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The Qualitative Notion of Depedence
motivations and issues

The traditional definition of independence uses equality of numerical
quantities as in P(x,y)=P(x)P(y)

People can easily and confidently detect dependencies, but not provide
numbers

The notion of relevance and dependence are far more basic to human
reasoning than the numerical

Assertions about dependency relationships should be expressed first.



Dependency graphs

= The nodes represent propositional variables and the arcs represent
local dependencies among conceptually related propositions.

= Graph concepts are entrenched in our language (,e.g., “thread of
thoughts”, “lines of reasoning”, “connected ideas”). One wonders if
people can reason any other way except by tracing links and arrows

and paths in some mental representation of concepts and relations.
=  What types of (in)dependencies are deducible from graphs?

= For a given probability distribution P and any three variables X,Y,Z,it is
straightforward to verify whether knowing Z renders X independent of
Y, _erl]tbP does not dictates which variables should be regarded as
neighbors.

= Some useful properties of dependencies and relevancies cannot be
represented graphically.



Conditional Independence
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DEFINITION: Let "= {c, B, ...] be a finite ser of variables
with discrete values. Let P (-} be a joint probability function
over the variables in L', and let X, ¥, and Z stand for any three
subsets of variables in &', X and ¥ are said to be Cornditionally
independent given Z if

Flxly, z)=P(xlz) whenever Py, =)= 0.

- For any cunﬁgmaumn x of the variables in the set X and for
any configurations y and z of the variables in ¥ and Z satis-
fying P(¥ =y, Z =z) > 0, we have

PX=xI¥Y=»Z=2)=P(X=x|Z=2z).
X, Z, Y)ip iff Pixly, 2)=P(xlz)
for all values x, ¥, and z such that P (y, z) > 0.

- Marginal independence will be denoted by I (X, &, ¥), i.e..
(X, &, ¥) iff P(xly)=F(x) whenever P (y) > 0.

Alao T(x,y)=2) o« ©( x,=,)



Implied independencies

.

° Partial list of (equivalent) properties satisfied by the condi-
tional independence relation 7 (X, Z, Y) [Lauritzen 1982]:
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IX,Z,Y) > Pxylz)=P(xIlz) P(ylz), -«
IX,Z,Y)= 3f,2:Px,y,2)=f(x2) g, 2).

I(X,Z,Y):rP(x,y,z)=P(sz)P(v,z).



Properties of Conditional Independance

Ipr(lel &

THEOREM 1: Let AN, and Z be three disjoint subsers of
variables from 7. If 7 (X, Z, ¥) stands for the relation ‘X is in-

dependent of ¥, given Z°° in some probabilistic model 2 . then
must satisfy the following four independent conditions:

- Symmetry:
FOX, & ¥) = (¥, Z, X0 i1.a)

s Decomposition:
X, Z, ¥ W) = I(X,Z,Y) & [(X,Z, W) (1.b)

s Weak Union:
IX,ZEY W) = (X, Z_ W, YY) (1l.cy

» Contraction:
TN, Z, ¥) &L I(X,Z OO0V, W) = J(X,Z, Y W) (1.d)
- If 7 is strictly positive, then a fifth condition holds:

& Intersection:
X, ZO0W,¥Y) &£ J( X, Z Y, W)= (X, Z,¥ Wiil.e)



Properties of independence

INTUITIVE INTERPRETATION OF THE AXTOMS

Symmetry: In any state of knowledge Z, if ¥ tells us noth
en X tells us nothing new a

Symmetry:
= I(X,ZY) > IY,ZX)

Decomposition: If two combined items of information are
Judged irrelevant to X, then each separate item is irrelevant
well.

Decomposition:
= I(X,Z,YW)> I(X,ZY) and I(X,Z,W)

Weak wnion: Learning urrelevant information W cannot
help the irrelevant information ¥ become relevant to X.

