CompSci 275, ConsTRAINT Networks

Rina Dechter, Fall 2022

Boolean Satisfiability

Based in part on J. Marques-Silva tutorial, ECAI 2010
Also on Darwuche&Pipatsisawat, handbook of SAT, chapter 3.

Fall 2022

Outline

Review: DPLL, Resolution
CDCL: Conflict-Directed Clause Learning

— Implication graphs,

— asserting clauses,

— Unigue Implication points (UIPs)
Watch literals

Empirical evaluation

Reading chapters 3 and 4 in Handbook on SAT)

Outline

Review: DPLL, Resolution
CDCL: Conflict-Directed Clause Learning

Implication graphs, asserting clauses, Unique
Implication points (UIPs)

Watch literals

Fall 2022

Basic Definitions

e Propositional variables can be assigned value 0 or 1
— In some contexts variables may be unassigned

e A clause is satisfied if at least one of its literals is assigned value 1
(X1 WV b (s AT —1X3)

A clause is unsatisfied if all of its literals are assigned value 0

(X1 V . xo V ﬂX3)

A clause is unit if it contains one single unassigned literal and all
other literals are assigned value 0

(x1 V —x2 V —x3)

A formula is satisfied if all of its clauses are satisfied

A formula is unsatisfied if at least one of its clauses is unsatisfied

Fall 2022

Pure Literals

e A literal is pure if only occurs as a positive literal or as a negative
literal in a CNF formula

— Example:
e=(xVx2)A(3V-x)A(gV-x)A(xsV-x)
— x1 and x3 and pure literals

e Pure literal rule:
Clauses containing pure literals can be removed from the formula
(i.e. just assign pure literals to the values that satisfy the clauses)

— For the example above, the resulting formula becomes:
W = (X4 V —lX5) N (X5 V ﬂX4)

o A reference technique until the mid 90s; nowadays seldom used

Fall 2022

Unit Propagation

® Unlt Clause rU|e: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x2 V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(Xl V =Xy V "IX3) A\ (—1x1 V=3V X4) N (—1X1 V x5 V X4)

Fall 2022

Unit Propagation

® Unlt Clause rU|e: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x2 V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1 Vx2Vox3)A(—xq VoxgVxg) A(—xpVoxo Vxg)

Fall 2022

Unit Propagation

® Unlt Clause rU|e: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x2 V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1 V-x2V-x3) A (—xq VoxgVxg) A(—xgVoxe Vxg)

Fall 2022

Unit Propagation

® Unlt Clause rU|e: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x2 V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule
(x1 V-x2V-x3) A (—xq VoxgVxg) A(—xgVoxe Vxg)

(x1 V-x0V=x3)A(mxqgVoxzVxg) A(—xgVoxa V—xg)

Fall 2022

Unit Propagation

® Unlt Clause rU|e: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x2 V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule
(x1 V-x2V-x3) A (—xq VoxgVxg) A(—xgVoxe Vxg)

(x1 V-x0V-x3)A(—x1VoxzVxg) A(—xg Voxa V—xg)

Fall 2022

Unit Propagation

® Unlt Clause rU|e: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x2 V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule
(x1 V-x2V-x3) A (—xq VoxgVxg) A(—xgVoxe Vxg)

(x1 V-x0V=x3)A(—x1VoxzVxg) A(—xgVoxe V—xg)

Fall 2022

Unit Propagation

o Unlt Clause rU|e: [Davis&Putnam, JACM'60]
Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied

— Example: for unit clause (x; V —=x V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(x1 V-2 V-x3)A(mx1VxgVxg)A(—xpV-oxe Voxg)

(x1 VxoVx3) A(mxg Voxg Voxg) A (—xg V—xe V —xg)

e Unit propagation can satisfy clauses but can also unsatisfy clauses
(i.e. conflicts)

Fall 2022

Resolution

e Resolution rule:
— If a formula ¢ contains clauses (x V «) and (—x V 3), then infer
(aVf)
RES(XV a.-x V. 8) = (aV ()

e Resolution forms the basis of a complete algorithm for SAT

— Iteratively apply the following steps: [Davis&Putnam, JACM'60]
» Select variable x
» Apply resolution rule between every pair of clauses of the form

(x Va) and (—x V 3)

» Remove all clauses containing either x or —x
» Apply the pure literal rule and unit propagation

