Boolean Satisfiability

ICS 275
Spring 2010

Fall 2010

Learning Issues

Learning styles

— Graph-based or context-based
— i-bounded, scope-bounded

— Relevance-based

Non-systematic randomized learning
Implies time and space overhead
Applicable to SAT

Fall 2010

Boolean Satisfiability & Optimization

J. Marques-Silval

LUniversity College Dublin, Ireland

ECAI 2010

Part |

Definitions, SAT Algorithms & Modelling Techniques

Outline

Preliminaries

Basic Definitions

e Propositional variables can be assigned value 0 or 1
— In some contexts variables may be unassigned

A clause is satisfied if at least one of its literals is assigned value 1
(X1 VGV ﬁX3)

A clause is unsatisfied if all of its literals are assigned value 0
(X1 V —xo V ﬁX3)

A clause is unit if it contains one single unassigned literal and all
other literals are assigned value 0

(X1 V X2 V ﬁX3)

A formula is satisfied if all of its clauses are satisfied

A formula is unsatisfied if at least one of its clauses is unsatisfied

Pure Literals

e A literal is pure if only occurs as a positive literal or as a negative
literal in a CNF formula

— Example:

e=(xVx2)A(3V-x)A(V-x)A(xV-xg)
— x1 and x3 and pure literals

e Pure literal rule:

Clauses containing pure literals can be removed from the formula
(i.e. just assign pure literals to the values that satisfy the clauses)

— For the example above, the resulting formula becomes:
P = (X4 V —1X5) N (X5 V "IX4)

o A reference technique until the mid 90s; nowadays seldom used

Unit Propagation

e Unit clause rule: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(Xl V —xo V —IX3) A\ ('ﬂXl V x3V X4) N (ﬂxl V =Xy V X4)

Unit Propagation

e Unit clause rule: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1 V2V -x3)A(mx1V-x3Vxg) A(—x1V-xeVxg)

Unit Propagation

e Unit clause rule: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1VxV-x3)A(mx1Vx3Vxg) A(—x1V-xeVxg)

Unit Propagation

e Unit clause rule: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1VxV-x3)A(mx1Vx3Vxg) A(—x1V-xeVxg)

(x1 V-x0V=x3)A(mxgVx3Vxg) A(-xgVoxa V—xg)

Unit Propagation

e Unit clause rule: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1VxV-x3)A(mx1Vx3Vxg) A(—x1V-xeVxg)

(x1 V-x0V-x3)A(—x1Vox3Vxg) A(—xg Voxa V—xg)

Unit Propagation

e Unit clause rule: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1VxV-x3)A(mx1Vx3Vxg) A(—x1V-xeVxg)

(x1 V-x0V-x3)A(mx1Vox3Vxg) A(—xgVoxa V—xg)

Unit Propagation

® Unlt Clause rU|e: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1V-xV-x3)A(mx1VoxsVxg)A(—xV—xe Vxg)

(x1 V2V x3) A(—xg Voxa Voxg) A (—xg V—xe Vi —ixg)

e Unit propagation can satisfy clauses but can also unsatisfy clauses
(i.e. conflicts)

Resolution

e Resolution rule:
— If a formula ¢ contains clauses (x V &) and (—x V 3), then infer
(aV B)
RES(X 0 b Y 3) = ((,l:' V)))

e Resolution forms the basis of a complete algorithm for SAT

— lteratively apply the following steps: [Davis&Putnam, JACM'60]
» Select variable x
» Apply resolution rule between every pair of clauses of the form

(x Va) and (—x V 3)

» Remove all clauses containing either x or —x
» Apply the pure literal rule and unit propagation

— Terminate when either the empty clause or the empty formula is

derived

Resolution — An Example

(x1 V2 Vax3)A(mx1 V- V-x3) A V) A Vx)A(xsV-xg) F

Resolution — An Example

(x1 V2 Vax3)A(mx1 V- V-x3) A V) A Vx)A(xsV-xg) F

(—x2Vx3) A2 Vx3)A(xsVxg)A(xsV—xq) =

Resolution — An Example

(x1 V- Vax3)A(mxa V- V-oxg)A(eVxs)A(aVx)A(aVx) F
(mx2Vu3)A (2 Vx3)A(xsVxa)A(xsV—xg) =
I_

(x3V=x3)A(x3Vx4) A5V xq)

Resolution — An Example

(x1 V2 V-ox3)A(mx1V-xaV-ox3) A(eVx3)A(sVxa)A(xsV —xyg)
(mx2Vu3)A (2 Vx3)A(xsVxa)A(xsV—xg)
(x3V=x3)A(x3Vx4) A5V xq)

