
Belief propagation in a bucket-tree

Handouts, 275B Fall-2000

Rina Dechter

November 1, 2000

1 From bucket-elimination to tree-propagation

The bucket-elimination algorithm, elim-bel, for belief updating can be viewed as one phase
message propagation from leaves to root along a bucket-tree. The algorithm computes the
belief of the �rst node in the ordering given all the evidence. Often, it is desirable to get
the belief of every variable in the network. A brute-force approach will require running
elim-bel n times, each time with a di�erent variable initiating the order. We will show next
that this is unnecessary; by viewing bucket-elimination as function computation (by variable
elimination) from leaves to rrot along a rooted bucket-tree, a second pass along the tree,
from root to leaves will be equivalent to running the algorithm for each node as a root. This
yields a two-phase variable elimination algorithm up and down the bucket-tree, which can
also be viewed as two-phase message passing (or propagation) along the tree (i.e., � and �

messages) in a way that resembles closely Pearl's poly-tree propagation.

Let (G;P) be a Bayesian network, d an ordering of its variables X1; :::;Xn and B1; :::; Bn

the �nal buckets created when running bucket-elimination along d. We will denote by Bi

both the functional content of bucket i as well as the set of variables appearing in bucket i
at the time of processing.

A bucket-tree of an ordered Bayesian network has buckets as its nodes and each bucket
Bi is connected to Bj if the function created at Bi is placed in Bj . It is easy to see that this
de�nition is equivalent to the following graphical de�nition.

De�nition 1 (bucket tree) Let Gd be the induced moral graph along d of a Bayesian net-
work graph G. Each variable X and its earlier neighbors in the induced-graph is a bucket-
cluster, denoted BX. Each node BX points to BY (or, BY is the parent of BX) if Y is the
latest earlier neighbor of X in Gd (namely it is the closest earlier neighbor to X). If BY is
the parent of BX in the bucket-tree, then the separator of X and Y , denoted SXY is the set
of variables appearing in BX \BY .

Therefore, in a bucket tree, every node BX has one parent node BY and several child
nodes BZ1

; :::BZt. Algorithm bucket-tree-elimination (BTE) for computing the belief of every

1

node is described in Figure 1. In the top down phase, each bucket receives � messages from
its children and sends a � message to it parent. The correctness of the algorithm follows
from the fact that

Theorem 1 The bucket-tree of a Bayesian network G is an i-map of G.

De�nition 2 A scope of a function is the set of variables in its arguments.

Theorem 2 Algorithm BTE is sound. When terminates, each BX has �Xj received from
each child Zj in the tree, its own original P functions and the �XY sent from its parent Y .
Then,

P (BX ; e) = �
Y

k

Pk �
Y

j

�j � �
X
Y

Proof: follows from the bucket-tree i-mapness (to complete).

Example 1 The network in Figure 2a can express causal relationship between `Season' (A),
`The con�guration of an automatic sprinkler system,' (B), `The amount of rain expected'
(C), `The wetness of the pavement' (F) whether or not the pavement is slippery (G) and
`the amount of manual watering necessary' (D). Figure 3 shows the initial buckets, the �

and � messages created after two passes, using complete bucket ordering. Figure 4 shows the
execution relative to a partial order that correspond to the bucket-tree. In that picture the �
and � are viewed as messages placed on the outgoing arcs.

The � functions computed in the up phase are:
�BA (a) = P (a)
�CB(c; a) = P (bja)�D(a; b)�BA(a)
�DB (a; b) = P (bja)�C(a; b)�BA(a)
�FC (c; b) =

P
a P (cja)�

C
B(a; b)

�GF (f) =
P

b;c P (f jb; c)�
F
C (c; b)

1.1 Bucket-tree propagation, an asynchronous version

The BTE algorithm can be described in an asynchronous manner when viewing the bucket-
tree as an undirected tree and passing only one type of messages. Each bucket receives �
messages from each of its neighbors and each sends a � message to every neighbors. The
algorithm executed by node BX is described next. We distinguish between the original P
functions placed in bucket Bi and the messages that its received from its neighbors. The
algorithm is described in Figure 5.

Clearly, algorithm BTP is guaranteed to converge, and when converged each BX and its
incoming messages will have the same content as bucket BX in BTE.

Theorem 3 The time and space complexity of BTE and BTP is time and space exponential
in the induced-width of the corresponding ordered induced-graph.