— Terminate when either the empty clause or the empty formula is

derived

Fall 2022

Resolution — An Example

(X1 V —xo V —IX3) N\ (_1X1 V —xy V _1X3) N (X2 V X3) N (X3 V X4) N (X3 V _1X4) -

Fall 2022

Resolution — An Example

(x1 V2 Vax3)A(x1VxaV-x3) A Vx3s) A3V xa)A(xsV-xg) F

(%2 V-x3) A (2 Vx3)A(x3Vxa)A(xsVxg) =

Fall 2022

Resolution — An Example

(x1 V2 Vax3)A(x1VxaV-x3) A Vx3s) A3V xa)A(xsV-xg) F
(x2V3)A(x2Vx3) A(xsVxa)A(xsVxg) =
l_

(x3Vx3)A(x3V x4)A(X5V xq)

Fall 2022

Resolution — An Example

(x1VxVx3)A(mx1VxeV-oxs)A(xeVxs)A (s Vxg)A(xsV—xg)
(x2V3)A(x2Vx3) A(xsVxa)A(xsVxg)
(x3Vx3)A(x3V x4)A(X5V xq)

(X3 V X4) N\ (X3 V ﬂx4)

Fall 2022

it

B2 e T

Resolution — An Example

(Xl V —xo V ﬁX3) AN (_\Xl V —xo V _1X3) A (X2 V X3) A (X3 V X4) A (X3 V ﬁX4) =
(—x2 Vx3) A2 Vx3) A(xsVxq)A(xsV—xq) 5
(X3 V _1X3) (X3 V X4) N (X3 V _1X4) =
(x3V x4) A (X3 V —xq) -
(x3)
e Eormulal SIS Do directional resolution in the order:
X3,x4,x2,x1

Fall 2022

Outline

Algorithms
Local Search
The DPLL Algorithm
Conflict-Driven Clause Learning (CDCL)

Fall ZUZZ

Outline

Algorithms

The DPLL Algorithm

Fall 2022

DPLL — Historical Perspective

In 1960, M. Davis and H. Putnam proposed the DP algorithm:
— Resolution used to eliminate 1 variable at each step
— Applied the pure literal rule and unit propagation

Original algorithm was inefficient

In 1962, M. Davis, G. Logemann and D. Loveland proposed an
alternative algorithm:

— Instead of eliminating variables, the algorithm would split on a given
variable at each step
— Also applied the pure literal rule and unit propagation

The 1962 algorithm is actually an implementation of backtrack
search

Over the years the 1962 algorithm became known as the DPLL
(sometimes DLL) algorithm

Fall 2022

The DPLL Algorithm

e Standard backtrack search

e At each step:
— [DECIDE] Select decision assignment

— [DEDUCE]| Apply unit propagation and (optionally) the pure literal

rule
— [DIAGNOSE] If conflict identified, then backtrack

» If cannot backtrack further, return UNSAT
» Otherwise, proceed with unit propagation

— |f formula satisfied, return SAT
— Otherwise, proceed with another decision

Fall 2022

An Example of DPLL

(av-bVvd)A(aV-bVe)A

(b V —dV —e)A
(avbVcecVvd)A(aVbVcV-d)A
(avbV-cVe)A(aVbV-cV —e)

Fall 2022

An Example of DPLL

avbVvecVvd)A(aVbVcV-d)A
avbV-cVe)A(aVbV-cV—e)

Fall 2022

An Example of DPLL

(av-bVd)A(aV-bVe)A
(mbV —dV —e)A
(avbVvevd)A(avbVcecVd)A
(avbV-cVe)A(aVbV-cV—e)

conflict

Fall 2022

An Example of DPLL

(av-bVvd)A(aV—-bVe)A
(-bV —dV —e)A
(
(

©
|

avVbVveVvd)A(avVbVcVd)A
avbV-cVe)A(aVbV-cV-e)

Fall 2022

conflict

An Example of DPLL

(av-bVd)A(aV-bVe)A
(-bV —dV —e)A
(avbVveVvd)A(avbVcVd)A
(avbV-cVe)A(aVbV—cV-e)

©
|

conflict

Fall 2022

An Example of DPLL

(av-bVvd)A(aV—-bVe)A
(-bV —dV —e)A
(
(

©
|

avVbVveVvd)A(avbVcV-d)A
avVbV-cVe)A(aVbV-cV —e)

