Directional consistency
Chapter 4

ICS-275
Fall 2010

Fall 2010 ICS 275 - Constraint Networks 1

4 N

Tractable classes

Theorem 3.7.1 1. The consistency bhinary constraint networks having no cycles can
be decided by arc-consistent

2. The consistency of binary constraint networks with bi-valued domains can be decided
by path-consistency,

3. The consistency of Horn cnf theories can be decided by unit propagation.

_ /

Fall 2010 2

/ Backtrack-free search: or \

What level of consistency will guarantee global-
consistency

Definition 4.1.1 (backtrack-free search) A constraint network is backtrack-free rel-
ative to a given ordering d = (z1,...,za) if for every ¢+ < n, every partial solution of
(T1, ..., T;) can be consistently extended to include T 4.

Backtrack free and queries:
Consistency,

All solutions

Counting

optimization

_ /

Fall 2010 ICS 275 - Constraint Networks 3

e

™

Directional arc-consistency:

another restriction on propagation

_

Definition 4.3.1 (directional arc-consistency) A network is directional-arc-consistent
relative to order d = (T1,...,Tn) iff every variable x; is arc-consistent relative to every
variable ©; such that + < j.

X4
D4={white,blue,black} X5
D3={red,white,blue}
D2={green,white,black} X
2

D1={red,white,black}
X1=x2, x1=x3,x3=x4

Fall 2010 ICS 275 - Constraint Networks 4

e

Directional arc-consistency:

another restriction on propagation

D4={white,blue,black}

D3={red,white,blue} X,
D2={green,white,black}

D1={red,white,black}

X1=x2, X3
x1=x3,

x3=x4

After DAC:
e D1={white},
e D2={green,white,black]},

e D3={white,blue},
\o D4={white,blue,black}

Fall 2010 ICS 275 - Constraint Networks

Algorithm for directional arc- \
consistency (DAC)

DAC(R)

Input:A network R = (X, D,C), its constraint graph &, and an ordering d = (z1,, Tn).
Output: A directional arc-consistent network.

1. fori=mntolby—1do

2. for each 7 <2 58t. R e R,

3. D; — Dy N Ry W Dy), (this is revise((z;), z;)).

4 end-for

Figure 4.6: Directional arc-consistency (DAC)

e Complexity: O(ek?)

_ /

Fall 2010 ICS 275 - Constraint Networks 6

e

™

Directional arc-consistency may not be enough -
Directional path-consistency

D = {red, blue}

X3

.'X,'ZC

(a) (b)

Definition 4.3.5 (directional path-consistency) A network R is directional path-
consistent relative to order d = (z1,...,2y,) iff for every k > 1,3, the par {z;,z;} 15
\?ﬁh-ﬂﬂ?ﬁi&fﬁﬂf relative to Ty, /

Fall 2010 ICS 275 - Constraint Networks 7

mgorithm directional path consistency (DPC)

DPC(R)
Input:A binary network R = (X, D, C) and its constraint graph G = (V, E), d = (21,, Tn).
Output:A strong directional path-consistent network and its graph G' = (V, E').
Initialize: E — E.
1. fork=mnto1lby-1do
(a) ¥ 2 < k such that z; is connected to zx in the graph, do
D — DNy (Ry W Dy) (Revise((x;), zr))
(b) V4,7 < ks.t. (z;,3),(z4,7,) € E do
Ri; — Ry Ny (Ry W Dy W Ry;) (Revise-3((zy, 5), Tr))
E — E'U (z;,z4)
endfor
return The revised constraint network R and G' = (V, E').

e I i o

Theorem 4.3.7 Given a binary network R and an ordering d, algorithm DPC generates
a largest equivalent, strong, directional-path-consistent network relatwe to d. The tune and
space complexity of DPC' is O(n*k?), where n is the number of variables and k bounds

\ihs domain sizes.

Fall 2010 ICS 275 - Constraint Networks 8

/

Example of DPC

Fall 2010 ICS 275 - Constraint Networks

4 h

Directional i-consistency

Definition 4.3.8 (directional i-consistency) A network is directional i-consistent rel-

ative to order d = (L1, ...,T,) iff every i — 1 wvariables are i-consistent relative to every
variable that succeeds them in the ordering. A network is strong directional i-consistent
if it 15 directional j-consistent for every j < 1.

_ /

Fall 2010 ICS 275 - Constraint Networks 10

Algorithm directional I-consistency \

Directional i-consistency (DIC;(R))

Input: a network R = (X, DD, C), its constraint graph G = (V, E), d = (z1,... ,Z4).
output: A strong directional :-consistent network along d and its graph G' = (V| E') .
Initialize: £ — E, C' — C.

1. for =ntolby-1do

2. let P = parents(z;).

3. if |P|<i—1 then

4. Revise(P, ;)

. else, for ecach subset of ¢ — 1 variables S, § C P, do

6. Revise(S, =)

7. endfor

8. C'" «— €' all generated constraints.

8. E — E'U{(zg,xm)|Tt, Tm € P} (connect all parents of x;)

0. endfor.
10. return C' and E’.

Figure 4.9: Algorithm directional ¢-consistency (DIC;)

/ The induced-width

™

DPC recursively connects parents in the ordered graph,
yielding:
e e Width along ordering d, w(d):
@ G max # of previous parents
e Induced width w*(d):
Q @ The width in the ordered
induced graph
(&) (4) e Induced-width w*:
Smallest induced-width
(D) (D) .
W (D) =3 W (D) =2 over all orderings
© © e Finding w*
(B) (B) NP-complete (Arnborg,
; 1985) but greedy heuristics
() &) (min-fill).
\ W' (d)=3 W (d)y=2

/

Fall 2010 ICS 275 - Constraint Networks 12

e

Induced-width

A
F E
B C E A
D B
D
C C
E
F
B D
A F O
(c) (d)

\ (a)

Fall 2010 ICS 275 - Constraint Networks 13

4 N

Induced-width and DPC

e The induced graph of (G,d) is denoted
(G*,d)

e The induced graph (G*,d) contains the
graph generated by DPC along d, and

the graph generated by directional I-
consistency along d.

_ /

Fall 2010 ICS 275 - Constraint Networks 14

4 N

Refined complexity using induced-width

Theorem 4.3.11 Given a binary network 'R and an ordering d, the complexity of DPC

along d is O((w*(d))? -n - &), where w*(d) is the induced width of the ordered constraint
graph along d.

Theorem 4.3.13 Giwven a general constraint network R whose constraints’ arity is bounded

by i, and an ordering d, the complexity of DIC; along d is O(n(w*(d))* - (2k)*). O

e Consequently we wish to have ordering with minimal
Induced-width

e Induced-width is equal to tree-width to be defined later.
\ e Finding min induced-width ordering is NP-complete

/

Fall 2010 ICS 275 - Constraint Networks 15

s

Greedy algorithms for induced-width

™

_

Min-width ordering
Max-cardinality ordering
Min-fill ordering

Chordal graphs

Fall 2010 ICS 275 - Constraint Networks 16

Min-width ordering

MIN-WIDTH (MW)

input: a graph G = (V,E), V = {v(,...,v,}
output: A min-width ordering of the nodes d = (vy, ..., v,).
1. for j=nto1lby-1do

2. r «— a node in GG with smallest degree.
3. put 7 in position j and G «— G —r.

(Delete from V' node r and from E all its adjacent edges)
4. endfor

Figure 4.2: The min-width (MW) ordering procedure

_ /

Fall 2010 ICS 275 - Constraint Networks 17

/

Min-induced-width

MIN-INDUCED-WIDTH (I\fIIW)
input: a graph G = (V. E), V ={v,....v,}
output: An ordering of the nodes d = (vy, ..., v,).
for j =ntol by-1do
r « a node in V" with smallest degree.
put r In position j.
connect r’s neighbors: E «— EU{(v;,v;)|(vi,r) € E, (vj,7) € E},
remove 1 from the resulting graph: V —V — {r}.

ANl

Figure 4.3: The min-induced-width (MIW) procedure

/

Fall 2010 ICS 275 - Constraint Networks 18

Min-fill algorithm

e Prefers a node who adds the least
number of fill-in arcs.

e Empirically, fill-in Is the best among the
greedy algorithms (MW, MIW ,MF,MC)

_

Fall 2010 ICS 275 - Constraint Networks 19

4 N

Cordal graphs and max-
cardinality ordering

e A graph is cordal if every cycle of length at
least 4 has a chord

e Finding w* over chordal graph is easy using
the max-cardinality ordering

e |f G*is an induced graph it is chordal
e K-trees are special chordal graphs.

e Finding the max-clique in chordal graphs is
easy (Jjust enumerate all cliques in a max-

k cardinality ordering /

Fall 2010 ICS 275 - Constraint Networks 20

Example

We see again that G in Figure 4.1(a) is not chordal
since the parents of A are not connected in the max-
cardinality ordering in Figure 4.1(d). If we connect B
and C, the resulting induced graph is chordal.