(X3 V X4) AN (X3 V _1X4)

B2 I TR)

Resolution — An Example

(x1 V- V-x3)A(mx1V-xV-x3)A(eVx3)AGsVx)A (s YV —x)
(—x2Vx3) A2 Vx3)A(xsVxg)A(xsV—xq)
(X3 V —'X3) A\ (X3 V X4) A\ (X3 V —1X4)

(X3 V X4) AN (X3 V ﬁX4)

(x3)

e Formula is SAT

}_

Outline

Algorithms
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Algorithms for SAT

e Incomplete algorithms (i.e. cannot prove unsatisfiability):

— Local search / hill-climbing
— Genetic algorithms
— Simulated annealing

e Complete algorithms (i.e. can prove unsatisfiability):
— Proof system(s)

» Natural deduction [e.g. Huth & Ryan'04]
» Resolution

» Stalmarck's method

» Recursive learning

>

— Binary Decision Diagrams (BDDs)
— Backtrack search / DPLL

» Conflict-Driven Clause Learning (CDCL)

Outline

Algorithms

The DPLL Algorithm

DPLL — Historical Perspective

In 1960, M. Davis and H. Putnam proposed the DP algorithm:
— Resolution used to eliminate 1 variable at each step
— Applied the pure literal rule and unit propagation

Original algorithm was inefficient

In 1962, M. Davis, G. Logemann and D. Loveland proposed an
alternative algorithm:

— Instead of eliminating variables, the algorithm would split on a given
variable at each step
— Also applied the pure literal rule and unit propagation
The 1962 algorithm is actually an implementation of backtrack
search

Over the years the 1962 algorithm became known as the DPLL
(sometimes DLL) algorithm

The DPLL Algorithm

e Standard backtrack search

e At each step:
— [DECIDE] Select decision assignment
— [DEDUCE] Apply unit propagation and (optionally) the pure literal

rule
— [DIAGNOSE] If conflict identified, then backtrack

» If cannot backtrack further, return UNSAT
» Otherwise, proceed with unit propagation

— If formula satisfied, return SAT
— Otherwise, proceed with another decision

An Example of DPLL

(av-bVvd)A(aV-bVe)A
(mbV —dV —e)A
(avbVveVvd)A(avbVcV-d)A
(avbV-cVe)A(aVbV-cV—e)

An Example of DPLL

T2
>

An Example of DPLL

©
|

aV-bVvd)A(aV-bVe)A
—bV dV —e)A
avbVveVvd)A(avVbVeV-d)A
avbV-cVe)A(aVbV-cV—e)

(
(
(
(

conflict

An Example of DPLL

aVvV-bVvd)A(aV—-bVe)A

—bV —~dV -e)A
avVbVvecVvd)A(avbVecV-d)A
avbV-cVe)A(aVbV-cV-e)

©
|

(
(
(
(

conflict

An Example of DPLL

©
|

aVvV-bVvd)A(aV—-bVe)A

-bV -dV -e)A
avbVvcVvd)A(avbVcV-d)A
avbVv-cve)A(aVbV cV —e)

(
(
(
(

conflict

An Example of DPLL

©
|

aVvV-bVvd)A(aV—-bVe)A

—bV —~dV -e)A
aVbvecVvd)A(aVbVcV-d)A b
avVbVv-cVve)A(aVbV-cV —e)

(
(
(
(

conflict /

An Example of DPLL

/(

aV-bVvd)A(aV-bVe)A
—bV —d V —e) A
aVbVcecvd)A(avVbVcV-d)A
aVbVv-cVve)A(aVbV-cV —e)

o

(
(
(
(

ON

T
W

conflict

/

An Example of DPLL

¢ = (av-bVvd)A(avV—-bVe)A
(mbV —dV —e)A s
(aVbVecVd)A(aVbVecV-d)A (b)
(aVbV-cVe)A(aVbV-cV-e) h

conflict

Comparing with CSP:

» Sat can be decided before all variables are assigned
Complexity: when is unit propagation complete?....
Think Horn clauses

Outline

Algorithms

Conflict-Driven Clause Learning (CDCL)

CDCL SAT Solvers — Basic Techniques

e Based on DPLL [Davis et al., JACM'60, CACM'62]
— Must be able to prove unsatisfiability

e New clauses are learned from conflicts [Marques-Silva&Sakallah, ICCAD'96]
— Backtracking can be non-chronological

e Structure of conflicts is exploited (UIPs) [Marques-Silva&Sakallah, ICCAD'96]

e Backtrack search is periodically restarted [Gomes et al., AAAI'98]

e Lazy data structures are used [Moskewicz et al, DAC'01]
— Compact with low maintenance overhead

e Branching is guided by conflicts [Moskewicz et al, DAC'01]

- E.g. VSIDS, etc.

