Outline (from last lecture)

e Converting a CSP iThe search tree for CSPs, Variable ordering and
consistency level

e Look-ahead for value selection:
Forward checking,

Full-arc-consistency,

partial look-ahead,

maintaining arc-consistency
e Dynamic Variable ordering (DVO, DVFC)

 Search for Satisfiability
e Converting a CSP into a SAT problem

Fall 2022

Look-ahead for sat: DPLL

(Davis-Putnam, Logeman and Laveland, 1962)

DPLL(y)
Input: A cnf theory ¢
Output: A decision of whether ¢ is satisfiable.
1. Unit_propagate();
2. If the empty clause is generated, return(false);
3. Else. if all variables are assigned. return(¢rue);
4. Else
5. () = some unassigned variable:
6 return(DPLL{ o A Q) v

DPLL{(p A Q))

Figure 5.13: The DPLL Procedure

Fall 2022

On Unit Resolution

To incorporate unit resolution into our satisfiability algorithms, we will intro-
duce a function UNIT-RESOLUTION, which applies to a CNF A and returns two
results:

e I: a set of literals that were either present as unit clauses in A, or were
derived from A by unit resolution.
e [': a new CNF which results from conditioning A on literals 1.

For example, if the CNF

A ={{~A,-B}, {B,C}, {-C,D}, {A} },
then I = {A,-B,C, D} and I' = {}. Moreover, if

A= {{~A,-B}, {B.C}, {=C, D}, {C} },

then I = {C,D} and I' = { {—~A,-~B} }. Unit resolution is a very important
component of search-based SAT solving algorithms. Part 1, Chapter 4 discusses
in details the modern implementation of unit resolution emploved by many SAT
solvers of this type.

Fall 2022

ronological Backtracking

Chapter 3. Complete Algorithms 111

A

Figure 3.6. A termination tree. Assignments shown next to nodes are derived using unit
resolution.

To consider a concrete example, let us look at how standard DPLL behaves
on the following CNF, assuming a variable ordering of A, B,C, XY, Z:

.{A,B)

{B.C}

{~A,-X, Y}

{-AX, 7} (3.1)
A{~A,-Y, Z)

A{~AX, -7}

N {ﬂA. =Y, ﬂZ}

W LD D e

& o

Fall 2022

Reduction from CSP to SAT

Example: CSP into SAT

Notation: variable-value pair = vvp

e VVP — term
« V,={a, b, c,d}yields x, = (V,, a), x,=(V,, b), x3=(V,, ¢), x, =(V, d),
« V,={a, b, c}yields x5 = (V,, a), xg = (V, b), x, = (V,,c).

« The vvp’s of a variable — disjunction of terms
. V,={a, b, c, d}yields

« (How do we express: “At most one VVP per variable

o

Fall 2022

Reduction from CSP to SAT

Example: CSP into SAT

Notation: variable-value pair = vvp

e VVP — term
« V,={a, b, c,d}yields x, = (V,, a), x,=(V,, b), x3=(V,, ¢), x, =(V, d),
« V,={a, b, c}yields x5 = (V,, a), xg = (V, b), x, = (V,,c).

« The vvp’s of a variable — disjunction of terms
. V,={a, b, c, d}yields

« (How do we express: “At most one VVP per variable

o

Fall 2022

CSP into SAT (cont.)

Constraint:

1. Way 1: Each inconsistent tuple — one disjunctive clause
. For example: how many?

2. Way 2:
a) Consistent tuple — conjunction of terms
b) Each constraint — disjunction of these conjunctions

— transform into conjunctive normal form (CNF)

Question: find a truth assignment of the Boolean variables such that the
sentence is satisfied

Fall 2022

Outline

» The search tree for CSPs, Variable ordering and consistency level

» Look-ahead for value selection:
e Forward checking,
e Full-arc-consistency,
 partial look-ahead,
e maintaining arc-consistency

e Dynamic Variable ordering (DVO, DVFC)
 Search for Satisfiability
e Converting a CSP into a SAT problem

Fall 2022

CompSci 275, ConsTRAINT Networks

Rina Dechter, Fall 2022

General Search: Look-back scuemes
Chapter 6

Fall 2022

Outline

e Look-back strategies
e Backjumping: Gaschnig, Graph-based, Conflict-directed

Fall 2022

10

Look-back:
Backjumping and Learning

e Backjumping:
 In deadends, go back to the
most recent culprit.

e Learning:
e constraint-recording:

e no-good recording.
« good-recording

Fall 2022

11

Backjumping

Figure 6.1: A modified coloring problem.

o (X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b})
e (r,b,b,b,g,r) conflict set of x7

e (r,-,b,b,g,-) conflict-set of x7

e (r,-,b,-,-,-,-) minimal conflict-set of x7

- Leaf deadend: (r,b,b,b,g,r)

« Every conflict-set is a no-good

Fall 2022 12

Backjumping

Figure 6.1: A modified coloring problem.

e (X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b})
e (r,b,b,b,g,r) conflict set of x7

e (r,-,b,b,g,-) conflict-set of x7

e (r,-,b,-,-,-,-) minimal conflict-set of x7
 Leaf deadend: (r,b,b,b,g,r)

« Every conflict-set is a no-good

Fall 2022

13

Flavor of Gaschnig’s jumps
only at leaf-dead-ends

Internal dead-ends: dead-ends that are non-leaf

Figure 6.1: A modified coloring problem.

