
1

Directional consistency

Chapter 4

ICS-275

Fall 2010

Fall 2010 ICS 275 - Constraint Networks

Fall 2010 2

Tractable classes

Fall 2010 ICS 275 - Constraint Networks 3

Backtrack-free search: or

What level of consistency will guarantee global-

consistency

Backtrack free and queries:

Consistency,

All solutions

Counting

optimization

Fall 2010 ICS 275 - Constraint Networks 4

Directional arc-consistency:

another restriction on propagation

D4={white,blue,black}

D3={red,white,blue}

D2={green,white,black}

D1={red,white,black}

X1=x2, x1=x3,x3=x4

Fall 2010 ICS 275 - Constraint Networks 5

Directional arc-consistency:

another restriction on propagation

 D4={white,blue,black}

 D3={red,white,blue}

 D2={green,white,black}

 D1={red,white,black}

 X1=x2,

 x1=x3,

 x3=x4

After DAC:

 D1= {white},

 D2={green,white,black},

 D3={white,blue},

 D4={white,blue,black}

Fall 2010 ICS 275 - Constraint Networks 6

Algorithm for directional arc-

consistency (DAC)

)(2ekO Complexity:

Fall 2010 ICS 275 - Constraint Networks 7

Directional arc-consistency may not be enough 

Directional path-consistency

Fall 2010 ICS 275 - Constraint Networks 8

Algorithm directional path consistency (DPC)

Fall 2010 ICS 275 - Constraint Networks 9

Example of DPC












E

D

A

C

B

}2,1{

}2,1{}2,1{

}2,1{ }3,2,1{

Fall 2010 ICS 275 - Constraint Networks 10

Directional i-consistency

Fall 2010 ICS 275 - Constraint Networks 11

Algorithm directional i-consistency

Fall 2010 ICS 275 - Constraint Networks 12

The induced-width

DPC recursively connects parents in the ordered graph,

yielding:

 Width along ordering d, w(d):

• max # of previous parents

 Induced width w*(d):

• The width in the ordered

induced graph

 Induced-width w*:

• Smallest induced-width

over all orderings

 Finding w*

• NP-complete (Arnborg,

1985) but greedy heuristics

(min-fill).

E

D

A

C

B

Fall 2010 ICS 275 - Constraint Networks 13

Induced-width

Fall 2010 ICS 275 - Constraint Networks 14

Induced-width and DPC

 The induced graph of (G,d) is denoted

(G*,d)

 The induced graph (G*,d) contains the

graph generated by DPC along d, and

the graph generated by directional i-

consistency along d.

Fall 2010 ICS 275 - Constraint Networks 15

Refined complexity using induced-width

 Consequently we wish to have ordering with minimal

induced-width

 Induced-width is equal to tree-width to be defined later.

 Finding min induced-width ordering is NP-complete

Fall 2010 ICS 275 - Constraint Networks 16

Greedy algorithms for induced-width

• Min-width ordering

• Max-cardinality ordering

• Min-fill ordering

• Chordal graphs

Fall 2010 ICS 275 - Constraint Networks 17

Min-width ordering

Fall 2010 ICS 275 - Constraint Networks 18

Min-induced-width

Fall 2010 ICS 275 - Constraint Networks 19

Min-fill algorithm

 Prefers a node who adds the least

number of fill-in arcs.

 Empirically, fill-in is the best among the

greedy algorithms (MW,MIW,MF,MC)

Fall 2010 ICS 275 - Constraint Networks 20

Cordal graphs and max-

cardinality ordering

 A graph is cordal if every cycle of length at

least 4 has a chord

 Finding w* over chordal graph is easy using

the max-cardinality ordering

 If G* is an induced graph it is chordal

 K-trees are special chordal graphs.

 Finding the max-clique in chordal graphs is

easy (just enumerate all cliques in a max-

cardinality ordering

Fall 2010 ICS 275 - Constraint Networks 21

Example

We see again that G in Figure 4.1(a) is not chordal

since the parents of A are not connected in the max-

cardinality ordering in Figure 4.1(d). If we connect B

and C, the resulting induced graph is chordal.

Fall 2010 ICS 275 - Constraint Networks 22

Max-cardinality ordering

Figure 4.5 The max-cardinality (MC) ordering procedure.

