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Class Description

s Instructor: Rina Dechter

= Days: Tuesday & Thursday
= [IMe: 11:00 - 12:20 pm
= Class page:

= http://www.ics.uci.edu/~dechter/courses/ics-275b/spring-11/



Example of common sense
i reasoning

= Explosive noise at UCI
= Parking in Cambridge
= The missing garage door

= Years to finish an undergrad degree in
college




‘L Shooting at UCI



i Why uncertainty

= Summary of exceptions

= Birds fly, smoke means fire (cannot enumerate all
exceptions.

= Why is it difficult?
= Exception combines in intricate ways

= e.g., we cannot tell from formulas how exceptions
to rules interact:

A->C
B->C

Aand B--> C



The problem

men are mortal T
All penguins are birds T
Socrates is a man
Men are kind pl
Birds fly P2
T looks like a penguin
Turn key —> car starts P_n

Q: Does T fly? Logic?....but how we handle exceptions

P(Q)? Probability: astronomical

True
propositions

> Uncertain
propositions




i Managing Uncertainty

Knowledge obtained from people is almost always
loaded with uncertainty

Most rules have exceptions which one cannot afford
to enumerate

Antecedent conditions are ambiguously defined or
hard to satisfy precisely

First-generation expert systems combined
uncertainties according to simple and uniform
principle

Lead to unpredictable and counterintuitive results
Early days: logicist, new-calculist, neo-probabilist



i Extensional vs Intensional Approaches

= Extensional (e.g., Mycin, Shortliffe,
1976) certainty factors attached to

rules and combine in different ways.
A->B: m

= Intensional, semantic-based,
probabilities are attached to set of

worlds.
P(A|B) = m



i Certainty combination in Mycin

A
If A then C (x)
If B then C (y) \/K‘@—Z—'@)

If C then D (Z) Yy

1.Parallel Combination:

CF(C) = x+y-xy, if x,y>0

CF(C) = (x+y)/(1-min(x,y)), x,y have different sign
CF( C) = x+y+xy, if x,y<0

2. Series combination...

3.Conjunction, negation

Computational desire : locality, detachment, modularity



The limits of modularity

Deductive reasoning: modularity and detachment

P> Q P>Q P>Q
P K and P K>P
_____________ ¢
Q Q e
Q

Plausible Reasoning: violation of locality

Wet - rain wet = rain
Wet Sprinkler and wet

10



‘L Violation of detachment

Deductive reasoning Plausible reasoning
P> :
K> 8 Wet - rain
K Sprinkler >wet
________ Sprinkler
Q rain?
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* Burglery Example

ey

A->B
A more credible

IF Alarm - Burglery
A more credible (after radio)

B more credible But B is less credible

Issue: Rule from effect to causes

12



i Extensional vs Intensional

Extensional

Intensional

Uncertainty=truth value

Uncertainty = modality

Connectives combine certainty
weight

Connectives combine set of
worlds

Rules = Procedural license =
summary of a problem solving
history

Rules = constraints on the world
= summary of world knowledge
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What's in a rule?

A->B (m) A and B>C
C%B (n) (m+n-mn)

P(B|A)=p
A->B (p)

Semantic difficulties:
Handling exceptions,
Retracting conclusions
Unidirectional references
Incoherent updating

Semantic clarity:

Syntax mirrors world knowledge
Empirically testable parameters
Bidirectional Inferences
Coherent updating

Computational merit:
Locality+detachment

Computational difficulty:

Actions must wait verification of
relevance

14




i Probabilistic Modeling with Joint Distributions

15



Degrees of Belief

@ Assign a degree of belief or probability in [0, 1] to each world
w and denote it by Pr(w).
@ [he belief in, or probability of, a sentence a:

Pr(«) il ZPI‘(L{)).

wEo
world | Earthquake Burglary Alarm  Pr(.)
W1 true true true  .0190
W true true false  .0010
W3 true false true  .0560
W4 true false false  .0240
Wws false true true  .1620
We false true false .0180
W7 false false true  .0072
Wwg false false false .7128




Properties of Beliefs

@ A bound on the belief in any sentence:

0 < Pr(a) <1  for any sentence «.
@ A baseline for inconsistent sentences:

Pr(a) =0 when « is inconsistent.
@ A baseline for valid sentences:

Pr(a) =1  when « is valid.



