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Class Information

• Instructor: Rina Dechter

• Days: Tuesday & Thursday 

• Time: 11:00 - 12:20 pm 

• Class page: http://www.ics.uci.edu/~dechter/ics-275a/fall-2010/
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Text book (required)

Rina Dechter,

Constraint Processing,

Morgan Kaufmann  
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Graphical Models

Those problems that can be expressed as:

A set of variables

Each variable takes its values from a 
finite set of domain values

A set of local functions

Main advantage:

They provide unifying algorithms:

o Search

o Complete Inference

o Incomplete Inference 

Combinatorial 

Problems

MO Optimization

Optimization

Decision
Graphical 

Models

Combinatorial Problems



Many ExamplesCombinatorial 

Problems

MO Optimization

Optimization

Decision

x1

x2

x3 x4

Graph Coloring Timetabling

EOS Scheduling

… and many others.

Combinatorial Problems

Bayesian Networks

Graphical 

Models



Example: student course selection

• Context:  You are a senior in college

• Problem: You need to register in 4 courses for the Spring semester

• Possibilities: Many courses offered in Math, CSE, EE, CBA, etc.

• Constraints: restrict the choices you can make
– Unary: Courses have prerequisites you have/don't have 

Courses/instructors you like/dislike

– Binary: Courses are scheduled at the same time
– n-ary: In CE: 4 courses from 5 tracks such as at least 3 tracks are covered

• You have choices, but are restricted by constraints
– Make the right decisions!!
– ICS Graduate program

Fall 2010
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Student course selection (continued)

• Given
– A set of variables: 4 courses at your college

– For each variable, a set of choices (values)

– A set of constraints that restrict the combinations of 
values the variables can take at the same time

• Questions
– Does a solution exist? (classical decision problem)

– How many solutions exists?

– How two or more solutions differ?  

– Which solution is preferrable?

– etc.
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The field of Constraint Programming

• How did it started: 
– Artificial Intelligence (vision)
– Programming Languages (Logic Programming),
– Databases (deductive, relational)
– Logic-based languages (propositional logic)
– SATisfiability

• Related areas:
– Hardware and software verification
– Operation Research (Integer Programming)
– Answer set programming

• Graphical Models; deterministic
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Scene labeling constraint network
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Scene labeling constraint network
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3-dimentional interpretation of 2-dimentional drawings



The field of Constraint Programming

• How did it started: 
– Artificial Intelligence (vision)
– Programming Languages (Logic Programming),
– Databases (deductive, relational)
– Logic-based languages (propositional logic)
– SATisfiability

• Related areas:
– Hardware and software verification
– Operation Research (Integer Programming)
– Answer set programming

• Graphical Models; deterministic
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Applications

• Radio resource management (RRM)

• Databases (computing joins, view updates)

• Temporal and spatial reasoning 

• Planning, scheduling, resource allocation 

• Design and configuration 

• Graphics, visualization, interfaces 

• Hardware verification and software engineering

• HC Interaction and decision support 

• Molecular biology 

• Robotics, machine vision and computational linguistics 

• Transportation 

• Qualitative and diagnostic reasoning
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A B
red green

red yellow

green red

green yellow

yellow green

yellow red

Example: map coloring

Variables - countries (A,B,C,etc.)

Values    - colors (red, green, blue)

Constraints: etc.  ,ED  D,  AB,A 

C

A

B

D

E

F

G

A
Constraint Networks
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Example: map coloring

Variables - countries (A,B,C,etc.)

Values    - colors (e.g., red, green, yellow)

Constraints: 
etc.  ,ED  D,  AB,A 

A B C D E…

red green red green blue

red blue green green blue

… … … … green

… … … … red

red blue red green red

Constraint Satisfaction Tasks

Are the constraints consistent?

Find a solution, find all solutions

Count all solutions  

Find a good solution



Information as Constraints

• I have to finish my class in 50 minutes
• 180 degrees in a triangle
• Memory in our computer is limited
• The four nucleotides that makes up a DNA only combine in a 

particular sequence
• Sentences in English must obey the rules of syntax
• Susan cannot be married to both John and Bill
• Alexander the Great died in 333 B.C.
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Constraint Network; Definition

},...,{ 1 nXXX 
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• A constraint network is: R=(X,D,C)
– X variables

– D domain

– C constraints

– R expresses allowed tuples over scopes

• A solution is an assignment to all variables that satisfies all constraints 
(join of all relations).

• Tasks: consistency?, one or all solutions, counting, optimization

},...{},,...,{ 11 kin vvDDDD 

),(,,},,...{ 1 iiit RSCCCC 
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The N-queens problem

The network has four variables, all with domains Di = {1, 2, 3, 4}.  

(a) The labeled chess board. (b) The constraints between variables.



A solution and a partial consistent tuple

Fall 2010 22

Not all consistent instantiations are part of a solution: 

(a) A consistent instantiation that is not part of a solution.

(b) The placement of the queens corresponding to the solution (2, 4, 1,3). 

c) The placement of the queens corresponding to the solution (3, 1, 4, 2).



Example: Crossword puzzle
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• Variables: x1, …, x13

• Domains: letters

• Constraints: words from

{HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, 

SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US}



Configuration and design

• Want to build: recreation area, apartments, houses, 
cemetery, dump

– Recreation area near lake

– Steep slopes avoided except for recreation area

– Poor soil avoided for developments

– Highway far from apartments, houses and recreation

– Dump not visible from apartments, houses and lake

– Lots 3 and 4 have poor soil

– Lots 3, 4, 7, 8 are on steep slopes

– Lots 2, 3, 4 are near lake

– Lots 1, 2 are near highway
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Example: Sudoku

Fall 2010 25

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution: 27 constraints

2 3
4 62 

Constraint 
propagation

•Variables: 81 slots

•Domains = 
{1,2,3,4,5,6,7,8,9}

•Constraints: 
•27 not-equal
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Mathematical background

• Sets, domains, tuples

• Relations

• Operations on relations

• Graphs

• Complexity
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Two graphical representation and views of a relation:

R = {(black, coffee), (black, tea), (green, tea)}.



Operations with relations

• Intersection

• Union

• Difference

• Selection

• Projection

• Join

• Composition
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• Local function

where

var(f) = Y  X:  scope of function f

A:  is a set of valuations

• In constraint networks: functions are boolean

ADf
Yx

i

i




:

Local Functions

x1 x2 f

a a true

a b false

b a false

b b true

x1 x2

a a

b b

relation
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Example of set operations intersection, union, and 

difference applied to relations.
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Selection, Projection, and Join operations on 

relations.



• Join :

• Logical AND:

x1 x2

a a

b b

x2 x3

a a

a b

b a

x1 x2 x3

a a a

a a b

b b a



Local Functions

Combination

gf     

gf   

x1 x2 f

a a true

a b false

b a false

b b true

x2 x3 g

a a true

a b true

b a true

b b false

x1 x2 x3 h

a a a true
a a b true
a b a false
a b b false
b a a false
b a b false
b b a true
b b b false

  
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

Global View of the Problem

x1 x2 x3 h

a a a true
a a b true
a b a false
a b b false
b a a false
b a b false
b b a true
b b b false

x1 x2

a a

b b

x2 x3

a a

a b

b a

x1 x2 x3

a a a

a a b

b b a

C1 C2
Global View=universal relation

The problem has a solution if the

global view is not empty

The problem has a solution if there is some 

true tuple in the global view, the universal relation

Does the problem a solution?

T
A

S
K
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

Global View of the Problem

x1 x2 x3 h

a a a true
a a b true
a b a false
a b b false
b a a false
b a b false
b b a true
b b b false

x1 x2

a a

b b

x2 x3

a a

a b

b a

x1 x2 x3

a a a

a a b

b b a

C1 C2 Global View

What about counting?

x1 x2 x3 h

a a a 1
a a b 1
a b a 0
a b b 0
b a a 0
b a b 0
b b a 1
b b b 0

Number of true tuples Sum over all the tuples

true is 1

false is 0

logical AND?

T
A

S
K
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Modeling; Representing a problems

• If a CSP M = <X,D,C> represents a problem P, then every solution of M 
corresponds to a solution of P and every solution of P can be derived
from at least one solution of M

• The variables and values of M represent entities in P

• The constraints of M ensure the correspondence between solutions

• The aim is to find a model M that can be solved as quickly as possible

• goal of modeling: choose a set of variables and values that allows
the constraints to be expressed easily and concisely
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a       

b     

c         

d     

 



Examples

Propositional Satisfiability

 = {(A v B), (C v ¬B)}Given a proposition theory does it have a model?

Can it be encoded as a constraint network?

Variables:

Domains:

Relations:

{A, B, C}

DA = DB = DC = {0, 1}

A B

0 1

1 0

1 1

B C

0 0

0 1

1 1

If this constraint network

has a solution, then the 

propositional theory

has a model
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Constraint’s representations

• Relation: allowed tuples

• Algebraic expression:

• Propositional formula:

• Semantics:  by a relation

YXYX  ,102

cba  )(
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Constraint Graphs: 
Primal, Dual and Hypergraphs
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•A (primal) constraint graph: a node per variable, arcs   

connect constrained variables.

•A dual constraint graph: a node per constraint’s 

scope,  an arc connect nodes sharing variables 

=hypergraph

C

A

B

D
E

F

G



Graph Concepts Reviews:
Hyper Graphs and Dual Graphs

• A hypergraph

• Dual graphs

• Primal graphs

• Factor graphs
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Propositional Satisfiability
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 = {(¬C), (A v B v C), (¬A v B v E), (¬B v C v D)}.



Examples

Radio Link Assignment

cost i jf f 

Given a telecommunication network (where each communication link has

various antenas) , assign  a frequency to each antenna in such a way that 

all antennas may operate together without noticeable interference. 