Weak union: ~/ » Contraction: If we judge W irrelevant to X after learnin \
E
= I(X,Z,YW)>I(X,ZW,Y) some irrelevant information ¥, then W must have been ir-

i ! ! relevant before we learned ¥,
inA- » Together: Irrelevant information should not alter the
Contraction: relevance of other propositions in the system; what was
«  I(X,Z,Y) and I(X,ZY,W)->I(X,Z,YW) relevant remains relevant, and what was irrelevant remains
\ irrelevant.

] ™
Intersection: s  Intersection: Unless ¥ affects X when W is held constant
i i ¥ nor

d I(X.ZW.Y) = I(X.Z.YW) or W affects X when Y is held constant, neither W nor
= I(XZY,W) and I(X, Y) (X:Z, ’ their combination can affect X. y
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Graphical interpretation of the axioms goverming
conditional independence.



If some information is irrelevant, then any part of it is also
irrelevant.

Ior(X, Z,Y UW) only if Ipp(X.Z,Y) and Ip,(X, Z, W).

If learning yw does not influence our belief in x, then learning y
alone, or learning w alone, will not influence our belief in x either.




The opposite of Decomposition, called Composition:

lpr(X,Z,Y) and Ip, (X, Z, W) only if Ip,(X,Z, Y UW)

does not hold in general.

i

Two pieces of information may each be irrelevant on their own, yet
their combination may be relevant.

Example: Two coins and a bell



Ioe(X,Z.Y) and Ip (X, ZUY, W) only if Ip,(X,Z.Y UW)

If after learning the irrelevant information y, the information w is
found to be irrelevant to our belief in x, then the combined
information yw must have been irrelevant from the beginning.

Compare Contraction with Composition:
(X, Z,Y) and Ip, (X, Z, W) only if Ip(X,Z.Y UW)

One can view Contraction as a weaker version of Composition.
Recall that Composition does not hold for probability distributions.



Strictly Positive Distributions

Definition
A strictly positive distribution assign a non-zero probability to
every consistent event.

: :

\x/ . . A strictly positive distribution
\ /’ cannot represent the behavior
CT b of Inverter X as it will have to
\[ J/ assign the probability zero to
the event A=true, C =true.

A strictly positive distribution cannot capture logical constraints.



Intersection

Holds only for strictly positive distributions

(X, ZUW.,Y) and lp (X, ZUY,W) only if p,(X,Z,Y UW)
If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.




Intersection
Holds only for strictly positive distributions

e (X, ZUW.,Y) and lp(X,Z UY, W) only if lp,(X,Z.Y UW)

If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.

@ If we know the input A of

A B inverter X, its output C
becomes irrelevant to our belief
Wx - |

x/ Ly in the circuit output E.
\“(\_gx \‘\ / @ If we know the output C of
[ [ inverter X, its input A becomes
C | D . . .
J irrelevant to this belief.
\ |
NV @ Yet, variables A and C are not
\Z/ irrelevant to our belief in the

TE circuit output E.



Graphs vs Graphoids

Symmetry:
= I(X,ZY) > IY,ZX)

Decomposition:
= I(X,Z,YW)> I(X,ZY) and I(X,Z,W)

Weak union:
= I(X,Z,YW)>I(X,ZW,Y)

Contraction:
= I(X,Z,Y) and I(X,ZY,W)>I(X,Z,YW)

Intersection:
= I(X,ZY,W) and I(X,ZW,Y) > I(X,Z,YW)

Graphoid: satisfy all 5 axioms

Semi-graphoid: sayisfies the first 4.

Decomposition is only one way while
in graphs it is iff.

Weak union states that w should be
chosen from a set that, like Y should
already be separated from X by Z

15



i Why axiomatic characterization?

Allow deriving conjectures about independencies that
are clearer

Axioms serve as inference rules

Can capture the principal differences between various
notions of relevance or independence

16



DEPENDENCY MODELS AND DEPENDEMNCY MAPS

A dependency model M is a male that assigns touth values to the
three-place predicate J{X, Z, ¥,

Af  determines a subset f of triplets (X, Z, ¥) for which the
assertion "X is independent of ¥ given Z7 is roe,

Any pmhabilit: distribution P is a dependency model.

