl and Paz 1985): A dependency model 
satisfying  symmetry decomposition and intersection has a 
unique minimal graph as an i-map, produced by deleting every 
edge (a,b) for which I(a,U-a-b,b) is true.

 The theorem defines an edge-deletion method for constructing G0

 Markov blanket of a is a set S for which I(a,S,U-S-a).

 Markov Boundary: a minimal Markov blanket.

 Theorem (Pearl and Paz 1985): if symmetry, decomposition, 
weak union and intersection are satisfied by P, the Markov 
boundary is unique and it is the neighborhood in the Markov 
network of P
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Markov Networks

 Corollary: the Markov network G of any strictly positive 
distribution P can be obtained by connecting every node to its 
Markov boundary.

 The following 2 interpretations of direct neighbors are identical:

 Neighbors as blanket that shields a variable from the influence of 
all others

 Neighborhood as a tight influence between variables that cannot be 
weakened by other elements in the system

 So, given P (positive) how can we construct G?

 Given (G,P) how do we test the G is an I-map of P?

 Given G, can we construct P which is a perfect i-map? (Geiger and 
Pearl 1988)
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Testing I-mapness

 Theorem: Given a positive P and a graph G the following are 
equivalent:
 G is an I-map of P iff G is a super-graph of the Markov network of P

 G is locally Markov w.r.t. P (the neighbors of a in G is a Markov blanket.) iff
G is a super-graph of the Markov network of P

 There appear to be no test for i-mapness of undirected graph 
that works for extreme distributions without testing every cutset
in G (ex: x=y=z=t )

 Representations of probabilistic independence using undirected 
graphs rest heavily on the intersection and weak union axioms.

 In contrast, we will see that directed graph representations rely 
on the contraction and weak union axiom, with intersection 
playing a minor role.
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The unusual edge (3,4)
Reflects the reasoning that if we fix 
The arrival time (5) the travel time (4) 
must depends on current time (3)



Summary



How can we construct a probability
Distribution that will have all these 
independencies?









G is locally markov
If neighbors make every 
Variable independent
From the rest.