X b g /
X g b b g
b b
b] 7. ',,.
v 4 Y 4
) \ / /
b Y/ b I ! b & ! N
- 4 1 1
V4 T4
4 ! b 1 i
g lg h | e Q’ - 1} Q’ 1 Q
f 1 € C PR v € v €
' \ ’ \ \
/ N\ /] \ rd NN L > \
rot g ot g r t r t r i
X
! / b b

Example 6.3.1 In Figure 6.4, all of the backjnmps illustrated lead to internal dead-ends.

except for the jump back to ({z,, green), (x,, blue), {x3, red), (x4, blue)). because this is

the only case where another value exists in the domain of the eulprit variable. O
Fall 2022 14

Flavor of Gaschnig’s jumps
only at leaf-dead-ends

Internal dead-ends: dead-ends that are non-leaf

X b

oQ

b

Example 6.3.1 In Figure 6.4, all of the backjnmps illustrated lead to internal dead-ends.

except for the jump back to ({z, green}, (zq, blue}, (x3,red), (x4, blue}). because this is

the only case where another value exists in the domain of the eulprit variable. a
Fall 2022 15

Backjumping styles

« Jump at leaf only (Gaschnig 1977)
e Context-based

» Graph-based (Dechter, 1990)
« Jumps at leaf and internal dead-ends, graph information

« Conflict-directed (Prosser 1993)
« Context-based, jumps at leaf and internal dead-ends

Fall 2022

16

Conflict Analysis

Figure 6.1: A modified coloring problem.

sreen «Conflict set
| eaf deadend
*Nogood
Not searched by . :
blue Gaschnig’s Safe jump

backjumping

green /

[1]

green

blue

red teal

red blue blue

Fall 2022 17

Conflict-set analysis

Definition 6.1.1 (conflict set) Let a = (a;,,...,a;,) be a consistent instantiation of an
arbitrary subset of variables, and let x be a variable not yet instantiated. If there is no
value b in the domain of x such that (a,r = b) is consistent, we say that a is a conflict
set of x, or that a conflicts with variable x. If, in addition, a does not contain a subtuple
that 1s i conflict with x, a 1s called a minimal conflict set of x.

Definition 6.1.2 (leaf dead-end) Let a; = (ay,...,a;) be a consistent tuple. If a; is in
conflict with x;,q, it is called a leaf dead-end.

Definition 6.1.3 (no-good) Given a network R = (X, D,C), any partial instantiation
a that does not appear in any solution of R is called a no-good. Minimal no-goods have
no no-good subtuples.

Definition 6.1.5 (safe jump) Let a; = (a4, ...,a;) be a leaf dead-end state. We say that
xj, where 7 <1, is safe if the partial instantiation a; = (a1, ...,a;) is a no-good, namely,
it cannot be extended to a solution.

Fall 2022 18

Gaschnig’s backjumping:

Culprit variable

Not searched by
Gaschnig’s
backjumping

Figure 6.1: A modified coloring problem.

Definition 6.2.1 (culprit variable) Let a; = (a4, ...,a;) be a leaf dead-end. The culprit
index relative to a; is defined by b = min{j < i| a; conflicts with z;11}. We define the
culprit variable of a; to be xy.

*> Ifa; is a leaf deadend and x,, its culprit variable, then a, is a
safe backjump destination and a; , j<b is not.
The culprit of x (r,b,b,b,q,r) is (r,b,b) = x

Fall 2022 19

Gaschnig’s backjumping
implementation [1979]

Gaschnig uses a marking technique to compute
culprit.

Each variable x; maintains a pointer (latest;) to the
latest ancestor incompatible with any of its values.
While forward generating a;, keep array latest;,

1<=j<=n, of pointers to the last value conflicted with
some value of x;. The algorithm jumps from a leaf-

dead-end x;,; back to latest; . which is its culprit.

Fall 2022

Gaschnig’s backjumping

procedure GASCHNIG'S-BACKJUMPING
Input: A constraint network R = (X, D, C)
Output: Either a solution. or a decision that the network is inconsistent.

i1 (initialize variable counter)
D —D; {copy domain)
latest; — 0 (initialize pointer to culprit)

while 1 <i<n
instantiate x; — SELECTVALUE-GBJ

if z; is null (no value was returned)
i — latest; (backjump)

else
t—i+1
D — D,

latest; — 0
end while
ifi=0
return “inconsistent”
else
return instantiated values of {z,... ,z,}
end procedure

procedure SELECTVALUE-GBIJ
while D] is not empty
sclect an arbitrary element @ € Dj, and remove a from D
consistent — true
k—1
while k < i and consistent
if k > latest;
latest; — k
if not CONSISTENT(@;, z; = a)
consistent — false
else
k—k+1
end while
if consistent
return a
end while
return null (no consistent value)
end procedure

Figure 6.3: Gaschnig’'s backjumping algorithm.

