CompSci 275, Constraint Networks

Rina Dechter, Fall 2022

Introduction, the constraint network model Chapters 1-2

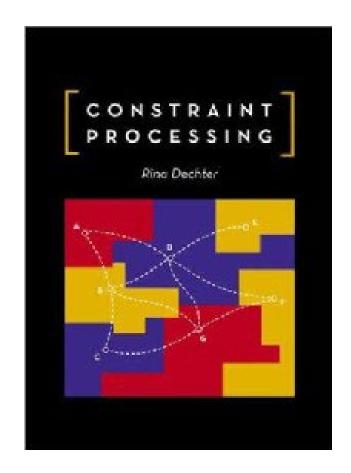
Fall 2022

Class information

Instructor: Rina Dechter

Lectures: Monday & Wednesday

• Time: 11:00 – 12:20 pm

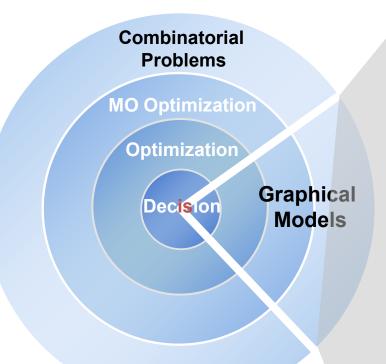

• Class page: https://www.ics.uci.edu/~dechter/courses/ics-275/fall-2022/

Text book (required)

Rina Dechter,

Constraint Processing,

Morgan Kaufmann


Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definition, and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

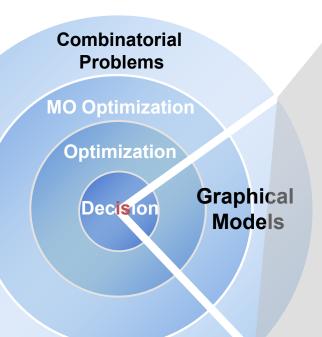
Combinatorial problems

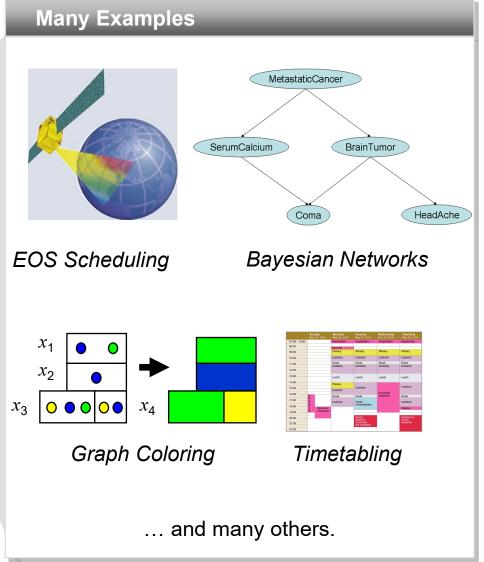
Graphical Models

Those problems that can be expressed as:

A set of variables

Each variable takes its values from a finite set of domain values


A set of local functions


Main advantage:

They provide unifying algorithms:

- o Search
- o Complete Inference
- o Incomplete Inference

Combinatorial problems

Example: student course selection

- Context: You are a senior in college
- Problem: You need to register in 4 courses for the Spring semester
- Possibilities: Many courses offered in Math, CSE, EE, CBA, etc.
- Constraints: restrict the choices you can make
 - Courses have <u>prerequisites</u> (e.g., take 171 before 175)
 - General course restrictions https://www.ics.uci.edu/grad/Course_updates.php
 - you have/don't have Courses/instructors you like/dislike
 - Courses are scheduled at the same time
 - In CE: 4 courses from 5 tracks such that at least 3 tracks are covered
- You have choices, but are restricted by constraints
 - Make the right decisions!!
 - ICS Graduate program

Student course selection (continued)

Given

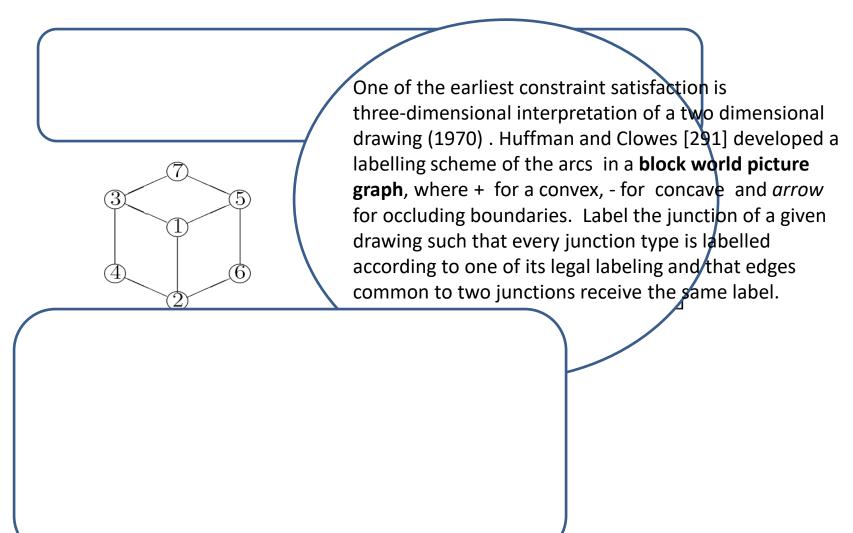
- A set of variables: 4 courses at your college
- For each variable, a set of choices (values): the available classes.
- A set of constraints that restrict the combinations of values the variables can take at the same time

