Backtracking search: look-back

ICS 275
Spring 2010

Fall 2010

Backjumping:
In deadends, go back to
the most recent culprit.

Learning:

constraint-recording, no-
good recording.

Fall 2010

Figure 6.1: A modified coloring problem.

(X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b})

(r,b,b,b,g,r) of X7
(r,-,b,b,g,-) c.s. of x7
(r-0,---1-)

. (r,b,b,b,g,r

Every conflict-set is a

8]

Fall 2010

X b g >
X5 L b b g
b r bae Lap
s’ L4
4 U4
' ’/ ’/
b e Y b I ! b & ! hap
-~ ’ I I
/ K] '
2 (g bR e ¢ >
1
! \

b b

Example 6.3.1 In Figure 6.4, all of the backjumps illustrated lead to internal dead-ends,
except for the jump back to ({z,, green), (z3, blue), (zz,7ed), (x4, blue)), becanse this is
the only case where another value exists in the domain of the eulprit variable. O

Fall 2010

/

X b g

b b
Example 6.3.1 In Figure 6.4, all of the backjumps illustrated lead to internal dead-ends, /

except for the jump back to ({z,, green), (z3, blue), (zz,7ed), (x4, blue)), becanse this is
the only case where another value exists in the domain of the eulprit variable. O
Fall 2010

Jump at leaf only (Gaschnig 1977)
Context-based

Graph-based (Dechter, 1990)

Jumps at leaf and internal dead-ends, graph
Information

Conflict-directed (Prosser 1993)
Context-based, jumps at leaf and internal dead-ends

/

Fall 2010

Not searched by
Gaschnig’s
backjumping

Figure 6.1: A modified coloring problem. Xg

Definition 6.2.1 (culprit variable) Leta; = (a4, ...,4;) be a leaf dead-end. The culprit
index relative to i is defined by b = min{j <i| d; conflicts with z;1}. We define the
culprit variable of a; to be z3.

If a_iis a leaf deadend and x_Db its culprit variable, thena b is a
safe backjump destination and a_j, j<b is not.
The culprit of x7 (r,b,b,b,g,r) is (r,b,b) =2 x3

_ /

Fall 2010

Gaschnig uses a marking technique to compute
culprit.

Each variable xj maintains a pointer (latest_j) to the
latest ancestor incompatible with any of its values.

While forward generating &; , keep array latest_i,
1<=j<=n, of pointers to the last value conflicted with
some value of x_|

The algorithm jumps from a leaf-dead-end x_{i+1}
back to latest_(i+1) which is its culprit.

Fall 2010

procedure CASCHNIG'S-BACKJUMPING

Input: A constraint network R = (X, D), C)

QOutput: Either a solution, or a decision that the network is inconsistent.

ie—1 (initialize variable counter)
D — D (copy domain)
latest; — 0 (initialize pointer to culprit)

whilel<i<n
instantiate z; + SELECTVALUE-GBIJ

if z; is null (no value was returned)
i — latest; (backjump)
else
ie—i+1
D! — D,
latest; — O
end while
ifi=0

return “inconsistent”
else
return instantiated values of {z,,..
end procedure

procedure SELECTVALUE-GBJ
while D} is not empty

< En}

select an arbitrary element a € D}, and remove a from D]

consistent «— true
E—1
while k& < i and consistent
if k > latest;
latest; — k
if not CONSISTENT(@y, T; = @)
consistent — false
else
k—k+1
end while
if comsistent
return a
end while

return null (no consistent value)

end procedure

Fall 2010

Figure 6.3: Gaschnig’s backjumping algorithm.

green

Not searched by
Gaschnig’s
backjumping

blue

X5 green /
X6 L1 feal
green
X5 I L
red blue \ red blie

Example 6.2.3 Consider the problem in Figure 6.1 and the order d,. At the dead-end
for z; that results from the partial instantiation (< z,,red >, < xp, blue >, < x3, blue >
,< x4, blue >, < x5, green >, < xg,red >), latest; = 3, because z7 = red was ruled out
by < z1,red >, x7 = blue was ruled out by < x3, blue >, and no later variable had to
be examined. On returning to z, the algorithm finds no further values to try (D} = 0).
Since latests; = 2, the next variable examined will be &3, Thus we see the algorithm’s
ability to backjump at leaf dead-ends. On subsequent dead-ends, as in 3. it goes back to

its preceding variable only. An example of the algorithm’s practice of pruning the search
space is given in Figure 6.2. Fall 2010 O

7

Gaschnig’'s backjumping implements
only safe and maximal backjumps in
leaf-deadends.