Example of Gaschnig’s backjump

X4 red
X5 green
X3
Not searched by
Xy blue Gaschnig’s
backjumping
Xs blue green
X6 red L1 feal
green
X7

red blue \ red blue

Example 6.2.3 Consider the problem in Figure 6.1 and the order d;. At the dead-end
for &7 that results from the partial instantiation (< zy,red >, < xq, blue >, < z3, blue >
< x4, blue >, < x5, green >, < zg, 1ed >). latest; = 3. because 7 = red was ruled out
by < z1.1ed >. 7 = blue was ruled out by < zs.blue >. and no later variable had to
be examined. On returning to zz. the algorithm finds no further values to try (D% = @).
5 3 3
Since latests = 2. the next variable examined will be 5. Thus we see the algorithm’s
3 2 =)
ability to backjump at leaf dead-ends. On subsequent dead-ends. as in zs. it goes back to
its preceding variable only. An example of the algorithm’s practice of pruning the search
space is given in Figure 6.2. m]

22

Properties

e Gaschnig’s backjumping implements only safe and maximal
backjumps in leaf-deadends.

Fall 2022

23

Gaschnig jumps only at

leaf-dead-ends Internal
dead-ends: dead-ends that are non-leaf

Figure 6.1: A modified coloring problem.

X4 b o
€]
X5 e b b g
b r bap Dap
4 L4
U4 4
,) [[
) o/ b / ! ha ! hap
» { {
s ’ I I
U4 U4
’] b 1 1
s g b g g - L B
C ' [- l " ‘ [‘ [
' \ ¢ \ \
! f X i e BHE ::::::: ! t \\ B B \ \
rotog r ri e r t r t r i

Example 6.3.1 In Figure 6.4, all of the backjumps illustrated lead to internal dead-ends.
except for the jump back to ({z, green), (xq, blue}, (x3,red), (x4, blue)). because this is
the only case where another value exists in the domain of the enlprit variable. O

Fall 2022

24

Backjumping styles

» Graph-based (Dechter, 1990)
« Jumps at leaf and internal dead-ends, graph information

Fall 2022

25

Graph-based backjumping scenarios
Internal deadend at X4

e Scenario 1, deadend at x4:
e Scenario 2: deadend at x5:
e Scenario 3: deadend at x7:

e Scenario 4: deadend at x6:

@) (b))

Fall 2022

Graph-based backjumping

« Uses only graph information to find culprit
e Jumps both at leaf and at internal dead-ends

« Whenever a deadend occurs at x, it jumps to the most recent
variable y connected to x in the graph. If y is an internal deadend it
jumps back further to the most recent variable connected to x ory.

e The analysis of conflict is approximated by the graph.
e Graph-based algorithm provide graph-theoretic bounds.

Fall 2022 27

Ancestors and parents

anc(x;) = {xsx3x4x1}

p(x;) =5
p(r,b,b,b,g,r) = x¢

(d)

Definition 6.3.2 (ancestors, parent) Given a constrammt graph and an ordering of the
nodes d. the ancestor set of variable x. denoted anc(x). 1s the subset of the variables that
precede and are connected to x. The parent of x. denoted p(x). s the most recent {or
latest) variable in anc(z). If a3 = (@1, ...,a;) s a leaf dead-end, we equate anc(a;) with
anc(xiy,). and pla;) with p(x;).

Fall 2022 28

Internal deadends analysis

Definition 6.3.5 (session) We say that backtracking invisits x; of it processes x; coming
from a varwble carlier in the ordering. The session of x; starts upon the muvisiting of x;
and ends when retracting to a varwable that precedes x;. At a gqiven state of the search
where variable x; 1s already instantiated, the current session of x; s the set of variables
processed by the algorithm since the most recent invisit to x;. The current session of x;
wmcludes x; and therefore the session of a leaf dead-end variable has a single variable.

Definition 6.3.6 (relevant dead-ends) The relevant dead-ends of x; s session are de-
fined recursively as follows. The relevant dead-ends of a leaf dead-end ;. denoted r(z;).
15 ;. If z; 25 wariable to which the algorithm retracted from x;. then the relevant-dead-

induced ancestor set of ; relative to Y . Li(Y), us the union of all Y ’s ancestors. restricted
to variables that precede ;. Formally. L(Y) = anc(Y)M {zy, ...x; 1}. The induced parent
of x; relative to Y., By(Y). us the latest variable in L(Y). We call Bi(Y) the graph-based
culpribt of x;. 29

Graph-based backjumping scenarios
Internal deadend at X4

What are the relevant deadends?

e Scenario 1’ deadend at x4: What is the induced-parent set.

e Scenario 2: deadend at x5:
e Scenario 3: deadend at x7:

e Scenario 4: deadend at x6:

Figure 6.1: A modified coloring problem.