Questions

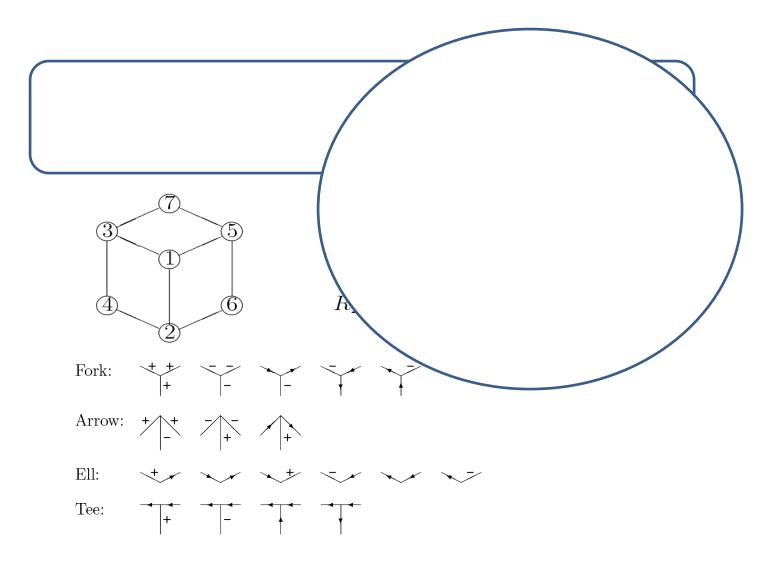
- Does a solution exist? (classical decision problem)
- How many solutions exists? (counting)
- How two or more solutions differ?
- Which solution is preferable?
- etc.

Fall 2022

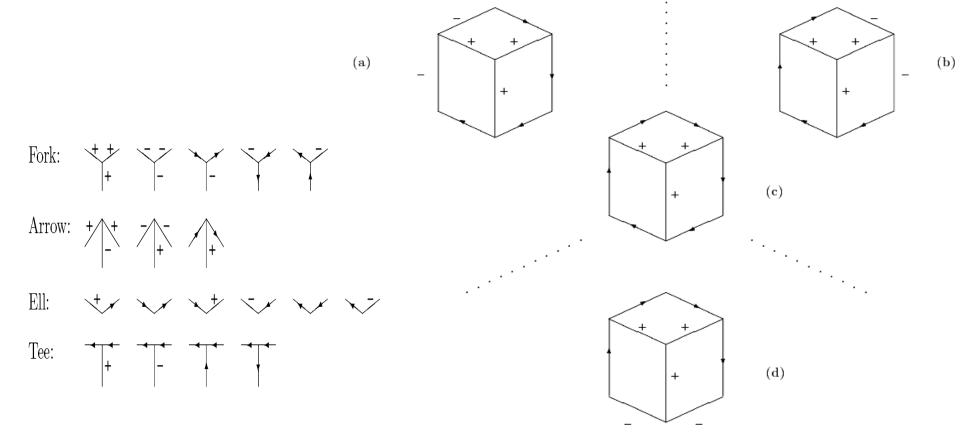
The field of constraint programming


How did it start:

- Artificial Intelligence (vision)
- Programming Languages (Logic Programming),
- Databases (deductive, relational)
- Logic-based languages (propositional logic)
- SATisfiability


Related areas:

- Hardware and software verification
- Operation Research (Integer Programming)
- Answer set programming
- Graphical Models; deterministic

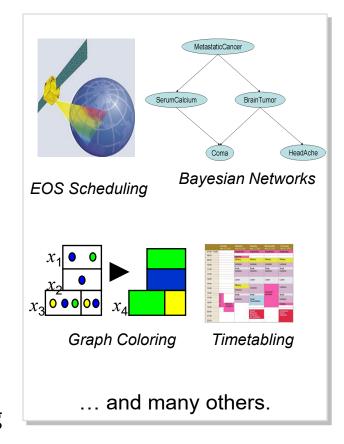

Scene labeling constraint network

Scene labeling constraint network

3-dimentional interpretation of 2-dimentional drawings

The field of constraint programming

How did it start:


- Artificial Intelligence (vision)
- Programming Languages (Logic Programming),
- Databases (deductive, relational)
- Logic-based languages (propositional logic)
- SATisfiability

Related areas:

- Hardware and software verification
- Operations Research (Integer Programming)
- Answer set programming
- Graphical Models; deterministic