Fall 2010

b

b

b

o

b

I b
V4
'I

Z) { (g_
\

..................... \

Vo

b

rxample v.3.1 10 FIgure b.4, all of the bacK]umps 1ustrated lead 1o mternal aead-ends,

except for the jump back to ({zq, green), (z3, blue), (xz,7ed), (x4, blue)), becanse this is
the only case where another value exists in the domain of the eulprit variable.

Fall 2010

L]

X b g

b b
Example 6.3.1 In Figure 6.4, all of the backjumps illustrated lead to internal dead-ends, /

except for the jump back to ({z,, green), (z3, blue), (zz,7ed), (x4, blue)), becanse this is
the only case where another value exists in the domain of the eulprit variable. O
Fall 2010

Scenario 1, ©
Scenario 2: ©
Scenario 3: d

Scenario 4: ¢

(a)

eacC
eacC
eacC

eacC

Fall 2010

Figure 6.1: A modified coloring problem.

<)

Uses only graph information to find culprit
Jumps both at leaf and at internal dead-ends

Whenever a deadend occurs at X, it jumps to the most
recent variable y connected to x in the graph. If y is an
Internal deadend it jumps back further to the most recent
variable connected to x or y.

The analysis of conflict is approximated by the graph.
Graph-based algorithm provide graph-theoretic bounds.

/

Fall 2010

/ | | | \
Xg Xy X,
X X X,

anc(x7) = {x5,x3,x4,x1}
P(X7) =x5
p(r,b,b,b,g,r) = x5

(d)

Definition 6.3.2 (ancestors, parent) Given a constraint graph and an ordering of the
nodes d, the ancestor set of wariable z, denoted anc(zx), is the subset of the variables that

precede and are connected to x. The parent of x, denoted p(x), is the most recent (or
latest) variable in anc(zx). If @i = (a1,...,a:) is a leaf dead-end, we equate anc(a;) with
ane(zT), and p(a;) with p(z.q).

_ /

Fall 2010

(i h

Definition 6.3.5 (session) We say that backtracking invisits z; if it processes x; coming
from a variable earlier in the ordering. The session of x; starts upon the nuvisiting of =;
and ends when retracting to a variable that precedes x;. At a qiven state of the search
where variable x; is already instantiated, the current session of x; is the set of variables
processed by the algorithm since the most recent invisit to x;. The current session of ;
includes x; and therefore the session of a leaf dead-end wariable has a single variable.

Definition 6.3.6 (relevant dead-ends) The relevant dead-ends of x;’s session are de-
fined recursively as follows. The relevant dead-ends of a leaf dead-end z;, denoted r(z;),
15 Ti. If x; is variable to which the algorithm retracted from x;, then the relevant-dead-
ends of Ty are the union of its current relevant dead-ends and the ones inherited from z;,
namely, r(z;) = r(x;) Ur(z;).

Definition 6.3.7 (induced ancestors, induced parent) Let x; be a variable that is
an internal or leaf dead-end. Let Y be a subset of the variables consisting of all its
relevant dead-ends in the current session of r;. We denote anc(Y) = Uycyanc(y). The

induced ancestor set of z; relative to ¥, Li(Y), is the union of all Y ’s ancestors, restricted
\tﬂ variables that precede z;. Formally, L;(Y) = ane(Y)N {z1,,xz;_1}. The induced parent
of z; relative to Y, B(Y'), is the latest variable in L;(Y). We call B (Y) the graph-based
culpribt of ;. Fall 2010

procedure GRAPH-BASED-BACKJUMPING
Input: A constraint network R = (X, D, C)

Qutput: Either a solution, or a decision that the network is inconsistent.