R

> &% 0 U X

«©

a)

Fall 2010 ICS 275 - Constraint Networks 21

Max-cardinality ordering

MAX-CARDINALITY (MC)

input: a graph G= (V. E), V ={v, ..., 0.}
output: An ordering of the nodes d = (vq, ..., v,).
1. Place an arbitrary node in position 0.

2. for y=1tondo

3. r « a node in G that is connected to a largest subset of nodes
in positions 1 to j — 1, breaking ties arbitrarily.
4. endfor

K Figure 4.5 The max-cardinality (MC) ordering procedure. /

Fall 2010 ICS 275 - Constraint Networks 22

s

Width vs local consistency:
solving trees

™

_

Figure 4.10: A tree network

Theorem 4.4.1 If a binary constraint network has a width of 1 and if it is arc-consistent,
then it s backirack-free along any width-1 ordering.

/

Fall 2010 ICS 275 - Constraint Networks

23

Tree-solving

Tree-solving
Input: A tree network T' = (X, D, C).
Output: A backtrack-free network along an ordering 4.

1.

2
3.
4.
5
6

generate a width-1 ordering, d = =z4,..., Zn.
let zpy denote the parent of z; in the rooted ordered tree.
for: =ntoldo

Revise ((zp(y)), 21);

if the domain of z,; is empty, exit. (no solution exists).
endfor

Figure 4.11: Tree-solving algorithm

complexity : O(nk?)

Fall 2010 ICS 275 - Constraint Networks 24

/Width-z and DPC

()

along d. O

(b)

Increasing
order

Theorem 4.4.3 (Width-2 and directional path-consistency) IfR is directional arc

Qxd path-consistent along d, and if it also has width-2 along d, then it is backtrack-free /

Fall 2010 ICS 275 - Constraint Networks

25

s

Width vs directional consistency
(Freuder 82)

™

_

directional t-consistent, then R is backtrack-free along d.

Theorem 4.4.5 (Width (i-1) and directional i-consistency) Given a general net-
work T, its ordered constraint graph along d has a width of ¢ — 1 and if it s also strong

/

Fall 2010 ICS 275 - Constraint Networks 26

s

Width vs iI-consistency

e DAC and width-1

e DPC and width-2

e DIC iand with-(i-1)

e —> backtrack-free representation

e |f a problem has width 2, will DPC make it
backtrack-free?

e Adaptive-consistency: applies i-consistency

\ when i is adapted to the number of parents

/

Fall 2010 ICS 275 - Constraint Networks

27

4 N

Adaptive-consistency

ADAPTIVE-CONSISTENCY (ACl)

Input: a constraint network R = (X, D, C'), its constraint graph G = (V, E), d = (z1, ... ,%5).
output: A backtrack-free network along d

Initialize: ' — C, E' «— E

1. for j =nto 1 do

2. Let § «— parents(z;).

3 Rg «— Revise(S, ;) (generate all partial solutions over S that can extend to zy).
4. ¢’ «— C"U Rg

5. E — E'U{(zy, z,)|zy, zr € parents(z;)} (connect all parents of z;)

2. endfor.

Figure 4.13: Algorithm adaptive-consistency— version 1

_ /

Fall 2010 ICS 275 - Constraint Networks 28

s

Bucket Elimination
Adaptive Consistency (Dechter & Pearl, 1987)

™

BucketE: E=D, E#C

BucketD: D=A D=C

BucketC: C ;z:B\>A¢1 C

BucketB: B=A B TLA

Bucket A: T contradiction

Complexity: O(n exp(w"))
W’ - induced width
Fall 2010 ICS 275 - Constraint Networks 29

e

Bucket Elimination
Adaptive Consistency (Dechter & Pearl, 1987)

™

_

Bucket(E): E=«D, E#C, E=B
Bucket(D): D= A || Ry
Bucket(C): C#B || R,
Bucket(B): B=A || R,
Bucket(A): R,

~
-~

Bucket(D): D#E || Ry,
Bucket(C): C=B, C#E
Bucket(B): B#E || R”,,, R,
Bucket(E): || R,

-

@0 @ & -

S——

@)

Time and space : O(n exp(w’ (d))),
w’ (d) - induced widthalong ordering d

_

Fall 2010 ICS 275 - Constraint Networks 30

The Idea of Elimination

D={,E=1C=3
' value assignment

Rpec = HDBC Rep @ Reg MRec
kEIiminate variable E < join and project

Fall 2010 ICS 275 - Constraint Networks 31

s

Variable Elimination

_

t
c
&
~

o [222 DBC .