@) (b))

Fall 2022 30

Graph-based backjumping scenarios
Internal deadend at X4

Example 6.3.9 Consider again the ordered graph in Figure 6.6a, and let x4 be a dead-
end variable. If z4 is a leaf dead-end, then Y = {x4}, and x; is the sole member in its
induced ancestor set I,(Y"). The algorithm may jump safely to xy. If x4 is an internal dead-
end with Y = {xy, x5, 14}, the induced ancestor set of xy is Iy({xy, x5, 26}) = {21, 22},
and the algorithm can safely jump to xo. However, if Y = {zy4, x5, x7}, the corresponding
induced parent set I4({xy,rs,r7}) = {1, 23}, and upon encountering a dead-end at x,
the algorithm should retract to x3. If x5 1s also an internal dead-end the algorithm retracts
to xy since I3({x3, x4, x5, 07}) = {x1}. If, however, Y = {uy, x5, r¢, x7}, when a dead-end
at x4 1s encountered (we could have a dead-end at x7, jump back to x5, go forward and
jump back again at rg, and yet again at x5), then Iy({z4, x5, x4, 27}) = {21, 12, 23}. The
algorithm then retracts to x3, and if it 1s a dead-end 1t will retract further to x5, since
I3({z3, x4, x5, 06, 27}) = {1, 29}, . |

X3
Xe Xs
Xs X6
X4 X5
X3 X4
X5 X

(a) ©) 31

Graph-based backjumping algorithm,
but we need to jump at internal deadends too

procedure GRAPH-BASED-BACKJUMPING
Input: A counstraint network R = (X, D,C)
Output: Either a solution. or a decision that the network is inconsistent.

compute anc(z;) for each z{see Definition 6.3.2 in text)

i—1 (initialize variable counter)
D, — D, (copy domain)
I; — anc(z;) (copy of anc() that can change)

while 1 <i<n
instantiate x; — SELECTVALUE

if z; is null (no value was returned)
B s . When would not all variables
i —latest index in I; (backjump) .
Tegsliey Toseonsofupd) In the session above

else X_i are relevant deadends?
Lt read example 6.6

I; — anc(z;)
end while
ifi=0
return “inconsistent”
else
return instantiated values of {z1,... ,zn}
end procedure

procedure SELECTVALUE (same as BACKTRACKING's)
while D] is not empty
select an arbitrary element e € D}, and remove a from D
if CONSISTENT(@; 1,%; = a)
return a
end while
return null (no consistent value)
end procedure

32
Figure 6.5: The graph-based backjumping algorithm.

Properties of graph-based backjumping

Algorithm graph-based backjumping jumps back at
any deadend variable as far as graph-based
information allows.

For each variable, the algorithm maintains the

Induced-ancestor set [; relative the relevant dead-
ends in its current session.

The size of the induced ancestor set is at most w*(d).

Fall 2022 33

Conflict-directed backjumping
(Prosser 1990)

Extend Gaschnig’s backjump to internal dead-ends.
Exploits information gathered during search.

For each variable the algorithm maintains an induced
jumpback set, and jumps to most recent one.
Use the following concepts:

An ordering over variables induced a strict ordering
between constraints: R;<R,<...R;

Use earliest minimal consflict-set (emc(x;,;)) of a
deadend.

Define the jumpback set of a deadend

Fall 2022 34

Example of conflict-directed
backjumping

Figure 6.1: A modified coloring problem.

Example 6.4.5 Consider the problem of Figure 6.1 using ordering dy = (z1,... .x7).
Given the dead-end at z; and the assignment ag = (blue, green, red. red, blue, red). the
eme set is (< xq, blue >, < x3,red >). since it accounts for eliminating all the values of z+.
Therefore. algorithm conflict-directed backjumping jumps to xz. Since z3 is an internal
dead-end whose own var — eme set is {x; }. the jumpback set of zz includes just z,. and
the algorithm jumps again. this time back to z,. O

Fall 2022 35

Properties of conflic-directed
backjumping

e Given a dead-end , , the latest variable in its jumpback set
is the earliest variable to which it is safe to jump.

e This is the culprit.

o Algorithm conflict-directed backtracking jumps back to the
latest variable in the dead-end jumpback set and is therefore
safe and maximal.

Fall 2022 36

Conflict-directed backjumping

procedure CONFLICT-DIRECTED-BACKJUNMPING
Input: A constraint network R = (X, D, C).
Output: Either a solution. or a decision that the network is inconsistent.

i—1 (initialize variable counter)
D; — D; {copy domain)
Ji—0 {initialize conflict set)

while 1 <i<n
instantiate x; «— SELECTVALUE-CBJ
if z; is null (no value was returned)
prev — 1
i — index of last variable in J; (backjump)
Ji — J; U Jiprev — {2} (merge conflict sets)

else
i—i+1 (step forward)
D — Dy (reset mutable domain)
Ji—0 {reset conflict set)
end while
ifi=20

return “inconsistent”
else
return instantiated values of {zy,... ,z,}
end procedure

subprocedure SELECTVALUE-CBJ

while D is not empty
seleet an arbitrary element e € D}, and remove a from D]
consistent — true
k—1
while k < i and consistent
if CONSISTENT(@x, z: = @)
k—k+1
else
let Rs be the earliest constraint causing the conflict
add the variables in Rg's scope S. but not z;. to J;
consistent — false
end while
if consistent
return a
end while
return null (no consistent value)
end procedure

Figure 6.7: The conflict-directed backjumping algorithm.