Fall 2022

conflict

An Example of DPLL

(av-bVvd)A(aV-bVe)A
(-mbV —dV —e) A
(avbVeVd)A(avVbVcV-d)A
(aVbV-cVe)A(aVbV-cV—e)

conflict

Fall 2022

An Example of DPLL

s
¢ = (av-bVd)A(aV-bVe)A (a)

(-bV —dV —e)A <’ \

O o

(avbVeVvd)A(aVbVcVd)A (b) (P)
(BVb\/_IC\/e)/\(a\/b\/—\C\/—le) \\\ ///

conflict solution

Comparing with CSP:
« Sat can be decided before all variables are assigned
Complexity: when is unit propagation complete?....

Think Horn clauses
Fall 2022

Outline

o Conflict-Directed Clause Learning (CDCL)
— Implication graphs,
— asserting clauses,
— Unigue Implication points (UIPs)

Fall 2022

Conflict Analysis:
Implication Graphs

The combination of these techniques makes sure that unit resolution is
empowered every time a conflict arises, and that the solver will not repeat
any mistake. The identification of conflict—driven clauses is done through a

process known as conflict analysis, which analyzes a trace of unit resolution
known as the implication graph.

Our vanilla CSP conflict did not take arc-consistency into account
In SAT, conflict-driven analysis does.

Fall 2022

Implication graphs

Each node in an implication graph has the form |/V=y,

P= which means that variable V has been set to value v at
1.{A,B} e v as B »
level |. Note that a variable is set either by a decision or

2.{B,C} by an implication. A variable is set by an implication if the
3.{7A =X, Y} setting is due to the application of unit resolution.
4. {—AX,2Z} Otherwise, it is set by a decision.
5.{—A, ~Y,Z}
6.{~AX, =2}
7' {—IA _IIX - 71 L.".".l})lt‘l J. LUTIREE AWurtivone

0/d=1¢

Figure 3.7. Two implication graphs.

Deriving conflict clause

« Every cutin the implication graph defines a conflict set as long
as that cut seperates the decision variables (root nodes) from

the contradiction (a leaf node).

« Any node (variable assignment) with an outgoing edge that

cross the cut will be in the conflict set.

leading to conflicts: sets:
{A=true,X=true}, {A=true,
Y=true} and

{A=true, Y=true, Z=true}.

Figure 3.8. Three cuts in an implication graph, leading to three conflict sets.

qo:

1.{A,B}

2. {B,C}

3.{—A, —X, Y}
4. {—~A,X,Z}
5.{—A, ~Y,Z}
6.{—AX, =2}
7.{=A, Y, =2}

Earliest minimal conflict?

1.{A,B} |

2.{B,C}

3.{—A, —X,Y)
4. {—~A,X,Z}
5.{—A, ~Y,Z)
6.{—AX, =2}
7.{-A, -Y, =2}
8. {—A, =X}

Figure 3.7. Two implication graphs.

For the graph in Figure 3.7(b), {A = true} is a conflict cut.

Conflict—driven clauses generated from cuts that contain exactly one variable
assigned at the level of conflict are said to be asserting [ZMMMO1]. Modern SAT
solvers insist on learning only asserting clauses.

Fall 2022

UIP: unigue implication points

A UIP of a decision level in an implication graph is a variable setting at that decision
level which lies on every path from the decision variable of that level to the
contradiction. Intuitively, a UIP of a level is an assignment at the level that, by itself, is
sufficient for implying the contradiction. In Figure 3.9, the variable setting 3/Y=true
and 3/X=true would be UIPs as they lie on every path from the decision 3/X=true to
the contradiction3/{}.

QQ::

1.{A,B}

2. {B,C)

3.{—A, =X, Y}
4. {—~A,X,Z}
5.{—A, ~Y,Z)
6.{—AX, =2}
7.{-A, °Y, =2}

8.{—A, =X}
Deriving asserting clauses that contain the first UIP is popular: {-A v =Y } will be learnt
Fall 2022

Figure 3.9. An example of a unigue implication point (UIP).