2

Algorithm bucket-tree elimination (BTE)
Input: A bucket-tree B1; :::Bn for Bayesian network (G;P) along the ordering d,
where each function is placed in the latest bucket that mention a variable in its scope.
output: Buckets containing the original functions and all the � and � functions re-
ceived from neighbors in the bucket-tree. Marginal probabilities over the bucket's
variables.

1. Top-down phase: (bucket-elimination)
For i = n to 1, process bucket Bi:
Let BX be the ith processed bucket. Let �1; :::�j be all the functions in BX at the
time of processing including the original P functions. The function �YX sent from X

to its parent Y , is computed by taking the product of all the functions in its bucket,
and summing over X. The scope of this function is SXY , the separator between X

and its parent Y . Namely:
�YX(SXY) =

X

X

Y

j

�j

2. Bottom-to-top (variable-elimination from root to leaves):
For i = 1 to n, process up bucket Bi:
Let X be the current processed bucket. Let �1; :::�j be all the functions in BX at
the time of processing including the original P functions. X takes the � message
received from its parent Y , �XY , and computes a message �

Zj
X for each child bucket

Zj by taking the product of all the functions in BX excluding �j = �XZj , (the lambda
function received from Zj), and summing over the variables in BX which are not in
the separator SXZj . Namely, let UX = BX � SXZj .

�
Zj
X (SXZj) =

X

UX

�XY �
Y

fiji6=jg

�i

3. Deriving beliefs
The joint probabilities P (X;SX ; E = e) in BX is computed by taking the product of
all the functions in BX (the original P s, the � functions and � function): Namely,
given the functions f1; :::; ft in BX at termination,

P (BX) = �
Y

i

fi

and the belief of X is computed by

Bel(x) = �
X

BX�fXg

Y

j

fj

Figure 1: Algorithm Bucket-tree Elimination

3

A

B C

F

D

G

A

B C

F

D

G

(a) (b)

Season

Rain

Wet

Slipperywatering
Manual

Automated
sprinkler

Figure 2: belief network P (g; f; d; c; b; a) = P (gjf)P (f jc; b)P (djb; a)P (bja)P (cja)P (a)

2 From buckets to super-buckets to join-trees

The BTE and BTP algorithms are special cases of a wide class of algorithms all based on
an underlying cluster-tree. We saw that in a chordal graph the maximal cliques form a tree
which obeys the running intersection property (r.i.p). This property guarantees that the
clique-tree is an i-map of the original Bayes network.

In fact, given a chordal graph embedding of the original Bayesian networks' dag, (which
can be obtained by generating the induced graph along an ordering, an operation known also
as triangulation), there are many cluster-trees that have the desired running intersection
properties. The join-tree is the most popular tree used in inference. The bucket-tree is
another candidate. We next de�ne legal cluster-trees as an extension that captures all viable
cluster-trees that support tree propagation. A cluster tree is a set of subsets of variables
connected by a tree structure.

De�nition 3 A legal tree of a Bayesian network is any cluster tree that satis�es the following
two properties:
1. Every family (CPT) has at least one cluster that contains its scope.
2. The cluster-tree obeys the running intersection property.

Join-trees and bucket-trees are legal trees. One way of structuring legal trees is to gen-
erate a bucket-tree from an induced graph, and then create subsequent trees by merging
adjacent clusters.

Proposition 4 If T is a legal cluster tree, then any tree obtained by merging adjacent clus-
ters is legal.

Proof: Exercise.

We can start from the bucket-tree and merge adjacent buckets, yielding super-buckets.
The maximal cliques are special types of super-buckets. Clearly, the bucket-tree contains all
the maximal cliques. If each maximal clique absorbs adjacent subsumed cliques we get the
clique-tree or the join-tree (see Figure 6).