Applications

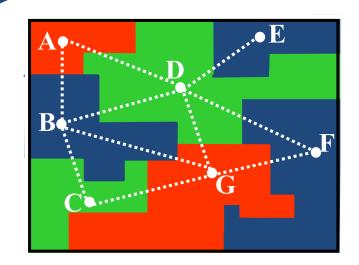
- Radio resource management (RRM)
- Databases (computing joins, view updates)
- Temporal and spatial reasoning
- Planning, scheduling, resource allocation
- Design and configuration
- Graphics, visualization, interfaces
- Hardware verification and software engineering
- HC Interaction and decision support
- Molecular biology
- Robotics, machine vision and computational linguistics
- Transportation
- Qualitative and diagnostic reasoning

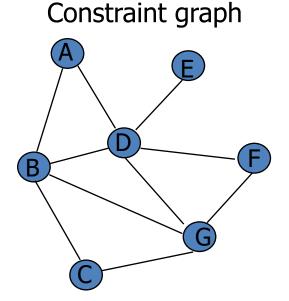
Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definitions and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Constraint networks

Example: map coloring


Variables - countries (A,B,C,etc.)


Values - colors (red, green, blue)

Constraints:

 $A \neq B$, $A \neq D$, $D \neq E$, etc.

red green red green red green yellow green yellow green yellow red

Constraint satisfaction tasks

Example: map coloring

Variables - countries (A,B,C,etc.)

Values - colors (e.g., red, green, yellow)

Constraints:

 $A \neq B$, $A \neq D$, $D \neq E$, etc.

Are the constraints consistent?

Find a solution, find all solutions

Count all solutions

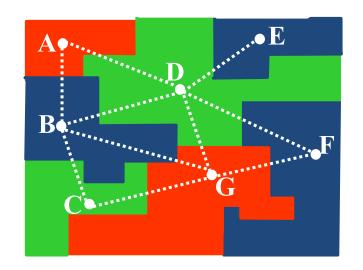
Find a good solution

A	В	O	D	E
red	green	red	green	blue
red	blue	green	green	blue
•••		:		green
:	:	:		red
red	blue	red	green	red

Information as constraints

- I have to finish my class in 50 minutes
- 180 degrees in a triangle
- Memory in our computer is limited
- The four nucleotides that makes up a DNA only combine in a particular sequence
- Sentences in English must obey the rules of syntax
- Susan cannot be married to both John and Bill
- Alexander the Great died in 333 B.C.

Constraint network; definition


- A constraint network is: R=(X,D,C)
 - X variables $X = \{X_1, ..., X_n\}$
 - **D domain** $D = \{D_1, ..., D_n\}, D_i = \{v_1, ..., v_k\}$
 - C constraints $C = \{C_1, ..., C_t\}, C_i = (S_i, R_i)$
 - R expresses allowed tuples over scopes
- A solution is an assignment to all variables that satisfies all constraints (join of all relations).
- Tasks: consistency?, one or all solutions, counting, optimization

MiniZinc model

```
% Colouring book-map using nc colours int: nc = 3;

var 1..nc: A; var 1..nc: B; var 1..nc: C; var 1..nc: D; var 1..nc: E; var 1..nc: F; var 1..nc: G;
```

```
constraint A != D;
constraint A != B;
constraint B != D;
constraint B != G;
constraint B != C;
constraint C != G;
constraint D != G;
constraint D != F;
constraint G != F;
solve satisfy;
```


The N-queens problem

The network has four variables, all with domains $D_i = \{1, 2, 3, 4\}$. (a) The labeled chess board. (b) The constraints between variables.

	x_1	x_2	x_3	x_4
1				
2				
3				
4				

(a)

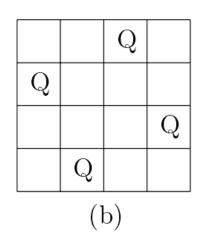
$$R_{12} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

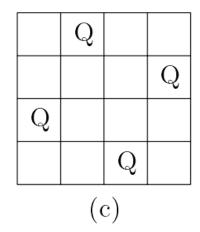
$$R_{13} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{14} = \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,2), (4,3)\}$$

$$R_{23} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{24} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$


$$R_{34} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$
(b)


A solution and a partial consistent tuple (configuration)

Not all consistent instantiations are part of a solution:

- (a) A consistent instantiation that is not part of a solution.
- (b) The placement of the queens corresponding to the solution (2, 4, 1,3).
- (c) The placement of the queens corresponding to the solution (3, 1, 4, 2).