CDCL SAT Solvers — Additional Techniques

o (Currently) effective techniques:

— Unused learned clauses are discarded
— Use formula preprocessing |

— Minimize learned clauses

— Use literal progress saving

— Use dynamic restart policies

— Exploit extended implication graphs
— ldentify glue clauses

e (Currently) ineffective techniques:

— ldentify pure literals
— Implement variable lookahead
— Use formula preprocessing |l

[Goldberg&Novikov, DATE'02]
[Een&Biere, SAT'05]

[Sorensson& Biere, SAT'09]
[Pipatsrisawat&Darwiche, SAT'07]
[Biere, SAT'08]

[Audemard et al., SAT'08]

[Audemard & Simon, |JCAI'09]

[Davis&Putnam, JACM'60]
[Anbulagan&Li, [JCAI'97]

[Brafman, |JCAI'01]

Unit Propagation

e Unit clause rule: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1VxV-x3)A(mx1Vx3Vxg) A(—x1V-xeVxg)

(x1 V-x0V=x3)A(mxgVx3Vxg) A(-xgVoxa V—xg)

Unit Propagation

e Unit clause rule: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1VxV-x3)A(mx1Vx3Vxg) A(—x1V-xeVxg)

(x1 V-x0V-x3)A(—x1Vox3Vxg) A(—xg Voxa V—xg)

Unit Propagation

e Unit clause rule: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1VxV-x3)A(mx1Vx3Vxg) A(—x1V-xeVxg)

(x1 V-x0V-x3)A(mx1Vox3Vxg) A(—xgVoxa V—xg)

Unit Propagation

® Unlt Clause rU|e: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1V-xV-x3)A(mx1VoxsVxg)A(—xV—xe Vxg)

(x1 V2V x3) A(—xg Voxa Voxg) A (—xg V—xe Vi —ixg)

e Unit propagation can satisfy clauses but can also unsatisfy clauses
(i.e. conflicts)

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

p=(a Vb)A(-bV c Vd)A(-bVe)A(-dV —eV f)...

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

wo=(aVb)A(=bV c Vd)A(-bVe)A(-dV -eV f)...

— Assume decisions c =0 and f =0

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

p=(a Vb)A(=bV c Vd)A(-bVe)A(-dV -eV f)...

— Assume decisions ¢ =0 and f = 0
— Assign a = 0 and imply assignments

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

@o=(a Vb)A(=bV ¢ Vd)A(=bVe)A(-dV —eV f)...

— Assume decisions ¢ =0 and f = 0
— Assign a = 0 and imply assignments

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

w=(a Vb)A(=bV c VA)A(=bVe)A(-dV—eV f)...

— Assume decisions c =0 and f =0

— Assign a = 0 and imply assignments
— A conflict is reached: (—d V —e V f) is unsatisfied

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

e=(@VbA(-bVEIVdA)A(-bVe)A(-dV-eV)...

— Assume decisions ¢ = 0 and f =0

— Assign a = 0 and imply assignments

— A conflict is reached: (—d V —e V f) is unsatisfied
- (a=0Ale=0)A(f=0)=(g=10)

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

e=(@VbA(-bVEIVdA)A(-bVe)A(-dV-eV)...

— Assume decisions ¢ =0 and f = 0

— Assign a = 0 and imply assignments

— A conflict is reached: (—d V —e V f) is unsatisfied
~(@=0)A(c=0)A(f=0)= (p=0)

- (p=1)=(a=1)V(e=1)V(f=1)

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

e=(@VbA(-bVEIVdA)A(-bVe)A(-dV-eV)...

— Assume decisions ¢ =0 and f = 0

— Assign a = 0 and imply assignments

— A conflict is reached: (—d V —e V f) is unsatisfied
~(@=0)A(c=0)A(f=0)= (p=0)

- (p=1)=(a=1)V(e=1)V(f=1)

— Learn new clause (aVV ¢V f)

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVb)A(—=bV c Vd)A(-bVe)A(-dV eV f)A
(avecV F)AN(—mavVg)A(—gV b)A(=hVj)A(—iV k)

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (AaVDb)A(=bV c Vd)A(-bVe)A(-dV eV f)A
(av eV FIA(—mavVg)A(—-gV b)A(—hVJj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVb)A(=bV c Vd)A(-bVe)A(~dV —-eV f)A
(aVcV F)AN(—aVg)A(—gVDb)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0
— Assignment a = 0 caused conflict = learnt clause (aV ¢ V)
implies a =1