Last slide

Fall 2022

CDCL SAT Solvers — Basic Techniques

e Based on DPLL [Davis et al., JACM'60, CACM'62]
— Must be able to prove unsatisfiability

e New clauses are learned from conflicts [Marques-Silva&Sakallah, ICCAD'6]
— Backtracking can be non-chronological

e Structure of conflicts is exploited (UIPs) [Marques-SilvaSakallah, ICCAD'06]

e Backtrack search is periodically restarted [Gomes et al., AAAI'98]

e Lazy data structures are used [Moskewicz et al, DAC'01]
— Compact with low maintenance overhead

e Branching is guided by conflicts [Moskewicz et al, DAC'01]

— E.g. VSIDS, etc.

Fall 2022

CDCL SAT Solvers — Additional Techniques

o (Currently) effective techniques:

— Unused learned clauses are discarded

— Use formula preprocessing |

— Minimize learned clauses
— Use literal progress saving

— Use dynamic restart policies

— Exploit extended implication graphs

— ldentify glue clauses

e (Currently) ineffective techniques:

— ldentify pure literals

— Implement variable lookahead
— Use formula preprocessing ||

Fall 2022

[Goldberg&Novikov, DATE'02]

[Een&Biere,
[Sorensson&Biere,
[Pipatsrisawat&Darwiche,
[Biere,

[Audemard et al.,

SAT'05]
SAT'09]
SAT'07]
SAT'08]

SAT'08]

[Audemard & Simon, |JCAI'09]

[Davis&Putnam, JACM'60]

[Anbulagan&Li, [JCAI'97]

[Brafman, |JCAI'01]

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

p=(a Vb)A(-bV c Vd)A(-bVe)A(-dV eV f)...

Fall 2022

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

w=(aVb)A(-bV c Vd)A(-bVe)A(~dV eV f)...

— Assume decisions c =0 and f =0

Fall 2022

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

p=(aVvb)A(Eby c NdyA(bV e)A(=dV.—eV £)..:

— Assume decisions ¢ =0 and f =0
— Assign a = 0 and imply assignments

Fall 2022

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

w=(a Vb)A(=bV c Vd)A(-bVe)A(~dV —eV f)...

— Assume decisions ¢ =0 and f =0
— Assign a = 0 and imply assignments

Fall 2022

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

o=(a VbA(-bY c Vd)A(—-bVe)A(-dV—-eV f)...

— Assume decisions ¢ =0 and f =0
— Assign a = 0 and imply assignments
— A conflict is reached: (—d V —e V f) is unsatisfied

Fall 2022

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

e=(Hvb)A(-bVIBVdA(-bVe)A(~dV-eVH)--.
— Assume decisions ¢ =0 and f =0
— Assign a = 0 and imply assignments

— A conflict is reached: (—d V —e V f) is unsatisfied
— (a=0)A(c=0)A(f =0)=(p=10)

Fall 2022

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

e=(@VbHA(-bVIBIVdIA(-bVe)A(~dV-eVIH)...

— Assume decisions ¢ =0 and f =0
— Assign a = 0 and imply assignments
— A conflict is reached: (—d V —e V f) is unsatisfied
— (a=0)A(c=0)A(f =0)=(p=10)

= (p=l)—=(a=1)NV{e=1)¥(f=1)

Fall 2022

Clause Learning

e During backtrack search, for each conflict learn new clause, which
explains and prevents repetition of the same conflict

e=(@VbHA(-bVIBIVdIA(-bVe)A(~dV-eVIH)...

— Assume decisions ¢ =0 and f =0
— Assign a = 0 and imply assignments
— A conflict is reached: (—d V —e V f) is unsatisfied
— (a=0)A(c=0)A(f =0)=(p=10)

= (p=l)—=(a=1)NV{e=1)¥(f=1)

— Learn new clause (aV c V f)

Fall 2022

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (AVDb)A(=bV c Vd)A(-bVe)A(-dV eV f)A
(avcV f)AN(—avVg)A(—gVb)A(-hVj)A(—iV k)

Fall 2022

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (AVD)A(=bV c Vd)A(-bVe)A(-dV eV f)A
(avcV f)A(—avVg)A(—gVDb)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0

Fall 2022

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVb)A(-bV c Vd)A(-bVe)A(—~dV eV f)A
(aV cV F)AN(maVg)A(-gVb)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0
— Assignment a = 0 caused conflict = learnt clause (aV ¢ V)
implies a =1

Fall 2022

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVDb)A(=bV c Vd)A(-bVe)A(-dV eV f)A
(aVcV f)AN(—avVg)A(—gVDb)A(-hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0
— Assignment a = 0 caused conflict = learnt clause (aV c V f)
implies a =1