An urwdi o h & = (V, E) is a graphical representation of a
dependency model Af, if there is a correspondence between the
elements in L7 (of Af )} and the set of vertices in W fof & ), such that

the topology of ¢ reflects some propertes of Af .

If a subset £ of nodes in a graph intercepts all paths berween the
nodes of X and those of ¥ we write <« X | Z | ¥ > .
S—



I-map and D-maps

2-13

I]EFITGITH_‘JH: An ondirected graph o is a dependency maae (or -
map) of Af if there is a one-to-one correspondence between the elemenis
of L' and the nodes V of ., such that for all disjoint subsets X, ¥, £ of

elaments we hawve
F (X, F ¥y = =X 1Z]| ¥

Similarly. & is an independency map (or I-map) of Af if
F (X, Z, ¥y = =X 1Z1 ==

Cr is said o be a perfecr map of M if it is both a ) -map and an f -map.

- A D -map guarantees that wverdces found o be connected are
indeed dependent in AL .

- An f-map, guarantess that wvertices found o be separated
comespond 10 independent variables.

Empty graphs are trivial D -maps, while complete graphs are
trivial f -maps.

« A model with induced dependencies cannot cannot be i-map and d-map

« Example: two coins and a bell... try it

- How we then represent two causes leading to a common consequence?
18



Axiomatic characterization of Graphs

= Definition: A model M is graph-isomorph if there exists a graph
which is a perfect map of M.

= Theorem (Pearl and Paz 1985): A necessary and sufficient
condition for a dependency model to be graph—isomorph is that
it satisfies

= Symmetry: 1(X,z,Y)> I(V,Z,X)

= Decomposition: 1(x,z,yw)> 1(X,z,Y) and I(X,Z,Y)

= Intersection: 1(x,zw,Y) and I(X,ZY,W)->I(X,Z,YW)
Strong union: 1(X,z,Y) > I(X,ZW, Y)

Transitivity: I(X,Z,Y) > exists t s.t. I(X,Z,t) or (I(t,Z,Y)

= This properties are satisfied by graph separation

19



i Markov Networks

= Graphs and probabilities:

= Given P, can we construct a graph I-map with minimal
edges?
= Given (G,P) can we test if G is an I-map? a perfect map?

= Markov Network: A graph G which is a minimal I-
map of a dependency model P, namely deleting any
edge destroys its i-mapness, is called a Markov
network of P.

20



Markov Networks

= Theorem (Pearl and Paz 1985): A dependency model
satisfying symmetry decomposition and intersection has a
unique minimal graph as an i-map, produced by deleting every
edge (a,b) for which I(a,U-a-b,b) is true.

= The theorem defines an edge-deletion method for constructing Go

= Markov blanket of a is a set S for which I(a,S,U-S-a).

= Markov Boundary: a minimal Markov blanket.

= Theorem (Pearl and Paz 1985): if symmetry, decomposition,
weak union and intersection are satisfied by P, the Markov
boundary is unique and it is the neighborhood in the Markov
network of P

21



Markov Networks

= Corollary: the Markov network G of any strictly positive
distribution P can be obtained by connecting every node to its
Markov boundary.

= The following 2 interpretations of direct neighbors are identical:

= Neighbors as blanket that shields a variable from the influence of
all others

= Neighborhood as a tight influence between variables that cannot be
weakened by other elements in the system

= SO0, given P (positive) how can we construct G?
= Given (G,P) how do we test the G is an I-map of P?