37

Graph-Based backjumping on dFS orderings

x, X3
Xg X3
Xg Xg
X, X

X, X,
X, X7
x, X,

(a) (®) ©
x

Figure 6.1: A modified coloring problem.

(d)

Figure 6.6: Several ordered constraint graphs of the problem in Figure 6.1: (a) along
ordering dy = (x1, 2, T3, T4, Ts, Te, T7). (b) the induced graph along d;. (¢) along ordering
dy = (x1,T7,24, T, T, To, T3). and (d) a DFS spanning tree along ordering ds.

38

Graph-based backjumping on DFS ordering

Rule: Go back to parent. No need to maintain a parent set

6 6 7
6 4
5 1 1

(a) (b) (c)

4 1

o
_‘;

e
o
|

Theorem 6.5.2 Given a DFS ordering of the constramt graph. of f(zx) denotes the DFS
parent of x. then, upon a dead-end at x. f(x) s x's graph-based earliest safe variable for
both leaf and internal dead-ends.

Spanning-tree of a graph;
DFS spanning trees, Pseudo-tree
Pseudo-tree is a spanning tree that does not allow arcs across branches.

Fall 2022 39

Complexity of graph-based backjumping

T; = number of nodes in the AND/OR search space rooted at x;
(level m-i)
Each assignment of a value to x_i generates subproblems:
T;=kbT;_,
T, = k
Solution:

Theorem 6.5.3 When graph-based backjuwmping s performed on a DFS ordering of the
constraint graph. the number of nodes visited is bounded by O((B™k™+ 1)), where b bounds
the branching degree of the DFS tree associated wnth that orderimg. m s its depth and k
s the domain size. The time complexity (measured by the number of consistency checks)
ts O(ek(bk)™). where e is the number of constraints.

Fall 2022 40

Complexity of backjumping
uses pseudo-tree analysis

4 1 6 7 2 4

7 :
)

2 l
(a (C)

Simple: always jump back to parent in pseudo tree
Complexity for csp: exp(tree-depth)
Complexity for csp: exp(w*log n)

Fall 2022

Outline

e Look-back strategies
« Backjumping: Gaschnig, Graph-based, Conflict-directed

e Learning no-goods, constraint recording.
« Shallow and deep learning, graph-based learning

« Look-back for Satisfiability, integration and Empirical evaluation

e Counting, good caching

Fall 2022

42

Look-back: No-good Learning,
Constraint recording

Learning means recording conflict sets
used as constraints to prune future
search space.

* (x=2, x,=2, x3=1, x,=2) is a
dead-end

Conflicts to record:
(x1=2, x,=2, x3=1, x,=2) 4-ary
(x3=1, x,=2) binary
(x4=2) unary

Fall 2022 43

Learning, constraint recording

« Learning means recording conflict sets

« An opportunity to learn is when deadend is discovered.
« Goal of learning is to not discover the same deadends.
e Try to identify small conflict sets

 Learning prunes the search space.

Fall 2022

44

Nogoods explain deadends

Learning means recording explanations to conflicts.
These are implied constraints

(1,2) « Conflicts to record are explanations
(1,3) o (x1=2,x2=2,x3=1,x4=2) 4-ary

e (x1=2,x2=2,x3=1,x4=2)> (x5 #1) and
* (x3=1,x4=2) > (x5 #1)

* (x4=2) > (x5#1)

Fall 2022

45

— ._-_-.-_—-'
. X ra @ PN
,x"':.": .. X 3 bg/ \I\. b‘/ I\. b‘ r b
, . X; bQ r. bQ m > e ® e b‘ 'o bQ r’

{(

(2)(3)(4) (5) (9)
'\ ‘]1.’ X; '@h ‘om ‘o N
(1) (6)
0| X ‘e ‘e ‘m ‘| ‘e
'~.- / (7) (8)
@ x £ 55
(a) (b)

Figure 6.9: The search space explicated by backtracking on the CSP from Figure 6.1,
using the variable ordering (wg, 23, 24, 2, 7, 21, 25) and the value ordering (blue, |
green, teal). Part (a) shows the ordered constraint graph, part (b) illustrates the search
space. The cut lines in (b) indicate branches not explored when graph-based learning is

used.