Fall 2022

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVD)A(=bV c Vd)A(-bVe)A(-dV —-eV f)A
(aV cV FIAN(maVg)A(—gVDb)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0
— Assignment a = 0 caused conflict = learnt clause (aV c V f)
implies a =1

Fall 2022

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVD)A(-bV c Vd)A(-bVe)A(-dV —eV f)A
(aVcV FIAN(maVg)A(—gVDb)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0

— Assignment a = 0 caused conflict = learnt clause (aV c V f)
implies a =1

— A conflict is again reached: (—d V —e V f) is unsatisfied

Fall 2022

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVb)A(-bVie Vd)A(-bVe)A(-dV —-eV f)A
(avie VIE)A(—maVvVg)A(—gVDB)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0

— Assignment a = 0 caused conflict = learnt clause (aV c V f)
implies a =1

— A conflict is again reached: (—d V —e V f) is unsatisfied

= (c=0)A(f=0)=(p=0)

Fall 2022

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVb)A(-bVie Vd)A(-bVe)A(-dV —-eV f)A
(avie VIE)A(—maVvVg)A(—gVDB)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0

— Assignment a = 0 caused conflict = learnt clause (aV c V f)
implies a =1

— A conflict is again reached: (—d V —e V f) is unsatisfied

= (c=0)A(f=0)=(p=0)

=le=1)=E = 1)V =1)

Fall 2022

Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of the
causes of the conflict

¢ = (aVb)A(-bVie Vd)A(-bVe)A(-dV —-eV f)A
(avie VIE)A(—maVvVg)A(—gVDB)A(—hVj)A(—iV k)

— Assume decisions c =0, f =0, h=0and i =0

— Assignment a = 0 caused conflict = learnt clause (aV c V f)
implies a =1

— A conflict is again reached: (—d V —e V f) is unsatisfied

= (c=0)A(f=0)=(p=0)

=le=1)=E = 1)V =1)

— Learn new clause (¢ V f)

Fall 2022

Non-Chronological Backtracking

Fall 2022

Non-Chronological Backtracking

Fall 2022

Learnt clause: (¢ V f)

Need to backtrack, given new
clause

Backtrack to most recent
decision: f =0

Clause learning and
non-chronological backtracking
are hallmarks of modern SAT
solvers

Clause deletion policies

e Keep only the small clauses [Marqiies:Silva&Sakallah'96)
— For each conflict record one clause

— Keep clauses of size < K
— Large clauses get deleted when become unresolved

o Keep only the relevant clauses (Bayardo& Schrag'97]
— Delete unresolved clauses with < M free literals

e Keep only the clauses that are used [Goldberg&Novikov'02]
— Keep track of clauses activity

Fall 2022

Outline

e Review: DPLL, Resolution

o Conflict-Directed Clause Learning (CDCL)
— Implication graphs,
— asserting clauses,
— Unique Implication points (UIPs)

« Watch literals

Fall 2022

Data Structures

Key point: only unit and unsatisfied clauses must be detected
during search

— Formula is unsatisfied when at least one clause is unsatisfied
— Formula is satisfied when all the variables are assigned and there are
no unsatisfied clauses

e |n practice: unit and unsatisfied clauses may be identified using
only two references

Standard data structures (adjacency lists):

— Each variable x keeps a reference to all clauses containing a literal
in X

e ——

Lazy data structures (watched literals):

— For each clause, only two variables keep a reference to the clause,
l.e. only 2 literals are watched

Fall 2022

Lazy Data Structures (watched literals)

@3

@]

@5

@3

@5

@3

@7

@]

@1

@3

@1

unresolved

e For each clause, only two variables

keep a reference to the clause,
I.e. only 2 literals are watched

unresolved

unit

— If variable x is assigned, only the
clauses where literals in x are
watched need to be evaluated

— |f search backtracks, then
nothing needs to be done

e Total number of references is
2 x C, where C is the number of
clauses

satisfied

after backtracking to level 4

Fall 2022

— In general L > 2 x C, in
particular if clauses are learnt

BCP Algorithm (1.1/8)

e Big Invariants
e Each clause has two watched literals.