= Given G, can we construct P which is a perfect i-map? (Geiger and
Pearl 1988)

22



Testing I-mapness

= Theorem: Given a positive P and a graph G the following are
equivalent:
= GisanlI-map of P iff G is a super-graph of the Markov network of P

= Gis locally Markov w.r.t. P (the neighbors of a in G is a Markov blanket.) iff
G is a super-graph of the Markov network of P

= There appear to be no test for i-mapness of undirected graph
that works for extreme distributions without testing every cutset
in G (ex: x=y=z=t)

= Representations of probabilistic independence using undirected
graphs rest heavily on the intersection and weak union axioms.

= In contrast, we will see that directed graph representations rely
on the contraction and weak union axiom, with intersection

playing a minor role.
23



CONCEPTUAL DEPENDENCIES AND
THEIR MARKOV NETWORKS

An agent identifies the following variables as having influence on
the main question of being late to a meeting:

1. The time shown on the watch of Passerby 1.

(o]

The time shown on the watch of Passerby 2.
The correct time.

The time it takes to travel to the meeting place.

U

The arrival time at the meeting place.

The construction of G can proceed by one of two methods:

] The edge-deletion method.

. The Markov boundary method.

The first method requires that for every pair of variables (o, B) we

determine whether fixing the values of all other variables in the
system will render our belief in o sensitive to p.

For example, the reading on Passerby 1’s watch (1) will vary with
the actual time (3) even if all other variables are known, so
connect node 1 to node 3



The Markov boundary method requires that for every variable o in
the system, we identify a minimal set of variables sufficient to
render the belief in o insensitive to all other variables in the
system.

For instance, once we know the current time (3), no other variable
can affect what we expect to read on passerby 1’s watch (1).

(1) watch - 1 (7) waich - 2

{4) wavel time The unusual edge (3,4)

Reflects the reasoning that if we fix
The arrival time (5) the travel time (4)
must depends on current time (3)

{3) current tme

(5) amival time

Figure 3.6. The Markov network representing the prediction
of A’s arrival time,

G o can be used as an inference instrument.

® For example, knowing the current time (3) renders the time
on Passerby 1's watch (1) irrelevant for estimating the travel
time (4) (i.e., 1(1,3.4)); 3 is a cutset in G, separating 1 from
4.



Summary

. The essential qualities of conditional independence are captured by

five logical axioms: {a) symmetry, (b) decomposition, (c) weak
union, (d) contraction and (e) intersection.

. Intersection holds only for strictly positive distributions (i.e.,
reflecting no functional or definitional constraints) and is essential
to the construction of undirected graphs.

- Symmetry, decomposition, and intersection enable us to construct
a minimal graph G, (Markov network), in which every cutset
corresponds to a genuine independence condition.

- The weak union axiom is needed to guarantee that the set of
neighbors that G assigns to each variable o is the smallest set
required to shield « from the effects of all other variables,

. If we identify the Markov boundaries associated with each
proposition in the system and treat them as neighborhood relations
defining a graph G, then we can correctly identify independence
relationships by testing whether the set of known propositions
constitutes a cutset in G,

- Not all probabilistic dependencies can be captured by undirected
graphs because graph separation is strictly normal and transitive.



MARKOV NETWORK AS A KNOWLEDGE BASE

M,
How can we construct a probability
F, F Distribution that will have all these
. independencies?
M,

Figure 3.2. An undirected graph representing
interactions among four individuals.

QUANTIFYING THE LINKS

- If couple (M, F,) meet less frequently than the couple (M, F,),
then the first link should be weaker than the second

° The model must be consistent, complete and a Markov field of G.

° Arbitrary specification of P(M,,F,), P(F{,M,), P(M,,F5), and
P(F,, M) might lead to inconsistencies.

] If we specify the pairwise probabilities of only three pairs,
incompleteness will result.



A safe method (called Gibbs' potential) for constructing a
complete and consistent quantitative model while preserving the
dependency structure of an arbitrary graph G.

1. Identify the cliquest of G, namely, the largest subgraphs
whose nodes are all adjacent to each other.

2. For each clique C;, assign a nonnegative compatibility
function g;(¢;), which measures the relative degree of
compatibility associated with the value assignment ¢; to the
variables included in C;.