Encoding?

Variables: one for each antenna

Domains: the set of available frequencies

Constraints: the ones referring to the antennas in the same communication link
44Fall 2010
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Constraint graphs of 3 instances of the Radio 

frequency assignment problem in CELAR’s 

benchmark
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Scene labeling constraint network
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Figure 1.5: Solutions: (a) stuck on left wall, (b) stuck on right 

wall, (c) suspended in mid-air, (d) resting on floor.



Examples

Scheduling problem

Encoding?

Variables: one for each task

Domains: DT1 = DT2 = DT3 = DT3 = {1:00, 2:00, 3:00}

Constraints:

Five tasks: T1, T2, T3, T4, T5

Each one takes one hour to complete

The tasks may start at 1:00, 2:00 or 3:00

Requirements:

T1 must start after T3

T3 must start before T4 and after T5

T2 cannot execute at the same time as T1 or T4

T4 cannot start at 2:00

T4

1:00

3:00
48Fall 2010
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The constraint graph and 

relations of scheduling problem



Examples

Numeric constraints

Can we specify numeric constraints as relations?

{1, 2, 3, 4}

{ 3, 5, 7 }{ 3, 4, 9 }

{ 3, 6, 7 }

v2 > v4

V4

V2

v1+v3 < 9

V3

V1

v2 < v3 

v1 < v2
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More examples

• Given   P = (V, D, C ),    where

 nVVV ,,, 21 V
 

nVVV DDD ,,,
21
D

Example I:

• Define C ?

{1, 2, 3, 4}

{ 3, 5, 7 }{ 3, 4, 9 }

{ 3, 6, 7 }

v2 > v4

V4

V2

v1+v3 < 9

V3

V1

v2 < v3 

v1 < v2

 lCCC ,,, 21 C



Example: temporal reasoning

• Give one solution: …….

• Satisfaction, yes/no:  decision problem
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[ 5.... 18]

[ 4.... 15]

[ 1.... 10 ] B < C

A < B

B

A

2 < C - A < 5

C
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Properties of binary constraint networks

Equivalence and deduction with constraints (composition)

A graph  to be colored by two colors,

an equivalent representation ’ having a newly inferred constraint 

between x1 and x3.



Composition of relations (Montanari'74)

Input: two binary relations Rab and Rbc with 1 variable in common.

Output: a new induced relation Rac (to be combined by intersection to 

a pre-existing relation between them, if any).

Bit-matrix operation: matrix multiplication
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bcabac RRR 

?,

10

11

01

,
001

101


























 acbcab RRR



Equivalence, Redundancy, 
Composition

• Equivalence: Two constraint networks are 
equivalent if they have the same set of 
solutions.

• Composition in matrix notation

• Rxz = Rxy x Ryz

• Composition in relational operation
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Relations vs networks

• Can we represent by binary constraint 
networks the relations 

• R(x1,x2,x3) = {(0,0,0)(0,1,1)(1,0,1)(1,1,0)}

• R(X1,x2,x3,x4) = {(1,0,0,0)(0,1,0,0) (0,0,1,0)(0,0,0,1)}

• Number of relations 2^(k^n)

• Number of networks: 2^((k^2)(n^2))

• Most relations cannot be represented by 
binary networks
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The minimal and projection networks

• The projection network of a relation is obtained by 
projecting it onto each pair of its variables (yielding a 
binary network).

• Relation = {(1,1,2)(1,2,2)(1,2,1)}
– What is the projection network?

• What is the relationship between a relation and its 
projection network?

• {(1,1,2)(1,2,2)(2,1,3)(2,2,2)}, solve its projection 
network?
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Projection network (continued)

• Theorem: Every relation is included in the 
set of solutions of its projection network.

• Theorem: The projection network is the 
tightest upper bound binary networks 
representation of the relation.
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Therefore, If a network cannot be represented by its 

projection network it has no binary network representation



Partial Order between networks,
The Minimal Network
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•An intersection of two networks is tighter (as tight) than both

•An intersection of two equivalent networks is equivalent to both
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The N-queens constraint network.

The network has four variables, all with domains Di = {1, 2, 3, 4}.  

(a) The labeled chess board. (b) The constraints between variables.
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The 4-queens constraint network: 

(a) The constraint graph. (b) The minimal binary constraints. 

(c) The minimal unary constraints (the domains).

Solutions are: (2,4,1,3) (3,1,4,2)



The Minimal vs Binary decomposable 
networks

• The minimal network is perfectly explicit for binary and 
unary constraints:
– Every pair of values permitted by the minimal constraint is in a 

solution.

• Binary-decomposable networks:
– A network whose all projections are binary decomposable

– Ex: (x,y,x,t) = {(a,a,a,a)(a,b,b,b,)(b,b,a,c)}:

is binary representeble? and what about its projection on x,y,z?

– Proposition: The minimal network represents fully binary-
decomposable networks.
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