Eliminate 3333 225 Rop
variables E— “3
one by one: cl?
“constraint 7 123 ; \
propagation” <& Bpa

’ eliminating E
Solution generation €=3
after elimination is A e
backtrack-free 00 N R

112} A — B (L2 i
1L.2}
A=l B=2 s D=2

Fall 2010 ICS 275 - Constraint Networks 32

Adaptive-consistency, bucket-elimination \

ADAPTIVE-CONSISTENCY (AC)

Input: a constraint network R, an ordering d = (1,... ,Tn)
output: A backtrack-free network, denoted E4(R), along d, if the empty constraint
was not generated. Else, the problem is inconsistent
1. Partition constraints into bucket+, ... , bucket, as follows:
for : «— n downto 1, put in bucket; all unplaced constraints
mentioning ;.

2. for p — n downto 1 do

3. for all the constraints Rg,,... , Rs, In bucket; do

4. A Ui:l Si — {Zp}

5. Ra « TI4(_; Rs,)

6. if K4 is not the empty relation then add R4 to the bucket of the
latest variable in scope A,

V. else exit and return the empty network

8. return Eg(R) = (X, D, bucket: U bucketa U - - - U buckety)

Figure 4.14: Adaptive-Consistency as a bucket-elimination algorithm

4 N

Properties of bucket-elimination
(adaptive consistency)

e Adaptive consistency generates a constraint network
that is backtrack-free (can be solved without dead-
ends).

e Thetime and space complexity of adaptive consistency
along ordering d is O(n (2k)"*"),0(n (k)" respectively,
or O(r k*(w*+1)) when r is the number of constraints.

e Therefore, problems having bounded induced width are
tractable (solved in polynomial time)

e Special cases: trees (w*=1), series-parallel networks
(w*=2), and in general k-trees (w*=k).

_ /

Fall 2010 ICS 275 - Constraint Networks 34

e

Back to Induced width

e Finding minimum-w* ordering is NP-complete
(Arnborg, 1985)

e Greedy ordering heuristics: min-width, min-degree,
max-cardinality (Bertele and Briochi, 1972; Freuder
1982), Min-fill.

_

Fall 2010 ICS 275 - Constraint Networks 35

4 h

Solving Trees

(Mackworth and Freuder, 1985)

Adaptive consistency is linear for trees and
equivalent to enforcing directional arc-consistency
(recording only unary constraints)

bucket(G) K-
buckeiF) R cp
Bucket(E) R
buckeD) R

buckeC) p

bucket(B) g

birckeA)

Fall 2010 ICS 275 - Constraint Networks 36

e

Summary: directional i-consistency

™

E

C:

&

D:DC,D#A

C#B
A =B

Xt ddd

Adaptive ' d-path . d-arc

RDCB ' Rpc Rpg 1 Rp
i RCB | ?c
| | ?D

Fall 2010

ICS 275 - Constraint Networks 37

4 N

Relational consistency
(Chapter 8)

e Relational arc-consistency
e Relational path-consistency
e Relational m-consistency

e Relational consistency for
Boolean and linear constraints:

Unit-resolution is relational-arc-consistency
Pair-wise resolution is relational path-

k consistency /

Fall 2010 ICS 275 - Constraint Networks 38

/

Sudoku’s propagation

_

e http://www.websudoku.com/
e What kind of propagation we do?

Fall 2010 ICS 275 - Constraint Networks

39

http://www.websudoku.com/

4 h

Sudoku

214 G : 81 slots
8 6 5|1 2 =
{1IZI3I415l6I7I8I9}
] 8|6 9
9 4 8 6 « 27 not-equal
onstraint 4 7 1 9
ropagation 5 8 6 3
4) (6)9 7 | &
9 5 81
3 2.9

Each row, column and major block must be
alldifferent

“Well posed” if it has unique solution:

Sudoku

_

211)5 6
3 6 8 1
B 1 2 !
2 3
9 5 4
3 6
3 8 A 7
8 6 4
5 1 9

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution

/