Fall 2022

.J:x,.-"b.sa.m.h o e bt ainle

(10)

X3, X4

46

Learning issues

e Learning styles

e Graph-based or context-based
«i-bounded, scope-bounded
e Relevance-based

« Non-systematic randomized learning
«Implies time and space overhead
« Applicable to SAT

Fall 2022

Graph-based learning algorithm

procedure GRAPH-BASED-BACKJUMP-LEARNING

instantiate z; — SELECTVALUE

if z; is null (no value was returned)
record a constraint prohibiting a; ,[f;].
prev «— i

(algorithm continues as in Fig. 6.5)

Figure 6.10: Graph-based backjumping learning, modifying CB.J

Fall 2022

48

Deep learning

e Deep learning: recording all and only minimal
conflict sets

e Example:

e Although most accurate, overhead can be
prohibitive: the number of conflict sets in the worst-
case:

Deep learning pioneer

Fall 2022

49

https://medium.com/a-computer-of-ones-own/rina-dechter-deep-learning-pioneer-e7e9ccc96c6e

— ._-_-.-_—-'
. X ra @ PN
,x"':.": .. X 3 bg/ \I\. b‘/ I\. b‘ r b
, . X; bQ r. bQ m > e ® e b‘ 'o bQ r’

{(

(2)(3)(4) (5) (9)
'\ ‘]1.’ X; '@h ‘om ‘o N
(1) (6)
0| X ‘e ‘e ‘m ‘| ‘e
'~.- / (7) (8)
@ x £ 55
(a) (b)

Figure 6.9: The search space explicated by backtracking on the CSP from Figure 6.1,
using the variable ordering (wg, 23, 24, 2, 7, 21, 25) and the value ordering (blue, |
green, teal). Part (a) shows the ordered constraint graph, part (b) illustrates the search
space. The cut lines in (b) indicate branches not explored when graph-based learning is

used.

Fall 2022

.J:x,.-"b.sa.m.h o e bt ainle

(10)

X3, X4

50

Jumpback learning

° ReCO rd th e j um p ba C k aSSign me nt Figure 6.1: A modified coloring problem.

Example- For the problem and ordering of Example i at the first dead-end,

jumpback learning will record the no-good (xy = green, xz = blue, x7 = red). since that tuple

includes the variables in the jumpback set of z;. O
Jumpback set = {x3,x2,x7} e X3,x2,x7
® X 2o il
;N b 3 r b b
ff l‘ll ® x3 ’\. b, ’b r g r
i(. x4 I)Q r. b. r’ - 1 bo '. bQ rQ rg b
{ b b r
’\. | r X, o"’ ”-"-’hi” ® ' -H’-io
(2)(3)(4) (5) 79) 710) b b b
l UM X, '@’ ‘om ‘o ‘e’ b g b
, | ‘ xl e 2L Pa g @ b g r
'= * (7) (8) i
\. X5 O O £O
(a) (b) o

Fiotire 6 O The <cearch enace evnlicated bv baclktraclkine on the C'SP from Fioctire 6 1

Jumpback learning

° ReCO rd th e j um p ba Ck aSSign me nt Figure 6.1: A modified coloring problem.

Example- For the problem and ordering of Example i at the first dead-end,
jumpback learning will record the no-good (xy = green, xz = blue, x7 = red). since that tuple
includes the variables in the jumpback set of z;. O

procedure CONFLICT-DIRECTED-BACKJUMP-LEARNING

instantiate r; — SELECTVALUE-CBIJ

if z; is null (no value was returned)
record a constraint prohibiting @; ,[J;] and corresponding values
prey — i

(algorithm continues as in Fig. 6.7)

Figure 6.11: Conflict-directed bakjump-learning. modifyving CB.]

Fall 2022 52

Bounded and relevance-based learning

Bounding the arity of constraints recorded:

« When bound is i: i-ordered graph-based,i-order jumpback or i-order
deep learning.

« Overhead complexity of i-bounded learning is time and space
exponential in i.

Definition 6.7.3 (i-relevant) A no-good is i-relevant iof it differs from the current par-
tial assignment by at most i variable-value pairs.

Definition 6.7.4 (i'th order relevance-bounded learning) Ani’'th order relevance-
bounded learning scheme maintains only those learned no-goods that are i-relevant.

Fall 2022 53

Complexity of backtrack-learning
for CSP

« The complexity of learning along d is time and space
exponential in w*(d):

The number of dead-ends is bounded by
Number of constraint tests per dead-end are

Space complexity is
Time complexity is

n- depth of tree, e- number of constraints

Fall 2022 54

Non-Systematic randomized learning

e Do search in a random way with interupts, restarts,
unsafe backjumping, but record conflicts.

« Guaranteed completeness.

Fall 2022

Outline

e Look-back strategies

« Backjumping: Gaschnig, Graph-based, Conflict-directed

e Learning no-goods, constraint recording.

« Look-back for Satisfiability, integration and Empirical evaluation
e Counting, good caching

Fall 2022

56

Look-back for SAT

A partial assignment is a set of literals:
A jumpback set if a J-clause:

Upon a leaf deadend of x resolve two clauses, one enforcing x
and one enforcing —x relative to the current assignment

A clause forces x relative to assignment if all the literals in
the clause are negated in

Resolving the two clauses we get a nogood.

If we identify the earliest two clauses we will find the earliest
conflict.

The argument can be extended to internal deadends.

phi = {A,B,X}, {~C,~X}
\ / Assignment= (~A,~B,C,FR 2 X)

{A,B,~C}

Fall 2022

57

Look-back for SAT

procedure SAT-CBJ-LEARN

Input: A CNF theory . assigned variables ¢ over z1,...,#; 1. unassigned variables

X.