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVb)A(=bV c Vd)A(-bVe)A(-dV eV f)A
(avecV FIAN(—mavVg)A(—gVb)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0
— Assignment a = 0 caused conflict = learnt clause (aV ¢V f)
implies a =1

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVDO)A(=bV c Vd)A(-bVe)A(-dV eV f)A
(avVecV f)AN(—avVg)A(-gVDb)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0
— Assignment a = 0 caused conflict = learnt clause (aV ¢V f)
implies a =1

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVb)A(=bV c Vd)A(-bVe)A(—-dV eV f)A
(avVecV f)AN(—aVvg)A(-gVDb)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0

— Assignment a = 0 caused conflict = learnt clause (aV ¢V f)
implies a =1

— A conflict is again reached: (—d V —e V f) is unsatisfied

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVb)A(=bV e Vd)A(-bVe)A(-dV eV f)A
(avie V.E)A(—maVvg)A(—gVD)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0

— Assignment a = 0 caused conflict = learnt clause (aV ¢V f)
implies a =1

— A conflict is again reached: (—d V —e V f) is unsatisfied

— (e=0)A(f=0)=(p=0)

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVb)A(=bV e Vd)A(-bVe)A(-dV eV f)A
(avie V.E)A(—maVvg)A(—gVD)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0

— Assignment a = 0 caused conflict = learnt clause (aV ¢V f)
implies a =1

— A conflict is again reached: (—d V —e V f) is unsatisfied

= (c=0)A(f=0)=(p=0)

— (= 1)l =1 v =1)

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVb)A(=bV e Vd)A(-bVe)A(-dV eV f)A
(avie V.E)A(—maVvg)A(—gVD)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0

— Assignment a = 0 caused conflict = learnt clause (aV ¢V f)
implies a =1

— A conflict is again reached: (—d V —e V f) is unsatisfied

= (c=0)A(f=0)=(p=0)

— (= 1)l =1 v =1)

— Learn new clause (¢ \ f)

Non-Chronological Backtracking

Non-Chronological Backtracking

Learnt clause: (¢ V f)

Need to backtrack, given new
clause

Backtrack to most recent
decision: f =0

Clause learning and
non-chronological backtracking
are hallmarks of modern SAT
solvers

Most Recent Backtracking Scheme

Unique Implication Points (UIPs)

h e

e Exploit structure from the implication graph
— To have a more aggressive backtracking policy
e |dentify additional clauses to learn [Marques-Silva&Sakallah'96]

— Create clauses (aV ¢V f) and (=i V f)
— Imply not only a=1 but also i =0

e 1st UIP scheme is the most effective [Zhang et al.’01]

— Create only one clause (—/ V f)
— Avoid creating similar clauses involving the same literals

Clause deletion policies

o Keep only the small clauses [Marques-Silva& Sakallah'96]
— For each conflict record one clause

— Keep clauses of size < K
— Large clauses get deleted when become unresolved

e Keep only the relevant clauses (Bayardo&Schrag'97]
— Delete unresolved clauses with < M free literals

e Keep only the clauses that are used [Goldberg&Novikov'02]
— Keep track of clauses activity

Data Structures

Key point: only unit and unsatisfied clauses must be detected
during search

— Formula is unsatisfied when at least one clause is unsatisfied
— Formula is satisfied when all the variables are assigned and there are
no unsatisfied clauses

e |[n practice: unit and unsatisfied clauses may be identified using
only two references

Standard data structures (adjacency lists):

— Each variable x keeps a reference to all clauses containing a literal
in x

Lazy data structures (watched literals):

— For each clause, only two variables keep a reference to the clause,
i.e. only 2 literals are watched

Standard Data Structures (adjacency lists)

iteralsO =
I:Z:SJ %0 e Each variable x keeps a reference to
all clauses containing a literal in x
— If variable x is assigned, then all
unit clauses containing a literal in x are
evaluated
N — If search backtracks, then all clauses
size =5 of all newly unassigned variables are
updated
satisfied e Total number of references is L,
where L is the number of literals
literalsO =5

literals1=0

size=5

unsatisfied

Lazy Data Structures (watched literals)

@3

@]

@5

@3

@5

@3

@7

@]

@]

@3

@]

unresolved

e For each clause, only two variables

keep a reference to the clause,
I.e. only 2 literals are watched

unresolved

unit

— If variable x is assigned, only the
clauses where literals in x are
watched need to be evaluated

— |If search backtracks, then
nothing needs to be done

e Total number of references is
2 X C, where C is the number of
clauses

satisfied

after backtracking to level 4

— In general L > 2 x C, in
particular if clauses are learnt

BCP Algorithm (1/8)

e What “causes” an implication? When can it occur?

o All literals in a clause but one are assigned to False
(vl +v2+v3). impliedcases: (0O+0+v3)or(0+v2+0)or(vl+0+0)
e For an N-literal clause, this can only occur after N-1 of the literals have
been assigned to False

e So, (theoretically) we could completely ignore the first N-2 assignments
to this clause
» [n reality, we pick two literals in each clause to “watch” and thus can
ignore any assignments to the other literals in the clause.
Example: (vl + v2 + v3 + v4 + v5)
(vI=X+v2=X +v3=7 {i,e. Xor 0 or 1} + v4=7 + v5=7?)

