
Backtracking search: look-back

ICS 275

Spring 2010

Fall 2010

Look-back:
Backjumping / Learning

 Backjumping:
• In deadends, go back to

the most recent culprit.

 Learning:
• constraint-recording, no-

good recording.

• good-recording

Fall 2010

Backjumping

 (X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b})

 (r,b,b,b,g,r) conflict set of x7

 (r,-,b,b,g,-) c.s. of x7

 (r,-,b,-,-,-,-) minimal conflict-set

 Leaf deadend: (r,b,b,b,g,r)

 Every conflict-set is a no-good

Fall 2010

Gaschnig jumps only

at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf

Fall 2010

Gaschnig jumps only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf

Fall 2010

Backjumping styles

 Jump at leaf only (Gaschnig 1977)
• Context-based

 Graph-based (Dechter, 1990)
• Jumps at leaf and internal dead-ends, graph

information

 Conflict-directed (Prosser 1993)
• Context-based, jumps at leaf and internal dead-ends

Fall 2010

Gaschnig’s

backjumping:
Culprit variable

 If a_i is a leaf deadend and x_b its culprit variable, then a_b is a

safe backjump destination and a_j, j<b is not.
 The culprit of x7 (r,b,b,b,g,r) is (r,b,b)  x3

Fall 2010

Gaschnig’s backjumping

Implementation [1979]

 Gaschnig uses a marking technique to compute

culprit.

 Each variable xj maintains a pointer (latest_j) to the

latest ancestor incompatible with any of its values.

 While forward generating , keep array latest_i,

1<=j<=n, of pointers to the last value conflicted with

some value of x_j

 The algorithm jumps from a leaf-dead-end x_{i+1}

back to latest_(i+1) which is its culprit.

ia


Fall 2010

Gaschnig’s backjumping

Fall 2010

Example of Gaschnig’s backjump

Fall 2010

Properties

 Gaschnig’s backjumping implements

only safe and maximal backjumps in

leaf-deadends.

Fall 2010

Gaschnig jumps only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf

Fall 2010

Gaschnig jumps only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf

Fall 2010

Graph-based backjumping scenarios

Internal deadend at X4

 Scenario 1, deadend at x4:

 Scenario 2: deadend at x5:

 Scenario 3: deadend at x7:

 Scenario 4: deadend at x6:

Fall 2010

Graph-based backjumping

 Uses only graph information to find culprit

 Jumps both at leaf and at internal dead-ends

 Whenever a deadend occurs at x, it jumps to the most

recent variable y connected to x in the graph. If y is an

internal deadend it jumps back further to the most recent

variable connected to x or y.

 The analysis of conflict is approximated by the graph.

 Graph-based algorithm provide graph-theoretic bounds.

Fall 2010

Ancestors and parents

 anc(x7) = {x5,x3,x4,x1}

 p(x7) =x5

 p(r,b,b,b,g,r) = x5

Fall 2010

Internal deadends analysis

Fall 2010

Graph-based backjumping algorithm,

but we need to jump at internal deadends too

When not all variables

In the session above

X_i are relevant deadends?

See example 6.6

Fall 2010

Properties of graph-based

backjumping

 Algorithm graph-based backjumping jumps back at

any deadend variable as far as graph-based

information allows.

 For each variable, the algorithm maintains the

induced-ancestor set I_i relative the relevant dead-

ends in its current session.

 The size of the induced ancestor set is at most w*(d).

Fall 2010

Conflict-directed backjumping
(Prosser 1990)

 Extend Gaschnig’s backjump to internal dead-ends.

 Exploits information gathered during search.

 For each variable the algorithm maintains an induced

jumpback set, and jumps to most recent one.

 Use the following concepts:

• An ordering over variables induced a strict ordering

between constraints: R_1<R_2<…R_t

• Use earliest minimal consflict-set (emc(x_(i+1))) of a

deadend.

• Define the jumpback set of a deadend

Fall 2010

Example of conflict-directed backjumping

Fall 2010

Properties

 Given a dead-end , the latest variable in its
jumpback set is the earliest variable to which it is
safe to jump.

 This is the culprit.

 Algorithm conflict-directed backtracking jumps back
to the latest variable in the dead-ends’s jumpback
set, and is therefore safe and maximal.

ia


iJ

Fall 2010

Conflict-directed backjumping

Fall 2010

Graph-based backjumping on DFS orderings

Fall 2010

Complexity of Graph-based Backjumping

 T_i= number of nodes in the AND/OR search space rooted at

x_i (level m-i)

 Each assignment of a value to x_i generates subproblems:

• T_i = k b T_{i-1}

• T_0 = k

 Solution:
1 mm

m kbT

Fall 2010

DFS of graph and induced graphs

Spanning-tree of a graph;

DFS spanning trees, BFS spanning trees.