compute anc(®;) for each z{see Definition 6.3.2 in text)

i+ 1 (initialize variable counter)
D] — D (copy domain)
I; — ane(x;) (copy of anc() that can change)

whilel<i<n
instantiate z; + SELECTVALUE
if z; is null (no value was returned)
pren — i
¢ —latest index in I; (backjump)
L — LU If;pmu — {Ii}
else
i—i+1
D — Dy
I; — anc(z;)
end while
ifi=0
return “inconsistent”
else
return instantiated values of {z1,... ,Zn}
end procedure

procedure SELECTVALUE (same as BACKTRACKING'Ss)

while IJ] is not empty
select an arbitrary element a € D}, and remove a from Dj
if CONSISTENT(@;_1,%; = a)
return c
end while
return null (no consistent value)
end procedure

When not all variables

In the session above
X_iare relevant deadends?
See example 6.6

Figure 6.5: The graE]ﬁUm;Q i]}Eijump'mg algorithm.

™

Algorithm graph-based backjumping jumps back at
any deadend variable as far as graph-based
Information allows.

For each variable, the algorithm maintains the

Induced-ancestor set | i relative the relevant dead-
ends in its current session.

The size of the induced ancestor set is at most w*(d).

/

Fall 2010

Extend Gaschnig’s backjump to internal dead-ends.
Exploits information gathered during search.

For each variable the algorithm maintains an induced
jumpback set, and jumps to most recent one.

Use the following concepts:

An ordering over variables induced a strict ordering
between constraints: R_1<R 2<...R t

Use earliest minimal consflict-set (emc(x_(i+1))) of a
deadend.

Define the jumpback set of a deadend

Fall 2010

Figure 6.1: A modified coloring problem.

Example 6.4.5 Consider the problem of Figure 6.1 using ordering d1 = (z1,... ,z7).
Giiven the dead-end at x; and the assignment ag = (blue, green, red, red, blue, red), the
emc set is (< x1, Hlue >, < x3,7ed >), since it accounts for eliminating all the values of z-.
Therefore, algorithm conflict-directed backjumping jumps to zz. Since xs is an internal
dead-end whose own var — emec set is {z; }, the jumpback set of zz includes just z;, and
the algorithm jumps again, this time back to z. O

_ J

Fall 2010

Given a dead-end éi, the latest variable in its
jumpback set J, is the earliest variable to which it is

safe to jump.
This is the culprit.

Algorithm conflict-directed backtracking jumps back
to the latest variable in the dead-ends’s jumpback
set, and is therefore safe and maximal.

/

Fall 2010

procedure CONFLICT-DIRECTED-BACKJUMPING
Input: A constraint network R = (X, D, C).
QOutput: Either a solution, or a decision that the network is inconsistent.

ie— 1 (initialize variable counter)
Dl — D; (copy domain)
J— 0 (initialize conflict set)

while 1 <i<n
instantiate x; +— SELECTVALUE-CBJ
if x; is null (no value was returned)
wpren — i
i «+— index of last variable in J; (backjump)
Ji — J U Jiprew — {mi} (merge conflict sets)

else
ie—i+41 (step forward)
D — Dy (reset mutable domain)
J—0 (reset conflict set)
end while
ifi =0
return “inconsistent”
else
return instantiated values of {z,... ,Tn}

end procedure

subprocedure SELECTVALUE-CBJ

while I} is not empty
select an arbitrary element a € I, and remove a from D
consistent «— true
k—1
while k < i and consistent
if CONSISTENT (&g, x: = @)
k—k+1
else
let Rs be the earliest constraint causing the conflict
add the variables in Rg's scope &, but not x;, to J;
consistent +— false
end while
if consistent
return a
end while
return null (no consistent value)

end procedure
Eall 2010

Figure 6.7: The conflict-directed backjumping algorithm.

Example 6.5.1 Consider. once again, the CSP in Figure 6.1. A DFS ordering da =
(21, L7, T4, T5, T, T, Tz) and its corresponding DFS spanning tree are given in Figure
6.6c.d. If a dead-end oceurs at node x5, the algorithm retreats to its DFS parent, which
15 T7. _ O

Xg
Xg
X4

X3

X3

fa) fc}

1}

Fipure 6.6: Several ordered constraint graphs of the problem in Figure 6.1: (a) along
ordering d1 = (&1, x2, T3, T4, Ts, s, T7), (b) the induced graph along d1, (¢) along ordering
dy = (%1, T7, Ty, Ts, Tg, Ta, T3), and (d) a DFS spanning tree along ordering dy.