BCP Algorithm (1.1/8)

e Big Invariants
e Each clause has two watched literals.

» If a clause can become unit via any sequence of assignments, then this
sequence will include an assignment of one of the watched literals to F.
Example again: (vl + v2 + v3 + v4 + v5)
(VI=X + v2=X + v3=7 + v4=7 + v5=7)
e BCP consists of identifying unit (and conflict) clauses (and the
associated implications) while maintaining the “Big Invariants”

BCP Algorithm (2/8)

e Let's illustrate this with an example:

v2
vl
vl

vl’
vl’

+ + + +

v3 + vl + v4d + v5
v2 + v3'

v2'

v4

oo
XXX
e®
eo

BCP Algorithm (2.1/8) :

e Let's illustrate this with an example:

watched v2 + v3 + vl + v4d + v5
literals . B+ v3’
vl + x2!
vl + v4
) One literal clause breaks invariants: handled
@) as a special case (ignored hereafter)

m [nitially, we identify any two literals in each clause as the watched ones
m Clauses of size one are a special case

BCP Algorithm (3/8)

e We begin by processing the assignment v1 = F (which is implied by

the size one clause)

State: (v1=F)

Pending:

vZ +
vl +
vl +

w1l +

v3 + vl + v4 + v5
v2 + v3’
w2’

wvi

BCP Algorithm (3.1/8)

e We begin by processing the assignment v1 = F (which is implied by

the size one clause)

State: (v1=F) —

Pending: E:>

m [0 maintain our invariants,

vZ + v3 + vl + v4 + v5
vl + w2 + v3’
vl + w2’

vl + wd

we must examine each clause where the

assignment being processed has set a watched literal to F.

BCP Algorithm (3.2/8)

e We begin by processing the assignment v1 = F (which is implied by
the size one clause)

State: (v1=F)

Pending:

vZ +
vl +

vl +

|:> vl +

v3 + vl + v4 + v5
v2 + v3’
w2’

wvi

To maintain our invariants, we must examine each clause where the

assignment being processed has set a watched literal to F.

We need not process clauses where a watched literal has been setto T,

because the clause is now satisfied and so can not become unit.

BCP Algorithm (3.3/8)

e We begin by processing the assignment v1 = F (which is implied by
the size one clause)

State: (v1=F)

Pending:

E:> vZ2 +

vl +
vl +

w1l +

v3 + vl + v4 + v5
v2 + v3’
w2’

wvi

To maintain our invariants, we must examine each clause where the

assignment being processed has set a watched literal to F.

We need not process clauses where a watched literal has been setto T,

because the clause is now satisfied and so can not become unit.

We certainly need not process any clauses where neither watched literal

changes state (in this example, where v1 is not watched).

BCP Algorithm (4/8)

e Now let’s actually process the second and third clauses:

vZ2 + v3 + vl + v4d + vb
vl + v2 + w3’
vl + v2'

vl’'+ wvd

State: (v1=F)

Pending:

BCP Algorithm (4.1/8)

e Now let’'s actually process the second and third clauses:

vZ2 + v3 + vl + v4d + vb
vl + v2 + w3’
vl + w2’

vl + wvd

State: (v1=F)

Pending:

vZ2 + v3 + vl + v4 + v5
vl + v2 + w3f
vl + w2’

vl + w4

State: (v1=F)

Pending:

m For the second clause, we replace v1 with v3' as a new watched literal.
Since v3' is not assigned to F, this maintains our invariants.

