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Look-back: 
Backjumping / Learning

 Backjumping:
• In deadends, go back to 

the most recent culprit.

 Learning:
• constraint-recording, no-

good recording.

• good-recording
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Backjumping

 (X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b})

 (r,b,b,b,g,r) conflict set of x7

 (r,-,b,b,g,-) c.s. of x7

 (r,-,b,-,-,-,-) minimal conflict-set

 Leaf deadend: (r,b,b,b,g,r)

 Every conflict-set is a no-good
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Gaschnig jumps only 

at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf
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Gaschnig jumps only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf
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Backjumping styles

 Jump at leaf only (Gaschnig 1977)
• Context-based

 Graph-based (Dechter, 1990)
• Jumps at leaf and internal dead-ends, graph 

information

 Conflict-directed (Prosser 1993)
• Context-based, jumps at leaf and internal dead-ends
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Gaschnig’s 

backjumping:
Culprit variable

 If a_i is a leaf deadend and x_b its culprit variable, then a_b is a 

safe backjump destination and a_j, j<b is not.
 The culprit of x7 (r,b,b,b,g,r) is (r,b,b)  x3
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Gaschnig’s backjumping 

Implementation [1979]

 Gaschnig uses a marking technique to compute 

culprit.

 Each variable  xj maintains a pointer (latest_j) to the 

latest ancestor incompatible with any of its values. 

 While forward generating      , keep array latest_i, 

1<=j<=n, of pointers to the last value conflicted with 

some value of x_j

 The algorithm jumps from a leaf-dead-end x_{i+1} 

back to latest_(i+1) which is its culprit.

ia

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Gaschnig’s backjumping
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Example of Gaschnig’s backjump
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Properties

 Gaschnig’s backjumping implements 

only safe and maximal backjumps in 

leaf-deadends.
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Gaschnig jumps only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf
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Internal dead-ends: dead-ends that are non-leaf
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Graph-based backjumping scenarios

Internal deadend at X4

 Scenario 1, deadend at x4: 

 Scenario 2: deadend at x5:

 Scenario 3: deadend at x7:

 Scenario 4: deadend at x6:
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Graph-based backjumping

 Uses only graph information to find culprit

 Jumps both at leaf and at internal dead-ends

 Whenever a deadend occurs at x, it jumps to the most 

recent variable  y connected to x in the graph. If y is an 

internal deadend it jumps back further to the most recent 

variable connected to x or y.

 The analysis of conflict is approximated by the graph.

 Graph-based algorithm provide graph-theoretic bounds.
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Ancestors and parents

 anc(x7) = {x5,x3,x4,x1}

 p(x7) =x5

 p(r,b,b,b,g,r) = x5
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Internal deadends analysis
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Graph-based backjumping algorithm,

but we need to jump at internal deadends too

When not all variables

In the session above

X_i are relevant deadends?

See example 6.6
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Properties of graph-based 

backjumping

 Algorithm graph-based backjumping jumps back at 

any deadend variable as far as graph-based 

information allows.

 For each variable, the algorithm maintains the 

induced-ancestor set I_i relative the relevant dead-

ends in its current session.

 The size of the induced ancestor set is at most w*(d).
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Conflict-directed backjumping
(Prosser 1990)

 Extend Gaschnig’s backjump to internal dead-ends.

 Exploits information gathered during search.

 For each variable the algorithm maintains an induced 

jumpback set, and jumps to most recent one.

 Use the following concepts:

• An ordering over variables induced a strict ordering 

between constraints: R_1<R_2<…R_t 

• Use earliest minimal consflict-set (emc(x_(i+1)) ) of a 

deadend.

• Define the jumpback set of a deadend
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Example of conflict-directed backjumping
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Properties

 Given a dead-end    , the latest variable in its 
jumpback set     is the earliest variable to which it is 
safe to jump.

 This is the culprit. 

 Algorithm conflict-directed backtracking jumps back 
to the latest variable in the dead-ends’s jumpback 
set, and is therefore safe and maximal.

ia

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Conflict-directed backjumping
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Graph-based backjumping on DFS orderings
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Complexity of Graph-based Backjumping

 T_i= number of nodes in the AND/OR search space rooted at 

x_i (level m-i)

 Each assignment of a value to x_i generates subproblems:

• T_i = k b T_{i-1}

• T_0 = k

 Solution: 
1 mm

m kbT
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DFS of graph and induced graphs

Spanning-tree of a graph;

DFS spanning trees, BFS spanning trees.
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Complexity of  Backjumping

uses pseudo-tree analysis

Simple: always jump back to parent in pseudo tree

Complexity for csp: exp(tree-depth)

Complexity for csp: exp(w*log n)
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Look-back:  No-good Learning

 (x1=2,x2=2,x3=1,x4=2) is a 

dead-end

 Conflicts to record:

• (x1=2,x2=2,x3=1,x4=2) 4-ary

• (x3=1,x4=2) binary

• (x4=2) unary

Learning means recording conflict sets

used as constraints to prune future 

search space.
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Learning, constraint recording

 Learning means recording conflict sets

 An opportunity to learn is when deadend is 

discovered.