e If a clause can become unit via any sequence of assignments, then this
sequence will include an assignment of one of the watched literals to F.
Example again: (v1 + v2 + v3 + v4 + v5)
(VI=X +v2=X + v3=7 + v4=7 + v5=7)
e BCP consists of identifying unit (and conflict) clauses (and the
associated implications) while maintaining the “Big Invariants”

BCP Algorithm (2/8)

e Let'sillustrate this with an example:

v2 +
vl +
vl +
vl’ +

vl’

v3 + vl + v4 + v5
v2 + v3’

v2’

v4

&80
0000
e
oo
o e
BCP Algorithm (2.1/8) °
e Let'sillustrate this with an example:
watched v2 + v3 + vl + v4d + v5
literals —— 1 + w2 + v3’
vl + v2’
vl + v4
) One literal clause breaks invariants: handled
e ' as a special case (ignored hereafter)

m [nitially, we identify any two literals in each clause as the watched ones
m Clauses of size one are a special case

BCP Algorithm (3/8)

e We begin by processing the assignment v1 = F (which is implied by

the size one clause)

State: (v1=F)

Pending:

v2 +
vl +
el |

vli’+

v3 + vl + v4 + v5
v2 + v3’
e

v4

BCP Algorithm (3.1/8)

e We begin by processing the assignment v1 = F (which is implied by

the size one clause)

State: (v1=F) E:>

Pending: E:>

m [0 maintain our invariants,

v2 + v3 + vl + v4 + v5
vl + v2 + v3’
vl 4+ v2’

vl + v4d

we must examine each clause where the

assignment being processed has set a watched literal to F.

BCP Algorithm (3.2/8)

e We begin by processing the assignment v1 = F (which is implied by
the size one clause)

State: (v1=F)

Pending:

v2 +
vl +

el |

[:> vl’ +

v3 + vl + v4 + v5
v2 + v3’
e

v4

To maintain our invariants, we must examine each clause where the

assignment being processed has set a watched literal to F.

We need not process clauses where a watched literal has been setto T,

because the clause is now satisfied and so can not become unit.

BCP Algorithm (3.3/8)

e We begin by processing the assignment v1 = F (which is implied by
the size one clause)

State: (v1=F)

Pending:

E:> v2 +

vl +
el |

vli’+

v3 + vl + v4 + v5
v2 + v3’
e

v4

To maintain our invariants, we must examine each clause where the

assignment being processed has set a watched literal to F.

We need not process clauses where a watched literal has been setto T,

because the clause is now satisfied and so can not become unit.

We certainly need not process any clauses where neither watched literal

changes state (in this example, where v1 is not watched).

BCP Algorithm (4/8)

e Now let’s actually process the second and third clauses:

v2 + v3 + vl + v4 + v5
vl + v2 + v3’
vl + w2’

vli’+ v4

State: (v1=F)

Pending:

BCP Algorithm (4.1/8)

e Now let’s actually process the second and third clauses:

vZ2 + v3 + vl + v4 + v5
vl + v2 + v3’
vl + v2’

vli’'+ v4

State: (v1=F)

Pending:

vZ2 + v3 + vl + v4 + v5
vl + v2 + w3’
vl + v2’

vl + v4

State: (v1=F)

Pending:

m For the second clause, we replace v1 with v3’ as a new watched literal.
Since v3' is not assigned to F, this maintains our invariants.

BCP Algorithm (4.2/8)

e Now let’s actually process the second and third clauses:

v2 + v3 + vl + v4 + v5

vl + v2 + v3’
vl + v2’

vli’'+ v4

v2 + v3 + vl + v4 + v5
vl + v2 + w3’
vl + v2’

vl + v4

State: (v1=F)

Pending:

State: (v1=F)

Pending: (v2=F)

m For the second clause, we replace v1 with v3’ as a new watched literal.
Since v3' is not assigned to F, this maintains our invariants.

m The third clause is unit. We record the new implication of v2', and add it to
the queue of assignments to process. Since the clause cannot again

become unit, our invariants are maintained.

eee
o0
e
. e
BCP Algorithm (5/8) °
e Next, we process v2'. We only examine the first 2 clauses.
vZ2 + v3 + vl + v4 + v5 v2Z + v3 + vl + v4d + v5

vl + v2 + w3’ vl + v2 + w3’

el |+ el 4+ ot

vli’'+ v4 vl + v4d
State: (v1=F, v2=F) State: (v1=F, v2=F)
Pending: Pending: (v3=F)

m For the first clause, we replace v2 with v4 as a new watched literal. Since v4
Is not assigned to F, this maintains our invariants.

m [he second clause is unit. We record the new implication of v3’, and add it to
the queue of assignments to process. Since the clause cannot again
become unit, our invariants are maintained.