Properties of Beliefs
o
—

@ The belief in a sentence given the belief in its negation:

Pr(a) + Pr(—«) = 1.

Example

Pr(Burglary) = Pr(wy)+ Pr(ws) + Pr(ws) + Pr(ws)
Pr(—Burglary) = Pr(ws3)+ Pr(wa)+ Pr(wz) + Pr(ws)

|
00 N




Properties of Beliefs

a - —0b
4 X N\

|Il ll| lll
\ e /

@ The belief in a disjunction:
Pr(a Vv 3) = Pr(a) + Pr(3) — Pr(a A 3).

o Example:

Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .1
Pr(Burglary) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .2
Pr(Earthquake A Burglary) = Pr(wi) + Pr(wz) = .02
Pr(Earthquake vV Burglary) = .1+ .2 - .02 = .28



Properties of Beliefs

a . T T ﬁ
/ X N\

- |
" X/

@ [he belief in a disjunction:

Pr(av3) = Pr(a)+Pr(3) when « and 3 are mutually exclusive.



Bayes Conditioning

Alpha and beta are events

Closed form for Bayes conditioning:

Pr(a A 3)

Pr(«|3) =

Pr(53)

Defined only when Pr(/3) # 0.



Degrees of Belief

world | Earthquake Burglary Alarm  Pr(.)
W1 true true true .0190
Wo true true false  .0010
w3 true false true  .0560
Wi true false false .0240
W false true true  .1620
We false true false .0180
Wy false false true  .0072
ws false false false .7128

Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .1
Pr(Burglary) = .2

Pr(—Burglary) = .8

Pr(Alarm) = 2442



Belief Change

Burglary is independent of Earthquake

Conditioning on evidence Earthquake:

Pr(Burglary) = .2
Pr(Burglary|Earthquake) = .2
Pr(Alarm) = .2442
Pr(Alarm|Earthquake) ~ .75

The belief in Burglary is not changed, but the belief in Alarm
Increases.



Belief Change

Earthguake is independent of burglary

Conditioning on evidence Burglary:

Pr(Alarm) = .2442
Pr(Alarm|Burglary) ~ .90517
Pr(Earthquake) = .1
Pr(Earthquake|Burglary) = .1

The belief in Alarm increases in this case, but the belief in
Earthquake stays the same.



Belief Change

The belief in Burglary increases when accepting the evidence
Alarm. How would such a belief change further upon obtaining
more evidence?

@ Confirming that an Earthquake took place:

Pr(Burglary|Alarm) ~ 741
Pr(Burglary|Alarm A Earthquake) =~ .253 |
We now have an explanation of Alarm.
@ Confirming that there was no Earthquake:
Pr(Burglary|Alarm) 741

Pr(Burglary|Alarm A —Earthquake) =~ .957

New evidence will further establish burglary as an explanation.



Conditional Independence

Pr finds « conditionally independent of (3 given -y iff

Pr(a|3 A v) = Pr(aly) or Pr(BA~v)=0.

Another definition

Pr(a A 3lv) = Pr(alvy)Pr(3]y) or Pr(y) = 0.




Variable Independence

Pr finds X independent of Y given Z, denoted /p.(X,Z.Y), means

that Pr finds x independent of y given z for all instantiations x, y
and z.

X={A,B},Y={C}and Z={D. E}, where A,B,C,D and E
are all propositional variables. The statement /p.(X,Z,Y) is then a
compact notation for a number of statements about independence:

A ~ B is independent of C given D /& E;
A M =B is independent of C given D ~ E;

—A N —B is independent of =C given =D A —E;

That is, lpr(X,Z,Y) is a compact notation for 4 x 2 x 4 = 32
independence statements of the above form.




Chain rule

Further Properties of Beliefs
(Chainegle ... |

Pr(ai Aas Ao A ap)
= Pr(ailaa A ... Aap)Pr(azlas AL A ap). .. Pr(ap).

Case analysis (law of total probability)

Pr(a) = Z Pr(a A 3;),
i=1

where the events 31, .... (3, are mutually exclusive and exhaustive.

i




Further Properties of Beliefs
 Another version of caseanalysis . ]

Another version of case analysis

Pr(a) =) Pr(a|8;)Pr(3),

i=1

where the events 1, ..., 3, are mutually exclusive and exhaustive.