Q					
		Q			
	Q				
(a)					

Example: crossword puzzle

• Variables: x₁, ..., x₁₃

Domains: letters

Constraints: words from

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	

{HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US}

Example: Sudoku (constraint propagation)

Constraint propagation

		2	4		6			
8	6	5	1			2		
	1				8	6		9
9				4		8	6	
	4	7				1	9	
	5	8		6				3
4		6	9				7	2-3 4-6
		9			4	5	8	1
			3		2	9		

Variables: 81 slots

•Domains = {1,2,3,4,5,6,7,8,9}

•Constraints: •27 not-equal

Each row, column and major block must be all different

"Well posed" if it has unique solution: 27 constraints

Sudoku (inference)

		2	1	5				6
			3	6	8		(1)	
6		8			2			4
		5		2				3
	9	3				5	4	
1				3		6		
3			8			4		7
	8		6	4	3			
5				1	7	9		

Each row, column and major block must be all different "Well posed" if it has unique solution

Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Mathematical background

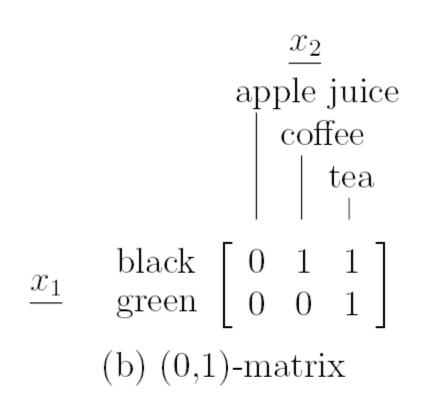
- Sets, domains, tuples
- Relations
- Operations on relations
- Graphs
- Complexity

Two Representations of a relation: R = {(black, coffee), (black, tea), (green, tea)}.

Variables: Drink, color

x_1	x_2
black	coffee
black	tea
green	tea

(a) table



Two Representations of a relation: R = {(black, coffee), (black, tea), (green, tea)}.

Variables: Drink, color

x_1	x_2
black	coffee
black	tea
green	tea

(a) table

Examples

$$egin{array}{c|cccc} x_1 & x_2 & x_3 \\ a & b & c \\ b & b & c \\ c & b & c \\ c & b & s \\ \hline \end{array}$$

$$egin{array}{c|cccc} x_1 & x_2 & x_3 \\ b & b & c \\ c & b & c \\ c & n & n \\ \end{array}$$

(a) Relation R

- (b) Relation R'
- (c) Relation R''

Operations with relations

- Intersection
- Union
- Difference
- Selection
- Projection
- Join
- Composition

Relations are local functions

- Relations specify Local functions.
- A general function

$$f: \prod_{x_i \in Y} D_i \to A$$

where

$$scope(f) = Y \subseteq X$$
: scope of function f

A: is a set of valuations

In a relation A ={false,true}, telling if the tuple is in or out of the relation.

In constraint networks: functions are boolean

X_1	X_2	f	Le	\mathbf{x}_1	\mathbf{X}_{2}
а	а	true	relation	a	a
а	b	false		b	b
b	a	false			
b	b	true	Fall 2022		

35

Set operations: intersection, union, difference on relations.

x_1	x_2	x_3
a	b	c
b	b	c
\mathbf{c}	b	c
\mathbf{c}	b	\mathbf{s}

$$\begin{array}{c|ccc} x_1 & x_2 & x_3 \\ \hline b & b & c \\ c & b & c \\ c & n & n \\ \end{array}$$

$$\begin{array}{c|cccc} x_2 & x_3 & x_4 \\ \hline a & a & 1 \\ b & c & 2 \\ b & c & 3 \\ \end{array}$$

(a) Relation R

(b) Relation
$$R'$$

(c) Relation
$$R''$$

$$\begin{array}{c|cccc}
x_1 & x_2 & x_3 \\
b & b & c \\
c & b & c
\end{array}$$

$$\begin{array}{c|ccc} x_1 & x_2 & x_3 \\ \hline a & b & c \\ b & b & c \\ c & b & c \\ c & b & s \\ c & n & n \\ \end{array}$$

$$\begin{array}{c|ccc}
x_1 & x_2 & x_3 \\
\hline
a & b & c \\
c & b & s
\end{array}$$

(a)
$$R \cap R'$$

(b)
$$R \cup R'$$

(b)
$$R - R'$$

Selection, projection, join

x_1	x_2	x_3
a	b	c
b	b	С
$^{\mathrm{c}}$	b	c
\mathbf{c}	b	\mathbf{s}

$$\begin{array}{c|ccc} x_1 & x_2 & x_3 \\ \hline b & b & c \\ c & b & c \\ c & n & n \\ \hline \end{array}$$

$$\begin{array}{c|ccc}
x_2 & x_3 & x_4 \\
\hline
a & a & 1 \\
b & c & 2 \\
b & c & 3
\end{array}$$

(a) Relation
$$R$$

(b) Relation
$$R'$$

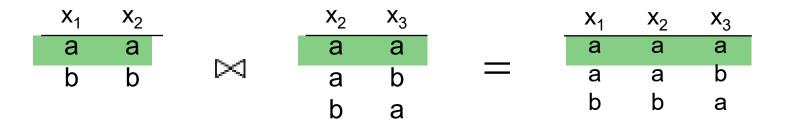
(c) Relation
$$R''$$

$$\begin{array}{c|cccc}
x_1 & x_2 & x_3 \\
b & b & c \\
c & b & c
\end{array}$$

$$\begin{array}{c|cc} x_2 & x_3 \\ \hline b & c \\ n & n \end{array}$$

$$\begin{array}{c|ccccc} x_1 & x_2 & x_3 & x_4 \\ \hline b & b & c & 2 \\ b & b & c & 3 \\ c & b & c & 2 \\ c & b & c & 3 \end{array}$$

(a)
$$\sigma_{x_3=c}(R')$$


(a)
$$\sigma_{x_3=c}(R')$$
 (b) $\pi_{\{x_2,x_3\}}(R')$

(c)
$$R' \bowtie R''$$

37 Fall 2022

The join and the logical "and"

Join:

Logical AND: $f \wedge g$

								x ₁	x_2	\mathbf{x}_3	l n
		ı £				l a.	-	а	а	а	true
X ₁	X ₂	T	_	X ₂	X ₃	9		а	а	b	true
а	a	true		a	a	true		а	b	а	false
а	b	false	\wedge	a	b	true	_	а	b	b	false
b	a	false	, (b	а	true		b	а	а	false
b	b	true		b	b	false		b	а	b	false
						1		b	b	а	true
					Fal	l 2022		b	b	b	false ₃₈

Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints/ Languages
- **✓** Constraint graphs
- √ The binary Constraint Networks properties

Modeling; Representing a problems

- If a CSP M = <X,D,C> represents a real problem P, then every solution of M corresponds to a solution of P and every solution of P can be derived from at least one solution of M
- The variables and values of M represent entities in P
- The constraints of M ensure the correspondence between solutions
- The aim is to find a model M that can be solved as quickly as possible
- goal of modelling: choose a set of variables and values that allows the constraints to be expressed easily and concisely

Example: satisfiability

Given a proposition theory

$$\varphi = \{(A \lor B), (C \lor \neg B)\}$$
 does it have a model?

Can it be encoded as a constraint network?

Variables: {A, B, C}

Domains: $D_A = D_B = D_C = \{0, 1\}$

Relations:

 A
 B
 B
 C

 0
 1
 0
 0

 1
 0
 0
 1

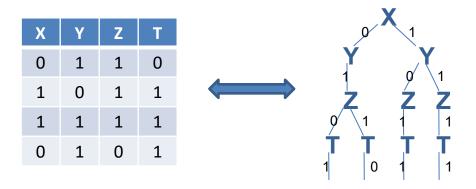
 1
 1
 1
 1

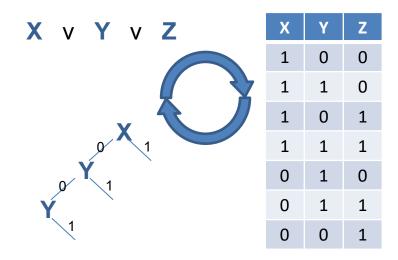
Constraint's representations

Relation: allowed tuples

• Algebraic expression:

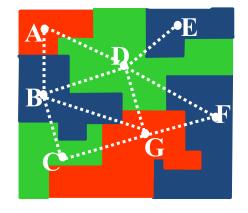
$$X + Y^2 \le 10, X \ne Y$$


• Propositional formula:


$$(a \lor b) \rightarrow \neg c$$

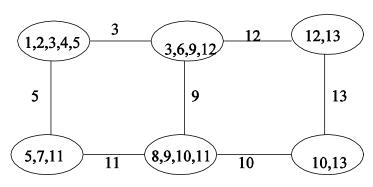
- A decision tree, a procedure
- Semantics: by a relation

A decision tree or a neural network


Decision tree representations

Outline

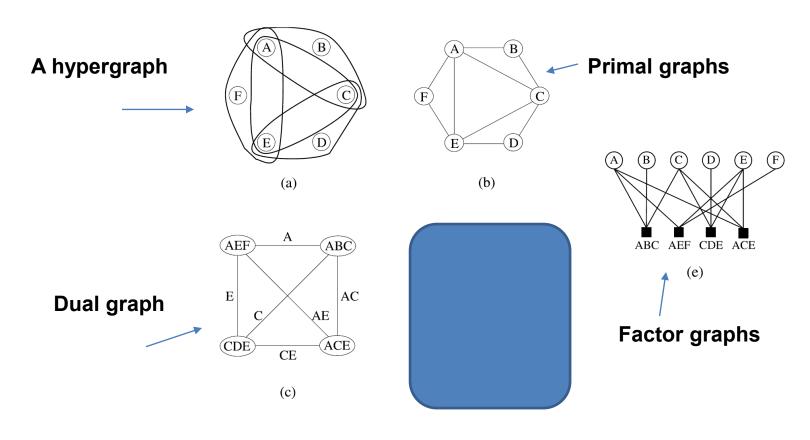
- ✓ Motivation, applications, history
- ✓ CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties


Constraint graphs:

Primal, Dual and Hypergraphs

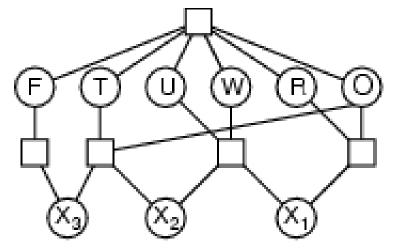
- •A (primal) constraint graph: a node per variable, arcs connect constrained variables.
- •A dual constraint graph: a node per constraint's scope, an arc connect nodes sharing variables =hypergraph