4

bucketG = P (gjf); g = 1
bucketF = P (f jb; c)
bucketD = P (djb; a)
bucketC = P (cja)
bucketB = P (bja)
bucketA = P (a)

Buckets after top-down message passing:

bucketG = P (gjf); g = 1
bucketF = P (f jb; c)jj �G(f)
bucketD = P (djb; a)
bucketC = P (cja)jj �F (b; c)
bucketB = P (bja) jj �D(a; b)
bucketA = P (a) jj �B(a)

Buckets after bottom-up message passing:

bucketG = P (gjf); g = 1, jj �GF (f)
bucketF = P (f jb; c)jj �G(f), �FC (b; c)
bucketD = P (djb; a) jj �DB (a; b)
bucketC = P (cja)jj �F (b; c); �CB(a; b)
bucketB = P (bja) jj �D(a; b) ,�BA(a)
bucketA = P (a) jj �B(a)

Figure 3: Prpagation up an down the buckets using d1 = A;B;C;F;D;G

5

Figure 4: propagation of �s and �s along the bucket-tree6

Bucket-tree Propagation (BTP)
Input: For each node X, its bucket BX and its neighboring buckets.
Output: As in BTE.
Initialize: make all initial messages constant 1.
For every bucket BX do:
Let fPig; i = 1; :::j be the original functions in BX , let Y1; :::Yk its neighbors, Let
�j = �XYj be the message sent to X from its neighbor Yi.
The message X sends to a neighbor Yj is:

�
Yj
X (SXYj) =

X

BX�SXYj

(
Y

i

Pi) � (
Y

i6=j

�i)

Figure 5: The Bucket-tree propagation (BTP) for X

Figure 6: From a bucket-tree to join-tree to a super-bucket-tree

7

Algorithm join-tree clustering (JTC)
Input: we assume a legal tree T whose nodes are clusters of variables C1; :::Ct and
each node has a collection of neighbors.
Output: Each cluster will have all input messages received from all its neighbors.
Initialize: Put each original function in any cluster that contains its scope.
The algorithm for cluster CX is:
Let fPig; i = 1; :::j be the original functions in CX , let Y1; :::Yk be its neighbors, let
�j = �XYj be the message sent to CX from its neighbor CYj .
When CX receives all messages from its neighbors except from Yj , the message CX

sends to CYj is:

�
CYj
CX

(SCXCYj
) =

X

CX�SCXCYj

(
Y

i

Pi) � (
Y

i6=j

�i) (1)

Figure 7: Algorithm The Join-Tree Clustering (JTC)

Both BTE and BTP can be extended to any legal cluster-tree. When the tree is the
join-tree, the algorithm is called join-tree clustering. Algorithm join-tree clustering (JTC)
(also, called super-bucket propagation (SBP)) is presented in Figure 7. We could clearly
de�ne the algorithm for synchronous execution from leaves to the root and back.

Theorem 5 Algorithm join-tree clustering is sound. When it converges, each cluster's func-
tions product provide the marginal probabilities of the cluster's variables joint with the evi-
dence.

Theorem 6 The time complexity of JTC is exponential in the largest clique size. The space
complexity of JTC is exponential in the separator sizes.

proof: Clearly the time complexity is exponential in the cluster size since we consider all
the assignments to all variables in each cluster, and there are kjCj tuples, when jCj is the
size of the cluster and k is the domain size for each variable. The space complexity however
can be restricted to the output of the recorded function (the messages). For each tuple of
the recorded function over a seperator we accumulate the sum of probabilities over all the
rest of the variables, and each such probability (of a tuple) can be computed in linear time
and space. This computation can be done by traversing the search space of all possible
assignments in a depth-�rst manner.

In the bucket-tree the separator sizes where equal to the cluster sizes (minus 1) and
therefore the time complexity and space complexity are the same. In general however, for
the super-bucket-tree or, in particular, for the join-tree, the separators sizes may be far less
than the maximal cliques sizes. Furthermore, it is sometimes worthwhile to combine two
adjacent cliques having a wide separator in order to save space (see time-space paper).

8

...

...

...

...

P(d=1|b,a)P(g=0|f=0)

P(d=1|b,a)P(g=0|f=1)
P(d=1|b,a)P(g=0|f=0)

b=1

f=1

f=0b=0

c=0

c=1a=0

P(a)
a=1

P(c|a)

P(b|a)

P(f|b,c)
P(d=1|b,a)P(g=0|f=1)

Figure 8: probability tree

3 Combining Elimination and Conditioning; the cycle-

cutset method

A serious drawback of elimination and clustering algorithms is that they require considerable
memory for recording the intermediate functions. Conditioning search, on the other hand,
requires only linear space. By combining conditioning and elimination, we may be able to
reduce the amount of memory needed while still having performance guarantee.