>

Two simple and useful forms of case analysis are these:

Pr(a) = Pr(aApB)+ Pr(a A —/3)
Pr(a) = Pr(«|8)Pr(3)+ Pr(a|=08)Pr(=/3).

The main value of case analysis is that, in many situations,
computing our beliefs in the cases is easier than computing our

beliefs in . We shall see many examples of this phenomena in
later chapters.



Further Properties of Beliefs

Bayes rule

Pr(3|a)Pr(a) |

Pr(a|3) = Pr( )

@ Classical usage: «v is perceived to be a cause of f3.
@ Example: « is a disease and (3 is a symptom-—
@ Assess our belief in the cause given the effect.

o Belief in an effect given its cause, Pr(3|a), is usually more
readily available than the belief in a cause given one of its

effects, Pr(al|3).




Probabilistic Madeling with Joint Distribution

Difficulty: Complexity in model construction and inference

m In Alarm example:

m 31 numbers needed,
m Quite unnatural to assess: e.g.

PB=y.E=y, A=y, J=y,M=y)

m Computing P(B=y|M=y) takes 29 additions.
m In general,

m P(X1, Xz, ..., X,) needs at least 2" — 1 numbers to specify the joint
probability. Exponential model size.
m Knowledge acquisition difficult (complex, unnatural),

m Exponential storage and inference,

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007 8 /h4 1



Conditional Independence and Factorization

Chain Rule and Factorization

Overcome the problem of exponential size by exploiting conditional independence

m [he chain rule of probabilities:

P(X1,X2) = P(X1)P(X:]|X1)
P(X1, X2, X3) = P(X1)P(Xz|X1)P(X5] X1, X2)

m No gains yet. The number of parameters required by the factors is:
pn=lgpon=14  +1=2"-1.

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007 10 / 54 2



Conditional Independence and Factorization

Conditional Independence

m About P(X;|X1,...,Xi—1):

m Domain knowledge usually allows one to identify a subset
pa(X;) € {X1,...,X;—1} such that

m Given pa(X;), X; is independent of all variables in
[ X1, ..., Xic1}\ pa(Xi), ie.

P{X,.|X1 ..... X,.'_]_:I = P{K,|pa(X;}}
m [hen

m Joint distribution factorized.

B [he number of parameters might have been substantially reduced.

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007

11/54 5



‘L Example

P(B,E,A,J,M)="

34



Conditional Independence and Factorization

Example continued

P(B.E. A, J, M)
= P(B)P(E|B)P(AB,E)P(JIB,E.A)P(M|B,E,A,J)
= P(B)P(E)P(A|B, E)P(J|A)P(M|A)(Factorization)

m pa(B) = {}. pa(E) = {},pa(A) = {B, E}. pa(J) = {A},pa(M) = {A}.

m Conditional probabilities tables (CPT)

E FI(E)
B F(B) mm— L B E F(A|B, E)

¥ 01 ¥ .02

. - 98 ¥ ¥ ¥ .95

N -99 " M ¥ ¥ .05

¥ ¥ H =94

N ¥ H L5

M A P(M|A) J A F(J|A) Y N ¥ 29
M H .95 N M .99

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007

12 / 54 5



Conditional Independence and Factorization

Example continued

m Model size reduced from 31 to 1+1+4+242=10

m Model construction easier

m Fewer parameters to assess.
m Parameters more natural to d55€55.€.8.

P(B=Y),P(E=Y),P(A=Y|B=Y,E=Y),

P(J=Y|A=Y),P(M=Y|A=Y)

m Inference easier.Will see this later.

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007 13 / 54 6



Bayvesian Metwaorls

From Factorizations to Bayesian Networks

Graphically represent the conditional independency relationships:

m construct a directed graph by drawing an arc from X; to X; iff Xj € pa(X;)
pa(B) = {}, pa(E) = {}, pa(A) = {B,E}, pa(J) = {A}, pa(M) = {A}.

{-—B—--:} PiB) .;::::n :::::. P(E)
< a > P(A|B, E)

I

C 1 D p|m C ® 3 p(u|a)

m Also attach the conditional probability (table) P(X;|pa(X;)) to node X;.

m What results in is a Bayesian network.Also known as belief network,
probabilistic network.