Fall 2010

4 A

T _I= number of nodes in the AND/OR search space rooted at
X_1 (level m-i)
Each assignment of a value to x_i generates subproblems:
T i=kbT {i-1}
T 0=k
Solution: T, =b"k™"

Theorem 6.5.3 When graph-based backjumping is performed on a DVFS ordering of the
constraint graph, the number of nodes visited is bounded by O{(b™k™*1)), where b bounds

the branching degree of the DFS tree associated with that ordering, m is its depth and k
s the domain size. The time complexity (measured by the number of consistency checks)

is O(ek(bk)™), where e is the number of constraints.

_ /

Fall 2010

]

()
-1

Spanning-tree of a graph;

6 67
64
5]

]
(b) (C)

DFS spanning trees, BFS spanning trees.

[t

Fall 2010

]

[t

[~

6 67
64
5]]

(a) (b) (C)

=]

. always jump back to parent in pseudo tree
exp(tree-depth)
exp(w*log n)

Fall 2010

Learning means recording conflict sets
used as constraints to prune future
search space.

(x1=2,x2=2,x3=1,x4=2) Is a
dead-end

Conflicts to record:
(x1=2,x2=2,x3=1,x4=2) 4-ary
(x3=1,x4=2) binary
(x4=2) unary

Fall 2010

Learning means recording conflict sets

An opportunity to learn is when deadend is
discovered.

Goal of learning to not discover the same deadends.
Try to identify small conflict sets
Learning prunes the search space.

/

Fall 2010

Learning means recording explanations to conflicts
They are implied constraints

(x3=1,x4=2) -
(x4=2) > (x#1)

Conflicts to record are explanations
(x1=2,x2=2,x3=1,x4=2) 4-ary
(x1=2,x2=2,x3=1,x4=2)-> (x #1) and x,=2

(x #1)

/

Fall 2010

(2(3)(4) (5)
| | 1 x? r. r L‘r.b
| (1) (6)
Ill |I| x 7 g. g.
v X5 & &5
(a) (b)

Figure 6.9: The search space explicated by backtracking on the CSP from Figure 6.1,
using the variable ordering (zg, z3, x4, 9,7, x1,x5) and the value ordering (blue, red,
green, teal). Part (a) shows the ordered constraint graph, part (b) illustrates the search

@ce. The cut lines in (b) indicate branches not explored when graph-based learning y
used.

Fall 2010

Learning styles
Graph-based or context-based
I-bounded, scope-bounded
Relevance-based

Non-systematic randomized learning
Implies time and space overhead
Applicable to SAT

Fall 2010

procedure GRAPH-BASED-BACKJUMP-LEARNING

instantiate z; +— SELECTVALUE

if z; is null (no value was returned)
record a constraint prohibiting &@;_;[I;].
IPTEY «— 1

(algorithm continues as in Fig. 6.5)

Figure 6.10: Graph-based backjumping learning, modifying CBJ

Fall 2010

™

Deep learning: recording all and only minimal
conflict sets
Example:

Although most accurate, overhead is
prohibitive: the number of conflict sets in the

worst-case: (r j
_ r

r/2

Fall 2010

7

~

o

Record the jJumpback assignment

procedure CONFLICT-DIRECTED-BACKJUMP-LEARNING

instantiate z; +— SELECTVALUE-CBJ

if z; is null (no value was returned)
record a constraint prohibiting &;_;[J;] and corresponding values
IPTEY +— &

(algorithm continues as in Fig. 6.7)

Figure 6.11: Conflict-directed bajgymglgarning, modifying CBJ

Example 6.7.2 For the problem and ordering of Example 6.7.1 at the first dead-end,
jumpback learning will record the no-good {xy = green, £z = blue, z; = red), since that tuple
includes the variables in the jumpback set of z;.

O

_/

™

_

Definition 6.7.3 (i-relevant) A no-good is i-relevant iof it differs from the current par-
tial assignment by at most ¢ variable-value pairs.

Definition 6.7.4 (i'th order relevance-bounded learning) An i’th order relevance-
bounded learning scheme maintains only those learned no-goods that are i-relevant.

Bounding the arity of constraints recorded.

When bound is i: I-ordered graph-based,i-order jumpback or
I-order deep learning.