BCP Algorithm (6/8)

e Next, we process v3'. We only examine the first clause.

vZ2 + v3 + vl + v4 + v5
vl + v2 + w3’
vl + v2’

vl '+ v4

vZ2 + v3 + vl + v4 + w5
vl + v2 + w3’
vl + v2’

vl + v4

State: (v1=F, v2=F, v3=F)

Pending:

State: (v1=F, v2=F, v3=F)

Pending:

m For the first clause, we replace v3 with v5 as a new watched literal. Since v5

Is not assigned to F, this maintains our inva

riants.

m Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. Both v4 and v5 are unassigned. Let's say we

decide to assign v4=T and proceed.

BCP Algorithm (7/8)

e Next, we process v4. We do nothing at all.

vZ2 + v3 + vl + v4 + v5

vl + w2 + w3’ ‘\}
L~

vl + v2’

vli’+ v4

vZ2 +
vl +
vl +

vl’+

v + vl + v4 + w5
v2 + v3’
v2’

vi

State: (v1=F, v2=F, v3=F,
v4=T)

State: (v1=F, v2=F, v3=F,

v4=T)

m Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. Only v5 is unassigned. Let’'s say we decide to

assign v5=F and proceed.

@e e
o0e
e
®
- ee
BCP Algorithm (8/8) °
e Next, we process v5=F. We examine the first clause.
v2 + v3 + vl + v4 + v5 v2 + v3 + vl + v4 + w5
vl + w2 + w3’ >\> vl + w2 + w3’
d
vl + v2’ vl + v2’
vl + v4d vl + v4
State: (v1=F, v2=F, v3=F, State: (v1=F, v2=F, v3=F,
v4=T, v5=F) v4=T, v5=F)

The first clause is already satisfied by v4 so we ignore it.

Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. No variables are unassigned, so the instance is
SAT, and we are done.

Outline

Review: DPLL, Resolution
Conflict-Directed Clause Learning (CDCL)

— Implication graphs,

— asserting clauses,

— Unique Implication points (UIPs)
Watch literals

Restarts, Empirical evaluation

Fall 2022

Restarts |

—

%below

Distributions

073
—g40 Distrib
0.6 1
0.5 A1

0.3

T T T Ll L] #b kt k
0 2000 4000 6000 8000 10000 12000 o occTacks

e Plot for processor verification instance with branching
randomization and 10000 runs

— More than 50% of the runs require less than 1000 backtracks
— A small percentage requires more than 10000 backtracks

e Run times of backtrack search SAT solvers characterized by
heavy—tall dIStrIbutlonS [Gomes et al.'98]

Fall 2022

Restart

e Abandon the
current search
tree and
reconstruct a
new one

e Helps reduce
variance - adds
to robustness in
the solver

e The clauses
learned prior to
the restart are
still there after
the restart and
can help pruning
the search space

Conflict clause: x1°+x3+x5°

Evolution of SAT Solvers

Instance Posit'94 Grasp'96 Chaff'03 Minisat’'03 Picosat'08
ssa2670-136 1557 0.22 0.02 0.00 0.01
bf1355-638 310:93 0.02 0.02 0.00 0.03
design_3 > 1800 3.93 0.18 0.17 0.93
design_1 > 1800 34.55 0.35 01 0.68
4pipe_4_ooo | > 1800 > 1800 17.47 110.97 44 95
fifo8_300 > 1800 > 1800 348.50 53.60 39.31
w08_15 > 1800 > 1800 > 1800 99.10 71.89
Opipe_9_ooo | > 1800 > 1800 > 1800 > 1800 > 1800
c6288 > 1800 > 1800 > 1800 > 1800 > 1800

e Modern SAT algorithms can solve instances with hundreds of
thousands of variables and tens of millions of clauses

Fall 2022

Benchmarks

e Random
e Crafted
e Industrial

Outline

Review: DPLL, Resolution
Conflict-Directed Clause Learning (CDCL)
— Implication graphs,

— asserting clauses,

— Unigue Implication points (UIPs)

Watch literals

Restarts, Empirical evaluation