Mevin L. Zhang (HKUST) Bavesian Metworks Spring 2007 15 / b4 7



A Bayesian network is:
m An directed acyclic graph (DAG), where
m Each node represents a random variable

m And is associated with the conditional probability of the node given its
parents.




* Bayesian Networks: Representation

P(S)

BN = (G, O)

P(C|S) P(B|S)

P(X]C,S) P(D|C,B)

"

P(S, C, B, X,D) =P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

Conditional Independencies == Efficient Representation

39



Soft Evidence

There are two types of evidence that one may encounter.

Hard evidence

is information to the effect that some event has occurred, which is
also the type of evidence we have considered earlier.




Soft Evidence

There are two types of evidence that one may encounter.

Hard evidence
Is information to the effect that some event has occurred, which is
also the type of evidence we have considered earlier.

is not conclusive: we may get an unreliable testimony that event /3
occurred, which may increase our belief in /3, but not to the point
where we would consider it certain. )




Soft Evidence

There are two types of evidence that one may encounter.

Hard evidence

is information to the effect that some event has occurred, which is
also the type of evidence we have considered earlier.

Is not conclusive: we may get an unreliable testimony that event /3
occurred, which may increase our belief in 3, but not to the point
where we would consider it certain.

Our neighbor who is known to have a hearing problem may call to
tell us that they have heard the alarm trigger in our home. Such a
call may not be used to categorically confirm the event Alarm, but
can still increase our belief in alarm to some new level.




Soft Evidence

One of the key issues relating to soft evidence is how to specify its
strength. There are two main methods for this.

The “All things considered” Method

Stating the new belief in 3 after the evidence has been
accommodated. The new belief in 3 depends not only on the

strength of evidence, but also on our initial beliefs that existed
before the evidence was obtained.

After receiving my neighbor’s call, my belief in the alarm triggering
stands now at .85.°




Soft Evidence: “All things considered” Method

rd
)
|

e Soft evidence is a constraint P1r'(3) = g, where Pr’ denotes
the new state of belief after accommodating the evidence.

e P1’ can be computed along the same principles we used for
Bayes conditioning.

e P1'(3) = q implies constraint Pr'(—=3) =1 — q.

@ If we insist on preserving the relative beliefs in worlds that

satisfy (3, and also on preserving the relative beliefs in worlds
that satisfy —/3, we get

. q , ,
Pr(w). fwkE=[f3
def Pr(3) r(w). | =

1—gqg . ,
Pr(w). if w = -p.
. Pr(—p) H(w). =




Jeffrey's rule
There is also a useful closed form knownas

There is also a useful closed form known as

Pr'(a) = qPr(a|3) + (1 — q)Pr(al-p3).

where P1’ is the new state of belief after accommodating the soft
evidence Pr/(3) = g.

Note that Bayes conditioning is a special case of Jeffrey's rule

when g = 1, which is to be expected as they were both derived
using the same principle.




Jeffrey's rule

When the evidence concerns a set of mutually exclusive and

exhaustive events (31, ..../3,, with the new beliefs in these events
being g1....,q,, respectively.

Generalization of Jeffrey's rule
Pr'(a) =) qPr(alB).
i=1




Jeffrey's rule

Assume that we are given a piece of cloth C, where its color can
be one of: green (cg), blue (cp), or violet (¢,). We want to know
whether, in the next day, the cloth will be sold (s), or not sold (53).

Our original state of belief is as follows:

worlds S C Pr(.)
w1 s Co 12
wo 5 Cg .18
w3 s Ch .12
Wy 5 Ch .18
why 5 Cy .32
we 5 Cy .08

Our belief in the cloth being sold is Pr(s) = .56. Our beliefs in the
colors ¢, ¢p, ¢, are .3, .3, and .4, respectively.



Jeffrey's rule

Assume that we now inspect the cloth by candlelight, and we
conclude that our new beliefs in these colors should be .7, .25, and

.05, respectively.

Using Jeffrey's rule:

Pr(s) = 7("0) + 25( ") + 05( ") =

42

The new state of belief according to Jeffrey's rule is:

worlds | S C  Pr'(.)