Overhead complexity of i-bounded learning is time and
space exponential in 1.

/

Fall 2010

Theorem: Any backtracking algorithm using graph-based
learning along d has a space complexity gpjw+@) and time
complexity gn2(2K)w:(@+1

(book). Refined more: o(n2kw*(®)

Proof: The number of deadends for each variable is 0(k%*@),
yielding g (nkw+(@) deadends.There are at most kn values between
two succesive deadends: 0(nk%*(@+D) number of nodes in the
search space. Since at most 0(2%*@) constraints-checks we get
O(nZ (zk)W*(d)+1
Improved more: If we have 0 (nkW*@®) leaves, we have k to n
times as many internal nodes, yielding between ¢ w+@+1y and
nodes. O(nZkW*(d))

Fall 2010

4 A

The complexity of learning along d is time and
space exponential in w*(d):

The number of dead-ends is bounded by O(nk"®)
Number of constraint tests per dead-end are O(e)

Space complexity is O(nk*®)
Time complexity is O(n’e-k"?)
Learning and backjumping: 0 (nmek"* @)

\ m- depth of tree, e- number of constraints /

Fall 2010

é)od caching:

Moving from one to all or counting

C

D

A
B 0 A
m/ \
E]
, 4 4 ‘, ‘4
C m“m‘i 0 0 0 m1
| oA A=A R
) m‘@"e!eg!gezgg_;_ggfa_g,p!-,_‘Lm_",.ﬂ!'aﬂn_s_.i ’m_ﬂgﬂaﬁ’ﬁie—g? m’
AN AN NN A NTAN I h et P A AN NANND
ERERBREROAEREAE PR

o] [[of [[of [[of [[o] [sf [of [« [fof [l [of [o] [af [of [sf [of [[of f[a [of [af [of [2f [o] [a] [o

F [ol[1][o]fz][o][1][o]fz]lo]{z]ol[x][o][z][o][x]|o][+][o]{z]|o][+] [o] x]lol[z] ol[x][o][z][ol[x] [o][+][o][z]|o][x][ol[z]lol{z] [olfx][ol[z] o][x][o]|1][o][z]|o][+|[o{z][o][x] [0l x][o] a]

1
]

[1] [olfz]{ofx] (ol x]{o][z] o][z] [o]|1][o][z]|o] 1] [o][x][o]x] o}
Fall 2010

[ol[2][o]{x][o][1] [ol[x]{o]| 1] [o][z][o]|z][o][z] o] 1] o] x]

s

Summary:
time-space for constraint processing

_

Constraint-satisfaction
Search with backjumping
® Space: linear, Time: O(exp(logn w*))
Search with learning no-goods
® time and space: O(exp(w*))
Variable-elimination
® time and space: O(exp(w*))
Counting, enumeration
Search with backjumping
® Space: linear, Time: O(exp(n))
Search with no-goods caching only
® space: O(exp(w*)) Time: O(exp(n))
Search with goods and no-goods learning
® Time and space: O(exp(path-width), O(exp(log n w*))
Variable-elimination
® Time and space: O(exp(w?*))

Fall 2010

7

~

Do search in a random way with interupts, restarts,
unsafe backjumping, but record conflicts.

Guaranteed completeness.

Fall 2010

A partial assignment is a set of literals: o
A jJumpback set if a J-clause:

Upon a leaf deadend of x resolve two clauses, one enforcing X
and one enforcing ~x relative to the current assignment

A clause forces x relative to assignment - if all the literals in
the clause are negated in O

Resolving the two clauses we get a nogood.

If we identify the earliest two clauses we will find the earliest
condlict.

The argument can be extended to internal deadends.

Fall 2010

procedure SAT-CBJ-LEARN
Input: A CNF theory ¢, assigned variables o over z1, ..., xi_1, unassigned variables

X,

Output: Either a solution, or a decision that the network is inconsistent.
1. J; —

2. Whilel<i<n

3 Select the next variable: z; € X, X — X — {z;}
4, instantiate x; «— SELECTVALUE-CBJ.

5. If z; is null (no value returned), then

6 add J;, to ¢ (learning)

7 iprev «— index of last variable in J; (backjump)
8. Ji — resolve(J;, Jorew) (merge conflict sets)
9, else,

10 i—i+1 [go forward)

11. J; — @ (reset conflict set)

12. Endwhile

13. if i = 0 Return "inconsistent”

14. else, return the set of literals o

end procedure

subprocedure SELECTVALUE-CRBJ

G e 0 N

If CONSISTENT (g U z;) then return ¢ «— o U {z;}

If CONSISTENT (g U —z;) then return o «— o U {—z;}

else,

determine a and & the two earliest clauses forcing z; and —x;,
J; — resolve(a,).