BCP Algorithm (4.2/8)

e Now let’s actually process the second and third clauses:

vZ2 + v3 + vl + v4d + vb
vl + v2 + w3’
vl + v2'

vl + wvd

State: (v1=F)

Pending:

vZ2 + v3 + vl + v4 + v5
vl + v2 + w3f
vl + w2’

vl + w4

State: (v1=F)

Pending: (v2=F)

m For the second clause, we replace v1 with v3' as a new watched literal.
Since v3' is not assigned to F, this maintains our invariants.

m The third clause is unit. We record the new implication of v2', and add it to
the queue of assignments to process. Since the clause cannot again

become unit, our invariants are maintained.

oe0®
o8
*oe
L LN
o o8
BCP Algorithm (5/8) :
e Next, we process v2'. We only examine the first 2 clauses.
vZ2 + w3 + vl + v4d + v5 vZ2 + w3 + vl + v4 + v5
vl + v2 + v3’ \\5 vl + S+
vl + v2’ g w1l + 2!
vl + vd vl + v4
State: (v1=F, v2=F) State: (v1=F, v2=F)
Pending: Pending: (v3=F)

m For the first clause, we replace v2 with v4 as a new watched literal. Since v4
is not assigned to F, this maintains our invariants.

m The second clause is unit. We record the new implication of v3’, and add it to
the queue of assignments to process. Since the clause cannot again
become unit, our invariants are maintained.

oe0®
o8
*oe
L LN
o o8
BCP Algorithm (6/8) :
e Next, we process v3'. We only examine the first clause.
v2 + w3 + vl + wvd + v5 vZ2 + v3 + vl + w4 + w5
vl + v2 + v3’ \\5 vl + B+ .
vl + w2f J w1l + 2!
vl + vd vl + v4
State: (v1=F, v2=F, wv3=F) State: (v1=F, v2=F, wv3=F)
Pending: Pending:

m For the first clause, we replace v3 with vb as a new watched literal. Since v5
is not assigned to F, this maintains our invariants.

m Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. Both v4 and v5 are unassigned. Let's say we
decide to assign v4=T and proceed.

BCP Algorithm (7/8)

e Next, we process v4. We do nothing at all.

v2 + v3 + vl +|vd + wh
vl + w2 + w3’/ \\}
vl + v2'

vl + wvd

vZ2 +
vl +
vl +

wl’ +

v + vl + w4 + w5
s - T3
w2’

v

State: (v1=F, v2=F, v3=F,
v4=T)

State: (v1=F, v2=F, v3=F,

v4=T)

m Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. Only v5 is unassigned. Let's say we decide to

assign v5=F and proceed.

oe0®
o8
*oe
L LN
o o8
BCP Algorithm (8/8) :
e Next, we process vo=F. We examine the first clause.
v2 + v3 + vl + w4 + w5 vZ2 + v3 + vl + w4 + w5
vl + v2 + w3’ \\5 vl + S+
vl + w2’ g w1l + 2!
vl + vd vl + v4
State: (v1=F, v2=F, v3=F, State: (v1=F, v2=F, v3=F,
v4=T, v5=F) v4=T, v5=F)

The first clause is already satisfied by v4 so we ignore it.

Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. No variables are unassigned, so the instance is
SAT, and we are done.

BCP Algorithm Summary

e During forward progress: Decisions and Implications
e Only need to examine clauses where watched literal is setto F
Can ignore any assignments of literals to T
Can ignore any assignments to non-watched literals
e During backtrack: Unwind Assignment Stack

e Any sequence of chronological unassignments will maintain our
invariants

So no action is required at all to unassign variables.
e Overall
e Minimize clause access

Search Heuristics

e Standard data structures: heavy heuristics
— DLIS: Dynamic Large Individual Sum [Marques-Silva'99]
» Selects the literal that appears most frequently in unresolved clauses

e |Lazy data structures: light heuristics
— VSIDS: Variable State Independent Decaying Sum [moskewicz et a101]
» Each literal has a counter, initialized to zero
» When a new clause is recorded, the counter associated with each

literal in the clause is incremented
» The unassigned literal with the highest counter is chosen at each

decision
— Examples of variants
» Counters updated also for literals in the clauses involved in conflicts

[Goldberg& Novikov'02]

Restarts |

%below

/-,- Distributions

0.7 -
—g40 Distrib

0.6 1

0.5 1

03 #backtracks

0 2000 4000 6000 8000 10000 12000

e Plot for processor verification instance with branching
randomization and 10000 runs

— More than 50% of the runs require less than 1000 backtracks
— A small percentage requires more than 10000 backtracks

e Run times of backtrack search SAT solvers characterized by
heavy—tall dIStrIbutlonS [Gomes et al.'98]

Restarts ||

cutoff cutoff

o Repeatedly restart the search each time a cutoff is reached

— Randomization allows to explore different paths in search tree
e Resulting algorithm is incomplete

— Increase the cutoff value

— Keep clauses from previous runs

new
clauses

cutoff

Restart

Conflict clause: x1°+x3+x5°

e Abandon the

current search
tree and
reconstruct a
new one

Helps reduce
variance - adds
to robustness in
the solver

The clauses
learned prior to
the restart are
still there after
the restart and
can help pruning
the search space

Evolution of SAT Solvers

Instance Posit'94 Grasp'96 Chaff'03 Minisat'03 Picosat'08
ssa2670-136 13.57 0.22 0.02 0.00 0.01
bf1355-638 310.93 0.02 0.02 0.00 0.03
design_3 > 1800 3.93 0.18 0.17 0.93
design_1 > 1800 34.55 0.35 0.11 0.68
4pipe_4_ooo | > 1800 > 1800 17.47 110.97 44 .95
fifo8_-300 > 1800 > 1800 348.50 53.66 39.31
w08_15 > 1800 > 1800 > 1800 99.10 71.89
Opipe_9_ooo | > 1800 > 1800 > 1800 > 1800 > 1800
c6288 > 1800 > 1800 > 1800 > 1800 > 1800

e Modern SAT algorithms can solve instances with hundreds of
thousands of variables and tens of millions of clauses

Benchmarks

e Random
 Crafted
e |Industrial

The SAT 2005
Competition

What's new this
year

The benchmarks

First stage results

All categories
Random category
Crafted category
Industrial category

Second stage
results

Crafted category
Industrial category

Certified UNSAT
Special track

Mon clausal special
track

Mext contest?

Pseudo Boolean
evaluation

Random SAT specialty, the winners

1. ranov
2. g2wsat

3. vw

25 /55

The SAT 2005
Competition

What's new this
year

The benchmarks

First stage results

All categories
Random category
Crafted category
Industrial category

Second stage
results

Random category
Crafted category
Industrial category

Certified UNSAT
Special track

Mon clausal special
track

Mext contest?

Pseudo Boolean
evaluation

Random SAT specialty, the winners

Solver | Score | SAT answers | UNSAT answers
ranov | 163903 209 0
g2wsat | 101286 178 0
vw | 76002 170 0
adaptnovelty | 21748 119 0
saps | 15603 104 0
kenfs-2004 | 14604 02 0
dSatz-1a 8943 68 0
march-d| 7444 56 0
wllsatvl 7202 59 0
satELiteGTI 5198 46 0
minisat 5147 45 0

The SAT 2005
Competition

What's new this
year

The benchmarks

First stage results

All categories
Random category
Crafted category
Industrial category

Second stage
results

Random category
Crafted category
Industrial category

Certified UNSAT
Special track

Mon clausal special
track

Mext contest?

Pseudo Boolean
evaluation

Random SAT+UNSAT specialty, the complete

ranking
Solver | Score | SAT answers | UNSAT answers
kenfs-2004 | 95075 02 75
march-d| | 27141 56 43
dSatz-1a | 22940 63 50
wllsatvl | 16145 59 45
satELiteGTI | 10074 46 33
minisat | 10058 45 33

30 /55

The SAT 2005
Competition

What's new this
year

The benchmarks

First stage results

All categories
Random category
Crafted category
Industrial category

Second stage
results

Random category

Crafted category

Industrial category

Certified UNSAT
Special track

Mon clausal special
track

Mext contest?

Pseudo Boolean
evaluation

Crafted SAT+UNSAT specialty, the complete

ranking

Solver | Score | SAT answers | UNSAT answers

vallst | 56445 138 100

satELiteGTI| | 53128 122 126

march-d| | 52432 138 00

minisat | 436901 122 121

hsat-1 | 39497 130 90

csat | 38324 113 112

zchaff | 27455 112 80

zchaff-rand | 24171 107 78

tts-3-0 | 21298 5 54

jerusat-A | 19632 104 77

The SAT 2005
Competition

What's new this
year

The benchmarks

First stage results

All categories
Random category
Crafted category
Industrial category

Second stage
results

Random category
Crafted category
Industrial category

Certified UNSAT
Special track

Mon clausal special
track

Mext contest?

Pseudo Boolean
evaluation

SAT+UNSAT specialty, the complete ranking

Solver | Score | SAT answers | UNSAT answers
ssatELiteGTI] | 99662 180 87
minisat | 69485 166 84
haifaSat | 50031 151 01
zchaff-rand | 50515 132 04
jerusat-B | 47487 163 80
csat | 36526 140 01
compsat | 25399 114 5
zchaff | 31702 121 76
sat4j | 21097 110 70
hsat-5 | 20995 00 54
vallst | 16874 85 69
wllsatvl | 12467 86 6

44 / 55

Qualified Solvers

Solver Author Affiliation

Actin (minisat+i) Raihan Kibria TU Darmstadt
Barcelogic Robert Nieuwenhuis TU Catalonia, Barcelona
Cadence MiniSAT Miklas Een Cadence Design Systems
CompSAT Armin Biere JKU Linz

Fureka Alexander Nadel Intel

HyperSAT Domagoj Babic UBC

MimiSAT 2.0 Niklas Sorensson Chalmers

Mucsat Micolas Hachinsky LMU Munich

MXC v 1 David Mitchell SFU

PicoSAT Armin Biere JKU Linz

QCompSAT Armin Biere JKU Linz

QPicoSAT Armin Biere JKU Linz

Hsat Thammanit Pipatsrisawat UCLA

SAT4) Daniel Le Berre CRIL-CNRS

TINISAT Jinbo Huang NICTA

zChaff 2006 Zhaohui Fu Princeton

SAT race 2006

Complete Ranking

Rank | Solver Author Affiliation #solved | Speed | Total
Points | Score
1 MiniSAT 2.0 Niklas Sorensson Chalmers 73 971 821
2 Eureka Alexander Nadel Intel 67 13.87 80.87
3 Rsat Thammanit Pipatsrisawat | UCLA 72 8 45 80.45
4 Cadence MimiSAT | Niklas Een Cadence Design Systems | 63 6.39 69.39
5 Actin {(minisat-+i) Raihan Kibnia TU Darmstadt 63 6.29 69.29
6 Barcelogic Robert Nieuwenhuis TU Catalomia, Barcelona 29 598 64.98
7 PicoSAT Armin Biere JKU Linz o7 .00 62.00
8 QPicoSAT Armin Biere JKU Linz 54 539 59.39
9 TINISAT Jinbo Huang NICTA 54 491 58.91
10 SAT4J Daniel Le Berre CRIL-CNRS 49 420 53.20
11 QCompSAT Armin Biere JKU Linz 39 3.22 4222
12 zChatff 2006 Zhaohui Fu Princeton 38 3.78 41.78
13 CompSAT Armin Biere JKU Linz 38 3.21 41.21
14 MXC v 1 David Mitchell SFU 29 223 31.23
15 Mucsat Micolas Hachinsky LMU Munich 28 209 30.09
16 HyperSAT Domagoj Babic uUBC 27 2499 2999

SAT race 2006

Outline

Algorithms
Local Search

Organization of Local Search

e Local search is incomplete; it cannot prove unsatisfiability
— Very effective in specific contexts

e Example:

(x1 VxVox3)A(—x1 Voxg Vxg) A(—xg Voxo Voxg)

Organization of Local Search

Local search is incomplete; it cannot prove unsatisfiability

— Very effective in specific contexts

Example:

(x1 VxVox3)A(—x1 Voxg Vxg) A(—xg Voxo Voxg)

Start with (possibly random) assignment: x; = 0,x; = x, = x3 = 1
e And repeat a number of times:

Organization of Local Search

Local search is incomplete; it cannot prove unsatisfiability

— Very effective in specific contexts

Example:

(x1 Vx2Vox3)A(—xg Vxg Vxg) A(—xg Voxo Voxg)

Start with (possibly random) assignment: x; = 0,x; = x, = x3 = 1
e And repeat a number of times:

Organization of Local Search

Local search is incomplete; it cannot prove unsatisfiability

— Very effective in specific contexts

Example:

(x1 Vx2Vox3)A(—xg Vxg Vxg) A(—xg Voxo Voxg)

Start with (possibly random) assignment: x; = 0,x; = x, = x3 = 1
e And repeat a number of times:
— If not all clauses satisfied, flip variable (e.g. x4)

Organization of Local Search

Local search is incomplete; it cannot prove unsatisfiability

— Very effective in specific contexts

Example:

(Xl V —xo V _1X3) N (ﬁXl V —x3 V X4) A\ (_'X1 V —xo V X4)

Start with (possibly random) assignment: x; = 0,x; = x, = x3 = 1
e And repeat a number of times:
— If not all clauses satisfied, flip variable (e.g. x4)

Organization of Local Search

Local search is incomplete; it cannot prove unsatisfiability

— Very effective in specific contexts

Example:

(Xl V —xo V _1X3) N (ﬁXl V —x3 V X4) A\ (_1X1 V —xo V X4)

Start with (possibly random) assignment: x; = 0,x; = x, = x3 = 1
e And repeat a number of times:

— If not all clauses satisfied, flip variable (e.g. x4)
— Done if all clauses satisfied

Organization of Local Search

Local search is incomplete; it cannot prove unsatisfiability
— Very effective in specific contexts

Example:

(x1 Vx2Vox3)A(—xg Vx3 Vxg) A(—xg V—oxo Voxg)

Start with (possibly random) assignment: x4 = 0,x; = x, = x3 = 1
e And repeat a number of times:

— If not all clauses satisfied, flip variable (e.g. x4)
— Done if all clauses satisfied

Repeat (random) selection of assignment a number of times