= s g 28=.12x .7/3
= 5 ¢, M2=.18x.7/.3
= s ¢ .10=.12x .25/.3
e § ¢ .15=.18 x .25/.3
= s o .04=.32x.05/.4
we 5 Cv .01 = .08 x .05/.4



The “Nothing else considered” Method

Soft evidence on event /3 is based on declaring the strength of this
evidence, independently of currently held beliefs. J

The of event 3

@ An odds of 1 indicates that we believe 3 and —/3 equally.

@ An odds of 10 indicates that we believe (3 ten times more than
we believe —/3.




The “Nothing else considered” Method

We can specify soft evidence on event 3 by declaring the relative
change it induces on the odds of /3.

Bayes factor is the ratio

. O)
- O(B)’
where O’(/3) is the odds of 3 after accommodating the evidence,
PY'(3)/Pr'(=13).

@ A Bayes factor of 1 indicates a neutral evidence.

@ A Bayes factor of 2 double the odds of /3.

@ As the Bayes factor tends to infinity, the soft evidence tends
towards a hard evidence confirming /3.

@ As the factor tends to zero, the soft evidence tends towards a
hard evidence refuting /3.



Soft Evidence as a Noisy Sensor

Soft evidence on an event /3 can be emulated using a noisy sensor
S having two states, with the strength of soft evidence captured by
the false positive and negative rates of the sensor.

o

@ [he false positive rate of the sensor, f,, is the belief that the

sensor would give a positive reading even though the event /3
did not occur, Pr(S|—=3).

@ [he false negative rate of the sensor, f,, is the belief that the

sensor would give a negative reading even though the event 3
did occur, Pr(—=5|3).



Soft Evidence as a Noisy Sensor

Given a sensor with the above specifications that reads positive, we
want to know the new odds of 3 given this positive sensor reading.

Pr'(3)
Pr/(=3)
Pr(8]5) , , . :
= , emulating soft evidence by a positive sensor reading
Pr(—=3]|5)
Pr(S|3)Pr(3)

= , by Bayes Theorem
Pr(5|-4)Pr(—3)
1— 1, Pr(3)

fo  Pr(—=p3)
1 - rn

= o O(3).

The relative change in the odds of /3, the Bayes factor
O'(13)/O(3), is indeed a function of only the false positive and
negative rates of the sensor (independent of initial beliefs).



Soft Evidence as a Noisy Sensor

A soft evidence with a Bayes factor of k™ can be emulated by a
positive sensor reading as long as

The above equation shows that the specific false positive and
negative rates are not as important as the above ratio.

A positive reading from any of the following sensors will have the
same impact on beliefs:

@ Sensor 1: f, =10% and f, = 5%.
@ Sensor 2: f, = 8% and f, = 24%.
@ Sensor 3: f, =5% and f, = 52.5%.




Soft Evidence as a Noisy Sensor

A negative sensor reading will not necessarily have the same
impact for the different sensors.

Consider the Bayes factor corresponding to a negative reading:

Pr’(3)
Pr’(—p3)
Pr(3|-S5) , : : :
= ———— . emulating soft evidence by a negative sensor reading
Pr(—3|—-5)
Pr(—S|3)Pr(3)
= , by Bayes Theorem
Pr(—=S|=3)Pr(—3)
fn Pr(3)

1—f, Pr(=p)

o'(B) =

fn
— o(B).

A negative sensor reading corresponds to a soft evidence with a
Bayes factor of




Soft Evidence as a Noisy Sensor

Even though all of the sensors above have the same k™, they do
have different k™ values. J

k— ~ .056 for Sensor 1;: k= =~ .261 for Sensor 2; and k— =~ .553 for
Sensor 3.

All negative sensor readings will decrease the odds of the
corresponding hypothesis, but a negative reading from Sensor 1 is
stronger than one from Sensor 2, which in turn is stronger than
one from Sensor 3.



Soft Evidence as a Noisy Sensor

If £, +f, <1, then k™ >1and k= < 1.

@ A positive sensor reading will increase the odds of the
corresponding event.

@ A negative sensor reading will decrease those odds.

@ T[he condition in the above equation is satisfied when the false
positive and false negative rates are less than 50% each.

@ [ he condition however can also be satisfied even if one of the
rates is > 50%.