Output: Either a solution. or a decision that the network is inconsistent.

L Ji—10

2. Whilel <i<n

3. Select the next variable: z; € X, X — X — {z;}
4 instantiate x; «— SELECTVALUE-CBJ.

5. If z; is null (no value returned). then
6
T

add J;, to (learning)

iprev — index of last variable in J; (backjump)
Ji - resolve(J;;, Jprew) (merge conflict sets)
9. else.

10 i—i+1 (go forward)

1. J; — @ (reset conflict set)

12. Endwhile

13. if i = 0 Return "inconsistent”

14. else. return the set of literals o

end procedure

subplocedule SELECTVALUE-CBJ

If CONSISTENT (o U z;) then return o — o U {z;}

[f CONSISTENT (g U —z;) then return o — o U {—x;}

else,

determine e and 3 the two earliest clauses forcing z; and —z;.
J; — resolve(a, 3).

. Return z; < null (no consistent value)

end procedure

GRQRSED. R

L‘l

Figure 6.12: Algorithm SAT-CBJ-LEARN

58

Integration of algorithms

procedure FC-CBJ
Input: A constraint network R = (X, D, C).
Output: Either a solution. or a decision that the network is inconsistent.

i—1 (initialize variable counter)
call SELECTVARIABLE (determine first variable)
Di—D;forl<i<n (copy all domains)

Ji—0 (initialize conflict set)

while 1 <7< n
instantiate z; «— SELECTVALUE-FC-CBJ
if z; is null (no value was returned)
prev — 1
i — latest index in J; (backjump)
Ji — JiU Jiprev — {x:}
reset each Dy, k > 4. to its value before z; was last instantiated
else
i—it1 (step forward)
call SELECTVARIABLE (determine next variable)
Ji — 10
end while
if1 =10
return “inconsistent”
else
return instantiated values of {zq,... ,z,}
end procedure

3 P, L Raore vy | L SO & g DRV DR G AR AR W b DR o PR 5 i B R e LOCRNEATN U Bk

59

subprocedure SELECTVALUE-FC-CBJ

while D is not empty

select an arbitrary element a € D), and remove a from Dj

empty-domain — false

forallk.i<k <n

for all values b in Dy,
if not CONSISTENT(@; 1,%; =a, T =0b)

let Rs be the earliest constraint causing the conflict
add the variables in Rg's scope S. but not zj. to J;
remove b from Dy,

endfor
if Dy is empty (z; =a leads to a dead-end)
empty-domain — true
endfor
if empty-domain (don’t select a)
reset each Dy, and j, 1 < k < n, to status before a was selected
else

return a
end while
return null (no consistent value)
end subprocedure

Figure 6.14: The SelectValue subprocedure for FC-CBJ.
Fall 2uZ22

60

Relationships between various
backtracking algorithms

Conflict-directed

backjumping

CBIJ with CBIJ with
forward- Jjumpback
checking learning

Empirical comparison of algorithms

«Benchmark instances
«Random problems
« Application-based random problems

«Generating fixed length random k-sat (n,m)
uniformly at random

«Generating fixed length random CSPs
«(N,K,T,C) also arity, r.

Fall 2022

The Phase transition (m/n)

Fixed length formulas are
generated by selecting a fixed
number m of clauses uniformly
at random of a given length k.

Small number of clauses yield
easy solvable instances. Large
number of clauses yield easy
unsolvable instances.

Peak hardness dependant on
m/n. for 3-sat, m/n=4.2

Random CSPs are generated via
(N,k,C,T)=(number of variables,
domains, number of binary
constraints, T tightness

Number of DP calls

ty

> 0.8

0.6 +

0.4

Probability of satisfiabili

0.2

- Point of being satisfiable

50%-satisfiable point

4000

T T T T
3 4 5 6 7 8

Ratio of clauses to variables

3500 -
3000 A
2500
2000 -
1500 A
1000 A

500 -

—— (0-variable formulas

e 4()-variable formulas

——2()-variable formulas

3 4 5 6 7 8
Ratio of clauses to variables

Fall 2022 63

Some empirical evaluation

« Sets 1-3 reports average over 2000 instances of random csps from
50% hardness. Set 1: 200 variables, set 2: 300, Set 3: 350. All had 3
values. Entries: average number of nodes, average time in sec

e Dimacs problems

Algorithm Set 1] “ot 2 Set 3 ssa 038 | ssa 158
FC 207 f° T, - - [46 14.5 | 52 20.0
L., .. U 04 1 (VRT 1 ULt -t - AN i
FCr-CIBJ 189 69.2 | 222 119.3 | 182 140.8 | 40 12.2 | 26 10.7
FC-CBJ+LVO 167 v3.8 | 132 86.8| 119 111.8 | 32 11.0 8 4.5
FC-CBJ+LRN IS6 63.4 32: 15.6 1 05123 55|19 8.6
DA ADT . TDNOTVND 1N 74N R TN 14 N 1 Do 107 2 O I3 i 1

Figure 6.16: Empirical comparison of six selected CSP algorithms. See text for explana-
tion. In each column of numbers. the first number indicates the number of nodes in the

search tree. rounded to the nearest thousand. and final 000 omitted: the second number
is CPU seconds.