Fall 2010 ICS 275 - Constraint Networks 23

Width vs local consistency:

solving trees

Fall 2010 ICS 275 - Constraint Networks 24

Tree-solving

)(: 2nkOcomplexity

Fall 2010 ICS 275 - Constraint Networks 25

Width-2 and DPC

Fall 2010 ICS 275 - Constraint Networks 26

Width vs directional consistency

(Freuder 82)

Fall 2010 ICS 275 - Constraint Networks 27

Width vs i-consistency

 DAC and width-1

 DPC and width-2

 DIC_i and with-(i-1)

  backtrack-free representation

 If a problem has width 2, will DPC make it

backtrack-free?

 Adaptive-consistency: applies i-consistency

when i is adapted to the number of parents

Fall 2010 ICS 275 - Constraint Networks 28

Adaptive-consistency

Fall 2010 ICS 275 - Constraint Networks 29

Bucket E: E D, E  C

Bucket D: D A

Bucket C: C B

Bucket B: B A

Bucket A:

A C

 widthinduced -*

*

w

))exp(w O(n :Complexity

contradiction

=

D = C

B = A

Bucket Elimination

Adaptive Consistency (Dechter & Pearl, 1987)

=



Fall 2010 ICS 275 - Constraint Networks 30

 dordering along widthinduced -(d)

 ,

*

*

w

(d)))exp(w O(n :space and Time












E

D

A

C

B

}2,1{

}2,1{}2,1{

}2,1{ }3,2,1{

:)(

AB :)(

BC :)(

AD :)(

BE C,E D,E :)(

ABucket

BBucket

CBucket

DBucket

EBucket









A

E

D

C

B

:)(

EB :)(

EC , BC :)(

ED :)(

BA D,A :)(

EBucket

BBucket

CBucket

DBucket

ABucket









E

A

D

C

B

|| R
D

BE ,

|| RE

|| RDB

|| RDCB

|| RACB

|| RAB

RA

R
C

BE

Bucket Elimination

Adaptive Consistency (Dechter & Pearl, 1987)

Fall 2010 ICS 275 - Constraint Networks 31

The Idea of Elimination

project and join E variableEliminate



 ECDBC EBEDDBC RRRR

3

value assignment

D

B

C

RDBC

eliminating E

Fall 2010 ICS 275 - Constraint Networks 32

Variable Elimination

Eliminate
variables
one by one:
“constraint
propagation”

Solution generation
after elimination is
backtrack-free

3

Fall 2010 ICS 275 - Constraint Networks 33

Adaptive-consistency, bucket-elimination

Fall 2010 ICS 275 - Constraint Networks 34

Properties of bucket-elimination

(adaptive consistency)

 Adaptive consistency generates a constraint network
that is backtrack-free (can be solved without dead-
ends).

 The time and space complexity of adaptive consistency
along ordering d is respectively,
or O(r k^(w*+1)) when r is the number of constraints.

 Therefore, problems having bounded induced width are
tractable (solved in polynomial time)

 Special cases: trees (w*=1), series-parallel networks
(w*=2), and in general k-trees (w*=k).

 1*w1*w (k) O (n),(2 k) O (n 

1*w

Fall 2010 ICS 275 - Constraint Networks 35

Back to Induced width

 Finding minimum-w* ordering is NP-complete

(Arnborg, 1985)

 Greedy ordering heuristics: min-width, min-degree,

max-cardinality (Bertele and Briochi, 1972; Freuder

1982), Min-fill.

Fall 2010 ICS 275 - Constraint Networks 36

Solving Trees

(Mackworth and Freuder, 1985)

Adaptive consistency is linear for trees and
equivalent to enforcing directional arc-consistency
(recording only unary constraints)

Fall 2010 ICS 275 - Constraint Networks 37

Summary: directional i-consistency

D CBR

A

E

CD

B


 

 
 D

C
B

E

D

C
B

E

D

C
B

E

:A

B A:B

BC :C

AD C,D :D

BE C,E D,E :E








Adaptive d-arcd-path

D BD C RR ,

CBR
DR

CR

DR

Fall 2010 ICS 275 - Constraint Networks 38

Relational consistency

(Chapter 8)

 Relational arc-consistency

 Relational path-consistency

 Relational m-consistency

Relational consistency for
Boolean and linear constraints:
• Unit-resolution is relational-arc-consistency

• Pair-wise resolution is relational path-
consistency

Fall 2010 ICS 275 - Constraint Networks 39

Sudoku’s propagation

 http://www.websudoku.com/

 What kind of propagation we do?

http://www.websudoku.com/

Sudoku

Each row, column and major block must be

alldifferent

“Well posed” if it has unique solution: 27 constraints

2 3
4 62

Constraint
propagation

•Variables: 81 slots

•Domains =
{1,2,3,4,5,6,7,8,9}

•Constraints:
• 27 not-equal

Sudoku

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution