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	



(a)

(b) $R\{1,2,3,4,5\} = \{(H,O,S,E,S), (L,A,S,E,R), (S,H,E,E,T), (S,N,A,I,L), (S,T,E,E,R)\}$ $R\{3,6,9,12\} = \{(A,L,S,O), (E,A,R,N), (H,I,K,E), (I,R,O,N), (S,A,M,E)\}$ $R\{5,7,11\} = \{(E,A,T), (L,E,T), (R,U,N), (S,U,N), (T,E,N), (Y,E,S)\}$


Graph concepts Reviews:

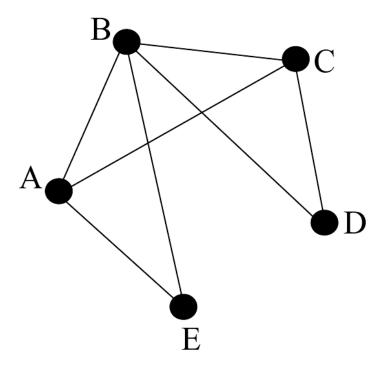
Hyper Graphs and Dual Graphs

Definition 2.1.1 (hypergraph) A hypergraph is a structure H = (V, S) that consists of vertices $V = \{v_1, ..., v_n\}$ and a set of subsets of these vertices $S = \{S_1, ..., S_l\}$

Example: cryptarithmetic

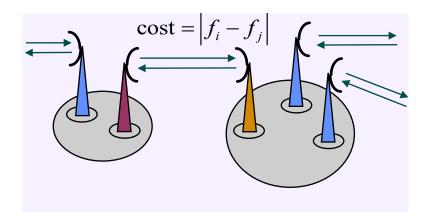
Variables: $F T U W R O X_1 X_2 X_3$

Domains: {0,1,2,3,4,5,6,7,8,9}


Constraints: Alldiff (F,T,U,W,R,O)

$$O + O = R + 10 \cdot X_1$$

 $X_1 + W + W = U + 10 \cdot X_2$
 $X_2 + T + T = O + 10 \cdot X_3$
 $X_3 = F, T \neq 0, F \neq 0$

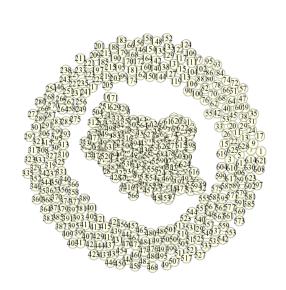

What is the primal graph? What is the dual graph?

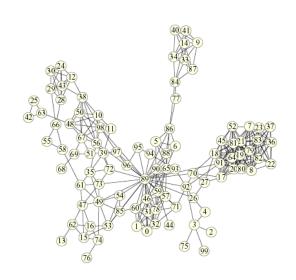
Propositional satisfiability

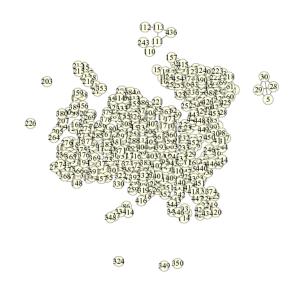
 $\varphi = \{(\neg C), (A \lor B \lor C), (\neg A \lor B \lor E), (\neg B \lor C \lor D)\}.$

Example: radio link assignment

Given a telecommunication network (where each communication link has various antenas), assign a frequency to each antenna in such a way that all antennas may operate together without noticeable interference.


Encoding?


Variables: one for each antenna


Domains: the set of available frequencies

Constraints: the ones referring to the antennas in the same communication link

Constraint graphs, 3 instances of radio frequency assignment in CELAR's benchmark

Example: a scheduling problem

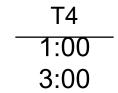
Five tasks: T1, T2, T3, T4, T5

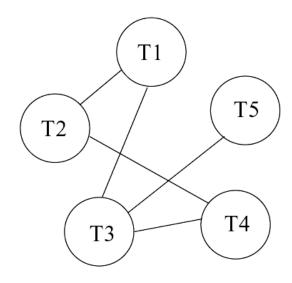
Each one takes one hour to complete

The tasks may start at 1:00, 2:00 or 3:00

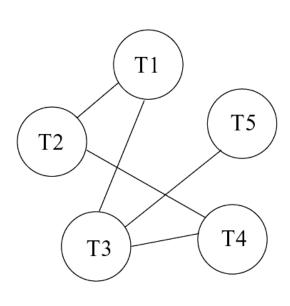
Requirements:

T1 must start after T3

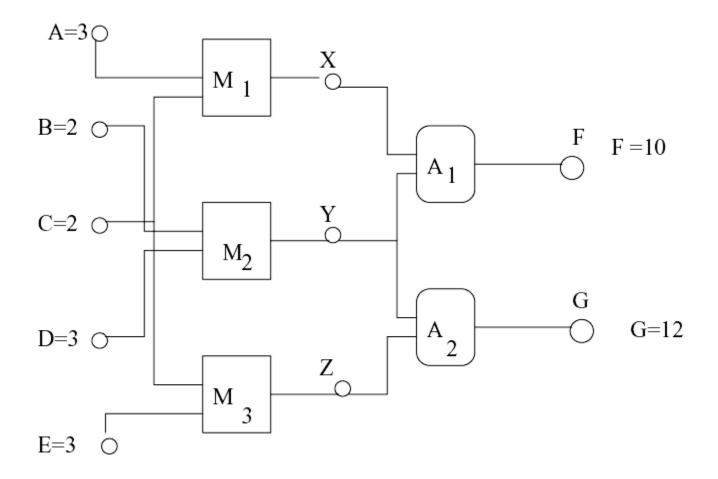

T3 must start before T4 and after T5


T2 cannot execute at the same time as T1 or T4

T4 cannot start at 2:00


Variables: one for each task

Domains: $D_{T1} = D_{T2} = D_{T3} = D_{T3} = \{1:00, 2:00, 3:00\}$

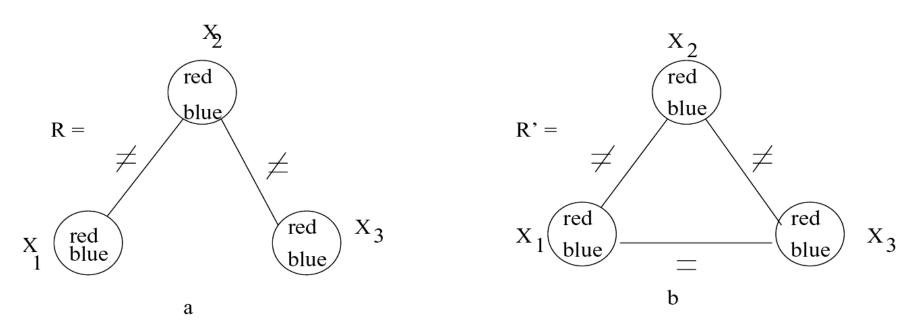


The constraint graph and relations of scheduling problem


```
Unary constraint
D_{T4} = \{1:00, 3:00\}
Binary constraints
R_{\{T1,T2\}}: {(1:00,2:00), (1:00,3:00), (2:00,1:00),
          (2:00,3:00), (3:00,1:00), (3:00,2:00)
               \{(2:00,1:00), (3:00,1:00),
R_{\{T1,T3\}}:
(3:00,2:00)
R_{T2,T4}: {(1:00,2:00), (1:00,3:00), (2:00,1:00),
          (2:00,3:00), (3:00,1:00), (3:00,2:00)
                \{(1:00,2:00), (1:00,3:00),\}
R_{\{T3,T4\}}:
(2:00,3:00)
                  \{(2:00,1:00),
                                     (3:00,1:00),
R_{\{T3,T5\}}:
(3:00,2:00)
```

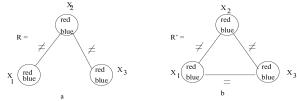
A combinatorial circuit M a multiplier, A is an adder

Outline


- ✓ Motivation, applications, history
- ✓ CSP: Definition, and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties


Binary constraint networks

A graph \Re to be colored by two colors, an equivalent representation \Re ' having a newly inferred constraint between x1 and x3.

Equivalence and deduction with constraints (composition)

Composition of relations (Montanari'74)

Definition 2.3.2 (composition) Given two binary or unary constraints R_{xy} and R_{yz} , the composition $R_{xy} \cdot R_{yz}$ generates the binary relation R_{xz} defined by:

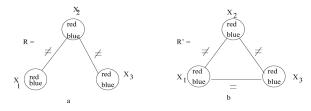
$$R_{xz} = \{(a,b) | a \in D_x, b \in D_z, \exists c \in D_y \text{ s.t. } (a,c) \in R_{xy} \text{ and } (c,b) \in R_{yz} \}$$

An operational definition of composition by Join-project

$$R_{xz} = R_{xy} \cdot R_{yz} = \pi_{\{x,z\}} (R_{xy} \bowtie R_{yz}).$$

In Figure 2.12a, we deduced that $R'_{13} = \pi_{\{x_1,x_3\}}(R_{12} \bowtie R_{23}) = \{(red, red), (blue, blue)\},\$

Composition of relations (Montanari'74)


Bit-matrix operation: matrix multiplication

Example 2.3.3 Continuing with our simple graph-coloring example, the two inequality constraints can be expressed as 2×2 matrices having zeros along the main diagonal.

$$R_{12} = \begin{pmatrix} & red & blue \\ \hline red & 0 & 1 \\ blue & 1 & 0 \end{pmatrix} \qquad R_{23} = \begin{pmatrix} & red & blue \\ \hline red & 0 & 1 \\ blue & 1 & 0 \end{pmatrix}$$

Multiplying two such matrices yields the following two-dimensional identity matrix:

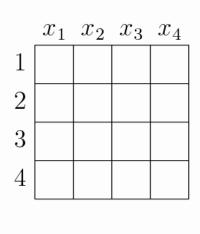
$$R_{12} \cdot R_{23} = R_{13} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{red & blue}{1 & 0} \\ blue & 0 & 1 \end{pmatrix}$$

Equivalence, redundancy, composition

- Equivalence: Two constraint networks are equivalent if they have the same set of solutions.
- Composition in matrix notation

$$R_{\chi z} = R_{\chi y} \cdot R_{yz}$$

Composition in relational operation


$$R_{xz} = \pi_{xz}(R_{xy} \bowtie R_{yz})$$

Relations vs networks

- Can we represent by binary constraint networks the relations
- $R(x_1, x_2, x_3) = \{(0,0,0)(0,1,1)(1,0,1)(1,1,0)\}$
- $R(x_1, x_2, x_3, x_4) = \{(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)\}$
- Number of relations: 2^{k^n}
- Number of networks: $2^{n^2k^2}$
- Most relations cannot be represented by binary constraint networks
- Most relations cannot be expressed by binary networks but they can be approximated by them.

The N-queens constraint network is there a tighter network?

The network has four variables, all with domains $Di = \{1, 2, 3, 4\}$. (a) The labeled chess board. (b) The constraints between variables.

(a)

$$R_{12} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{13} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{14} = \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4)$$

$$(4,2), (4,3)\}$$

$$R_{23} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

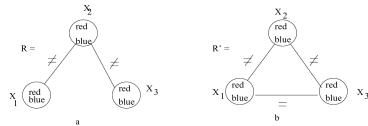
$$R_{24} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{34} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$
(b)

Solutions are: (2,4,1,3) (3,1,4,2)

The projection networks

- The projection network of a relation is obtained by projecting it onto each pair of its variables (yielding a binary network).
- Relation = $\{(1,1,2)(1,2,2)(1,2,1)\}$
 - What is the projection network?
- What is the relationship between a relation and its projection network? $\frac{x_1 | x_2 | x_3}{1 | 1 | 2}$ $\frac{x_1}{1}$
- $R = \{(1,1,2)(1,2,2)(2,1,3)(2,2,2)\}$
- $\begin{pmatrix} 2 & 1 & 3 \\ 2 & 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 3 \end{pmatrix}$ ection network? $\begin{pmatrix} 2 & 1 & 3 \\ 2 & 2 & 3 \end{pmatrix}$


• What are the solutions of its projection network? $\frac{2}{2} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \frac{3}{2}$

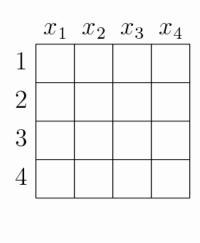
Projection network (continued)

- **Theorem**: Every relation is included in the set of solutions of its projection network.
- **Theorem**: The projection network is the tightest upper bound binary networks representation of the relation.

Therefore, If a network cannot be represented by its projection network it has no binary network representation

Partial order between networks, The minimal network

Definition 2.3.10 Given two binary networks, \mathcal{R}' and \mathcal{R} , on the same set of variables $x_1, ..., x_n$, \mathcal{R}' is at least as tight as \mathcal{R} iff for every i and j, $R'_{ij} \subseteq R_{ij}$.


- •An intersection of two networks is tighter (as tight) than both
- •An intersection of two equivalent networks is equivalent to both

Definition: The minimal network is the intersection of all equivalent networks

Theorem: The projection network is identical to the minimal network

The N-queens constraint network

The network has four variables, all with domains $Di = \{1, 2, 3, 4\}$. (a) The labeled chess board. (b) The constraints between variables.

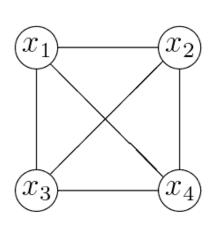
(a)

$$R_{12} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{13} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{14} = \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4)$$

$$(4,2), (4,3)\}$$


$$R_{23} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{24} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{34} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$
(b)

The 4-queens constraint network:

- (a) The constraint graph. (b) The minimal binary constraints.
- (c) The minimal unary constraints (the domains).

$$M_{12} = \{(2,4), (3,1)\}$$

$$M_{13} = \{(2,1), (3,4)\}$$

$$M_{14} = \{(2,3), (3,2)\}$$

$$M_{23} = \{(1,4), (4,1)\}$$

$$M_{24} = \{(1,2), (4,3)\}$$

$$M_{34} = \{(1,3), (4,2)\}$$

$$D_1 = \{23\}$$
 $D_2 = \{1,4\}$
 $D_3 = \{1,4\}$
 $D_4 = \{2,3\}$

(c)

Solutions are: (2,4,1,3) (3,1,4,2)

Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definition, and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

MiniZinc Tutorial

CS 275: Constraint Networks

MiniZinc References & More Examples

The minizinc handbook:

```
https://www.minizinc.org/doc-
2.5.5/en/index.html
```

Lecture 1:

```
https://www.ics.uci.edu/~dechter/courses/ics
-275/fall-2022/
```