Fall 2010

Complexity of Backjumping

uses pseudo-tree analysis

Simple: always jump back to parent in pseudo tree

Complexity for csp: exp(tree-depth)

Complexity for csp: exp(w*log n)

Fall 2010

Look-back: No-good Learning

 (x1=2,x2=2,x3=1,x4=2) is a

dead-end

 Conflicts to record:

• (x1=2,x2=2,x3=1,x4=2) 4-ary

• (x3=1,x4=2) binary

• (x4=2) unary

Learning means recording conflict sets

used as constraints to prune future

search space.

Fall 2010

Learning, constraint recording

 Learning means recording conflict sets

 An opportunity to learn is when deadend is

discovered.

 Goal of learning to not discover the same deadends.

 Try to identify small conflict sets

 Learning prunes the search space.

Fall 2010

Nogoods explain deadends

 Conflicts to record are explanations

• (x1=2,x2=2,x3=1,x4=2) 4-ary

• (x1=2,x2=2,x3=1,x4=2) (x ≠1) and

• (x3=1,x4=2) 

• (x4=2)  (x ≠1)

Learning means recording explanations to conflicts

They are implied constraints

(x ≠1)

Fall 2010

Learning example

Fall 2010

Learning Issues

 Learning styles

• Graph-based or context-based

• i-bounded, scope-bounded

• Relevance-based

 Non-systematic randomized learning

 Implies time and space overhead

 Applicable to SAT

Fall 2010

Graph-based learning algorithm

Fall 2010

Deep learning

 Deep learning: recording all and only minimal

conflict sets

 Example:

 Although most accurate, overhead is

prohibitive: the number of conflict sets in the

worst-case:
r

r

r
2

2/










Fall 2010

Jumpback Learning

 Record the jumpback assignment

Fall 2010

Bounded and relevance-based learning

Bounding the arity of constraints recorded.

 When bound is i: i-ordered graph-based,i-order jumpback or

i-order deep learning.

 Overhead complexity of i-bounded learning is time and

space exponential in i.

Fall 2010

Complexity of backtrack-learning

(improved)

 Theorem: Any backtracking algorithm using graph-based

learning along d has a space complexity and time

complexity

 (book). Refined more:

 Proof: The number of deadends for each variable is ,

yielding deadends.There are at most kn values between

two succesive deadends: number of nodes in the

search space. Since at most constraints-checks we get

.

 Improved more: If we have leaves, we have k to n

times as many internal nodes, yielding between and

nodes.

Fall 2010

Complexity of Backtrack-Learning

for CSP

The number of dead-ends is bounded by

Number of constraint tests per dead-end are

Space complexity is

Time complexity is

Learning and backjumping:

)(

)(

)*(2

)*(

dw

dw

kenO

nkO



 The complexity of learning along d is time and

space exponential in w*(d):

)()*(dwnkO

)(eO

m- depth of tree, e- number of constraints

Fall 2010

Good caching:

Moving from one to all or counting

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1

F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 1 0 1

E

C

F

D

B

A 0 1

0 1

0 1 0 1 0 1

A

D

B C

E

F

Fall 2010

Summary:

time-space for constraint processing

 Constraint-satisfaction
• Search with backjumping

• Space: linear, Time: O(exp(logn w*))

• Search with learning no-goods
• time and space: O(exp(w*))

• Variable-elimination
• time and space: O(exp(w*))

 Counting, enumeration
• Search with backjumping

• Space: linear, Time: O(exp(n))

• Search with no-goods caching only
• space: O(exp(w*)) Time: O(exp(n))

• Search with goods and no-goods learning
• Time and space: O(exp(path-width), O(exp(log n w*))

• Variable-elimination
• Time and space: O(exp(w*))

Fall 2010

Non-Systematic Randomized Learning

 Do search in a random way with interupts, restarts,

unsafe backjumping, but record conflicts.

 Guaranteed completeness.

Fall 2010

Look-back for SAT

 A partial assignment is a set of literals:

 A jumpback set if a J-clause:

 Upon a leaf deadend of x resolve two clauses, one enforcing x

and one enforcing ~x relative to the current assignment

 A clause forces x relative to assignment if all the literals in

the clause are negated in .

 Resolving the two clauses we get a nogood.

 If we identify the earliest two clauses we will find the earliest

condlict.

 The argument can be extended to internal deadends.






Fall 2010

Look-back for SAT

Fall 2010

Integration of algorithms

Fall 2010

Fall 2010

Relationships between various

backtracking algrithms

Fall 2010

Empirical comparison of algorithms

 Benchmark instances

 Random problems

 Application-based random problems

 Generating fixed length random k-sat

(n,m) uniformly at random

 Generating fixed length random CSPs

 (N,K,T,C) also arity, r.

Fall 2010

The Phase transition (m/n)

Fall 2010

Some empirical evaluation

 Sets 1-3 reports average over 2000 instances of random

csps from 50% hardness. Set 1: 200 variables, set 2: 300,

Set 3: 350. All had 3 values.:

 Dimacs problems

Fall 2010