3. Form the product 1T g,(¢;) of the compatibility functions over
i

all the cliques.

4. Normalize the product over all possible value combinations
of the variables in the system

P{II,,..,XH}=K ngi(cili (3.13)
i

where
1

K=0 % Tgle)] .

X Xg

T We use the term cligue for the more commaon temm maximeal cligue,



Example: The dependency graph has four cliques, corresponding to the
four edges

CI:[M].F|}562= [M]_r-F‘z}!

C3=[M2,F|],and G4=[M21F2}1

the compatibility functions g, are assessed to be

o i i, T K,

8i(x; %)= B, (3.14)

1f .r‘:l #.xfz.,,

where x; and x;_ are the states of disease associated with the male and
female, respectively, of couple C,.

® The overall probability distribution function is given by the
normalized product

PIM My F i F)=K g \(M,F)g,(M,F,)g5(M,, F,)gsM,, F,)

— K n ﬁl_l-th _x‘.ﬂuil - !xil-xiﬂ’ {3.]5}
i

where K is a constant that makes P sum to unity over all states of
the system, i.e.,

ul‘[(u +|3‘}+r[u‘22 +H|.’5f

(3.16)
i 1 |3J'



For example, the state in which only the males carry the disease,
(m 1, —f 1, m3, —f ), will have a probability measure KBB4,

The state (m, f |, —m,, —f ;), on the other hand, has the probability
K o, B,B501

P is a Markov field of G because
P=f(M|=FlrFljg(FlantME)=_IF’{F|1M1,M2}E*{M11M21 F:}.

Thus, I(M |, F{ W FyMs)p and I (F,M UM, Fy)p.



THEOREM 6 [Hammersley and Clifford 1971]: A probability function

P formed by a normalized product of nonnegative functions on the
cliques of G is a Markov field relative to G, i.e., G is an I -map of P.

Proof: G is guaranteed to be an /-map if P is locally Markov relative to
G is local ) G (Theorem 5). It is sufficient, therefore, to show that the neighbors in
markov . . . +
If ':e%%abgrs make every G of each variable o constitute a Markov blanket of « relative to P, i.e.,
Variable independent that / (o, B (o), U — a - B () or (using Eq. (3.5¢)) that
From the rest.

P (0. Bg; (), U~ 0~ Bg () = f (01, B () £ (U - ). (3.17)

e Let J, stand for the set of indices marking all cliques in G that
include o, J = {j:ae C; . Since P is in product form, we can
write

Plo,B,..) =KIlg(c;) =K Il g.ic:) T g:(c;). 318
(e, B, ...) 1g;(c)) J_Ejug,(cj}iungj(ﬁ} (3.18)

. The first product in Eq. (3.18) contains only variables that are
adjacent to o in G ; otherwise, C; would not be a clique. According
to the definition of J,, the second product does not involve o.
Thus, Eq. (3.17) is established. Q.E.D.



INTERPRETING THE LINK PARAMETERS

It is difficult to assign meanings to the parameters of the
compatibility functions.

Given the joint probability P(M, F, F,,M,), to infer the
compatibility functions g; we must solve a set of simultaneous
nonlinear equations for g,

The solution for g; will not be applicable to new situations.

For a parameter to be meaningful, it must be an abstraction of
some invariant property of one's experience.

The quantities P(f;Im,,—~m,) and P(f,| =m, —m,) and their
relations to the frequency of interaction of couple {M . F,} are
perceived as invariant characteristics of the disease.

The Markov network formulation does not allow the direct
specification of such judgmental input.

Judgments about low-order conditional probabilities (e.g.,
P(ml1f,;,—~m,)) can be taken only as constraints that the joint
probability distribution (Eq. (3.13)) must satisfy; from them, we
might be able to calculate the actual values of the compatibility
parameters.