 Goal of learning to not discover the same deadends.

 Try to identify small conflict sets

 Learning prunes the search space.
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Nogoods explain deadends

 Conflicts to record are explanations

• (x1=2,x2=2,x3=1,x4=2) 4-ary

• (x1=2,x2=2,x3=1,x4=2) (x ≠1) and 

• (x3=1,x4=2) 

• (x4=2)  (x ≠1)

Learning means recording explanations to conflicts

They are implied constraints

(x ≠1)
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Learning example
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Learning Issues

 Learning styles

• Graph-based or context-based

• i-bounded, scope-bounded

• Relevance-based

 Non-systematic randomized learning

 Implies time and space overhead

 Applicable  to SAT
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Graph-based learning algorithm
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Deep learning

 Deep learning: recording all and only minimal 

conflict sets

 Example:

 Although most accurate, overhead is 

prohibitive: the number of conflict sets in the 

worst-case:
r

r

r
2

2/










Fall 2010



Jumpback Learning

 Record the jumpback assignment
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Bounded and relevance-based learning

Bounding the arity of constraints recorded.

 When bound is i: i-ordered graph-based,i-order jumpback or 

i-order deep learning.

 Overhead complexity of i-bounded learning is time and 

space exponential in i.
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Complexity of backtrack-learning 

(improved)

 Theorem: Any backtracking algorithm using graph-based 

learning along d has a space complexity                   and time 

complexity 

 (book). Refined more: 

 Proof: The number of deadends for each variable is                 , 

yielding                  deadends.There are at most kn values between 

two succesive deadends:                        number of nodes in the 

search space. Since at most                    constraints-checks we get                                 

.

 Improved more: If we have                     leaves, we have k to n 

times as many internal nodes, yielding between                        and 

nodes.
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Complexity of Backtrack-Learning

for CSP

The number of dead-ends is bounded by

Number of constraint tests per dead-end are

Space  complexity is 

Time  complexity is

Learning and backjumping: 

)(

)(

)*(2

)*(

dw

dw

kenO

nkO



 The complexity of learning along d is time and 

space exponential in w*(d): 

)( )*(dwnkO

)(eO

m- depth of tree, e- number of constraints
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Good caching:

Moving from one to all or counting

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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Summary: 

time-space for constraint processing

 Constraint-satisfaction
• Search with backjumping 

• Space: linear, Time: O(exp(logn  w*))

• Search with learning no-goods
• time and space: O(exp(w*))

• Variable-elimination
• time and space:  O(exp(w*))

 Counting, enumeration
• Search with backjumping 

• Space: linear, Time: O(exp(n ))

• Search with no-goods caching only
• space:  O(exp(w*))  Time: O(exp(n))

• Search with goods and no-goods learning
• Time and space: O(exp(path-width), O(exp(log n w*))

• Variable-elimination
• Time and space:  O(exp(w*))
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Non-Systematic Randomized Learning

 Do search in a random way with interupts, restarts, 

unsafe backjumping, but record conflicts.

 Guaranteed completeness.
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Look-back for SAT

 A partial assignment is a set of literals:

 A jumpback set if a J-clause:

 Upon a leaf deadend of x resolve two clauses, one enforcing x 

and one enforcing ~x relative  to the current assignment

 A clause forces x relative to assignment      if all the literals in 

the clause are negated in      . 

 Resolving the two clauses we get a nogood.

 If we identify the earliest two clauses we will find the earliest 

condlict.

 The argument can be extended to internal deadends.





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Look-back for SAT
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Integration of algorithms
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Relationships between various 

backtracking algrithms
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Empirical comparison of algorithms

 Benchmark instances

 Random problems

 Application-based random problems

 Generating fixed length random k-sat 

(n,m) uniformly at random

 Generating fixed length random CSPs

 (N,K,T,C) also arity, r.
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The Phase transition (m/n)
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Some empirical evaluation

 Sets 1-3 reports average over 2000 instances of random 

csps from 50% hardness. Set 1: 200 variables, set 2: 300, 

Set 3: 350. All had  3 values.:

 Dimacs problems
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