Return z; «— null (no consistent value)

end procedure

Figure 6.12: Algoriall 2001081 LEARN

procedure FC-CBJ
Input: A constraint network R = (X, D, C).
Output: Either a solution, or a decision that the network is inconsistent.

i1 (initialize variable counter)
call SELECTVARIABLE (determine first variable)
Die—Dijfor1<i<mn (copy all domains)

Jy — 0 (initialize conflict set)

while]1 <i<n
instantiate z; «— SELECTVALUE-FC-CBJ
if z; is null (no value was returned)
IPrey «— 1
i — latest index in J; (backjump)
Ji — iU Ji;]rau - {-Tz}
reset each D}, k > 4, to its value before z; was last instantiated

else
i—i+1 (step forward)
call SELECTVARIABLE (determine next variable)
D — D,
Ji — 1
end while
ifi=1>0
return “inconsistent”
else
return instantiated values of {z;,... ,z,}

end procedure

Fall 2010

L . B I s L L . . I L S T T b T L

subprocedure SELECTVALUE-FC-CBIJ

while I is not empty

select an arbitrary element & € D)}, and remove a from D

empty-domain — false

forallk,i<k<n

for all values b in D,
if not CONSISTENT(@;_1,T;=a,Zp=5)

let Rs be the earliest constraint cansing the conflict
add the variables in Eg's scope S, but not z,, to J;
remove b from D)

endfor
if D)} is empty (z; = a leads to a dead-end)
empty-domain «— true
endfor
if empty-domain (don't select a)
reset each D) and jg,1 < k < n, to status before a was selected
else
return a
end while
return null (no consistent valne)

end subprocedure

Figure 6.14: The SelectValue subprocedure for FC-CBJ.
Fall 2010

Backtracking

Gaschnig’s
backjumping

Graph-based
backjumping

Conflict-directed
backjumping

CBJ with
forward-
checking

CBJ with
Jjumpback
learning

Backtracking with
arc-consistency

Fall 2010

/

_

Benchmark instances
Random problems
Application-based random problems

Generating fixed length random k-sat
(n,m) uniformly at random

Generating fixed length random CSPs
(N,K, T,C) also arity, r.

/

Fall 2010

Number of DP calls

J

J

Probability of satisfiability

o
-

4000
3500
3000
2500
2000
1500
1000

500

0

0.8

0.6

0.4

0.2 1

=——e— Point of being satisfiable

50%-satisfiable point

2 3 4 5 6 7 8

Ratio of clauses to variables

Ratio of clauses to variables

— (0-variable formulas
—te— 4()-variable formulas

—0— 2()-variable formulas

Fall 2010

4 h

Sets 1-3 reports average over 2000 instances of random
csps from 50% hardness. Set 1: 200 variables, set 2: 300,
Set 3: 350. All had 3 values.:

Dimacs problems

Algorithm Set 1 Set 2 =et 3 ssa 038 | ssa 158
BFC 207 68.5 - - |46 14.5 | 52 20.0
FC+AC 40 554 1 0.6 1 0.4 4 35|18 8.2
FCr-CBJI 189 69.2 | 222 1193 | 182 140.8 | 40 12.2 | 26 10.7
FC-CBI4+LVO 167 73.8 | 132 86.8 | 119 111.8 | 32 11.0 8 4.5
FC-CBJ+LRN 186 63.4 32 15.6 1 0.5 123 55 ([19 86

FC-CBJ4+LRN+LVO || 160 74.0 26 14.0 1 3.8 |16 38|13 7.1

\ Figure 6.16: Empirical comparison of six selected CSP algorithms. See text for explana- /
tion. In each column of numbers, the first number indicates the number of nodes in the

search tree, rounded to the nearest thu:-usaﬂfgla"azﬂdﬁﬂal 000 omitted; the second number
is CPU seconds.