Full conditioning for probabilistic networks is search, namely, traversing the tree of par-
tial value assignments and accumulating the appropriate sums of probabilities. (It can be
viewed as an algorithm for processing the algebraic expressions from left to right, rather
than from right to left as was demonstrated for elimination). For example, we can compute
the expression for belief updating in the network of Figure 2:

Bel(A = a) = �
X

c;b;f;d;g

P (gjf)P (f jb; c)P (dja; b)P (cja)P (bja)P (a)

= �P (a)
X

c

P (cja)
X

b

P (bja)
X

f

P (f jb; c)
X

d

P (djb; a)
X

g

P (gjf); (2)

by traversing the tree in Figure 8, going along the ordering from �rst variable to last variable.
The tree can be traversed in a depth-�rst manner. The sum can be accumulated for each
value of variable A.

Let X be a subset of variables and V = v be a value assignment to V . f(X)jv denotes
the function f where the arguments in X \ V are assigned the corresponding values in v.

Let C be a subset of conditioned variables, C � X, and V = X �C. We denote by v an

9

Algorithm elim-cond-bel
Input: A belief network BN = fP1; :::; Png; an ordering of the
variables, d; a subset C of conditioned variables; observations e.
Output: Bel(A).
Initialize: � = 0.

1. For every assignment C = c, do
� �1 The output of elim-bel with c [e as observations.
� � � + �1. (update the sum).

2. Return �.

Figure 9: Algorithm elim-cond-bel

assignment to V and by c an assignment to C. Obviously,
X

x

P (x; e) =
X

c

X

v

P (c; v; e) =
X

c;v

�iP (xijxpai)j(c;v;e)

Therefore, for every partial tuple c, we can compute
P

v P (v; c; e) using variable elimination,
while treating the conditioned variables as observed variables. This basic computation will
be enumerated for all value combinations of the conditioned variables, and the sum will be
accumulated. This straightforward algorithm is presented in Figure 9.

Given a particular value assignment c, the time and space complexity of computing the
probability over the rest of the variables is bounded exponentially by the induced width
w�
d(e [c) of the ordered moral graph along d adjusted for both observed and conditioned

nodes. Namely, the induced graph is generated without connecting earlier neighbors of
both evidence and conditioned variables, and the adjusted induced-width is the width of the
resulting ordered graph.

Theorem 7 Given a set of conditioning variables, C, the space complexity of algorithm
elim-cond-bel is O(n � exp(w�

d(c[e)), while its time complexity is O(n � exp(w�
d(e[c)+ jCj)),

where the induced width w�(d; c[e), is computed on the ordered moral graph that was adjusted
relative to e and c. 2

When the variables in e [c constitute a cycle-cutset of the graph, the graph can be
ordered so that its adjusted induced width equals 1 and elim-cond-bel reduces to the known
loop-cutset algorithm (see Pearl, chapter 4).

De�nition 4 Given an undirected graph, G a cycle-cutset is a subset of the nodes that breaks
all its cycles. Namely, when removed, the graph has no cycles. A loop-cutset of a directed
graph is a subset of nodes whose removal makes the graph a poly-tree.

Corollary 1 A Bayesian network having a loop-cutset of size r can be processed in time
O(n�F�exp(r)), when n is the number of variables F is the size of the maximal consitional
probability table in the input.

10

In general Theorem 7 calls for a secondary optimization task on graphs:

De�nition 5 (secondary-optimization task) Given a graph G = (V;E) and a constant
r, �nd a smallest subset of nodes Cr, such that G0 = (V �Cr; E0), where E0 includes all the
edgs in E that are not incident to nodes in Cr, has induced-width less or equal r.

Clearly, the minimal cycle-cutset corresponds to the case where r = 1. The loop-cutset
corresponds to the case when conditioning creates a poly-tree. The general task is clearly
NP-complete.

Clearly, algorithm elim-cond-bel can be implementedmore e�ectively if we take advantage
of shared partial assignments to the conditioned variables. There are a variety of possible
hybrids between conditioning and elimination that can re�ne this basic procedure. One
method imposes an upper bound on the arity of functions recorded and decides dynamically,
during processing, whether to process a bucket by elimination or by conditioning Another
method which uses the super-bucket approach collects a set of consecutive buckets into one
super-bucket that it processes by conditioning, thus avoiding recording some intermediate
results

11