Fall 2022 64

Results Interpretation

These results show that interleaving an arc-consistency procedure with search was
generally quite effective in these studies, as was combining learning and value
ordering.

An interesting observation can be made based on the nature of the constraints in
each of

the three sets of random problems. The problems with more restrictive, or tighter,
constraints, had sparser constraint graphs. With the looser constraints, the
difference

in performance among the algorithms was much less than on problems with tighter
con-

straints. The arc-consistency enforcing, and constraint-learning procedures were
much

more effective on the sparser graphs with tight constraints. These procedures are
able to

exploit the local structure in such problems. We also see that FC+AC prune the
search

space most effectively.

Fall 2022 65

Outline

e Look-back strategies

e Backjumping: Gaschnig, Graph-based, Conflict-directed

e Learning no-goods, constraint recording.

« Look-back for Satisfiability, integration and Empirical evaluation
e Good caching, counting

Fall 2022

66

Good caching:
Moving from one to all or countin

m O (@] m w >

A
BB /ﬂ\
EE n! n],‘ Iln

/ N7
CC Amgn 7 . 4 ’r %n

/N - x
% o BT i (g o e in g AT L AT ¥
NN N AN A A A AP A NN NN

FE DM [o[1]

Summary: Time-space for
consistency and counting

* Constraint-satisfaction
Search with backjumping
¢ Space: linear, Time:
Search with learning no-goods
¢ time and space:0(nk"")
Variable-elimination
¢ time and space: O0(nk"")
Counting, enumeration
Search with backjumping
® Space: linear, Time: 0 (k")
Search with no-goods caching only
® space: O(exp(.v)) Time: O(exp(i1))
Search with goods and no-goods learning
® Time and space: O(exp(f ~u. wiuad), O(exp(le,, 7))
Variable-elimination
® Timeand space: O(~ "))

o(nk! - 5

Fall 2022

All Solutions and Counting

e For all solutions and counting we will see

« The additional impact of Good learning

« BFS makes sense with good learning

« BFS and DFS time and space exp(path-width)
» Good-learning doesn’t help consistency task

Fall 2022

69

-

CSP - OR Search Tree

A

RABE

ABC|Ruc| [BCD|Ryp] [ABE A E F [Rur
0001 0001 0001 0000
00 00 00 |0 00 i
01700 010 0101 O
01 A 017 0 OO OO
170 0] 1 170 0] 1 17000 170 0] 1
170 1] 17010 170 1] 1 N
110 T 0] 1 10 10
170 N 170 170
0] il
0] 1] 0] [
0] 1] 0] 1] 0] 1] 0] 1

[o[1]of1]o[1]o[1]o]1]o[1]o[1[o[1]o[1]o[1]o[1]o[1]o[1]o[1]o[1]o]1][o][1]o[1]o[1]0]1]o[1]o[1]o]1]o[1]o[1]o[1]0[1]0[1]0]1]o[1]0[1]0]1]

Fall 2022 70

-

CSP - OR Search Tree

A

RABE

ABC|Ruc| [BCD|Ryp] [ABE A E F [Rur
0001 0001 0001 0000
00 00 00 |0 00 i
01700 010 0101 O
01 A 017 0 OO OO
170 0] 1 170 0] 1 17000 170 0] 1
170 1] 17010 170 1] 1 N
110 T 0] 1 10 10
170 N 170 170
0] il
0] 1] 0] [
0] 1] 0] 1] 0] 1] 0] 1

[o[1]of1]o[1]o[1]o]1]o[1]o]1[o[1]o[1]o[1]o[1]o[1]o[1]o[1]o[1]o]1][o[1]o[1]o[1]0]1]o[1]o[1]o]1]o[1]o[1]o[1]o1]0[1]0]1]o[1]0[1]0]1]

Fall 2022 71

-

CSP - OR Search Tree

A

RABE

A B C RABC B CD Racn A B E A E F AEF
0 0O 1 0 0O 1 0 0O 1 0 0O 0
0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1
010 0 010 1 010 1 010 1
0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1
100 1 100 1 1 0 0 0 100 1
1 0 1 1 17 0 1 0 17 0 1 1 17 0 1 1
171 0 1 171 0 1 1710 1 1710 1
17 1 1 0 17 1 1 1 1 1 1 0 1 1 1 0
14 solutions
0] 1]
0] 1] 0] 1]
0] 1] 0] 1] 0] 1] 0] 1]

[o[1]of1]o[1]o[1]o]1]o[1]o[1[o[1]o[1]o[1]o[1]o[1]o[1]o[1]o[1]o]1][o[1]o[1]o[1]0]1]o[1]o[1]o]1]o[1]o[1]o[1]o1]0[1]0]1]o[1]0[1]0]1]
I 111
6 7 89

10 1 12 13 14

Q1 —

1 2 3 4

Fall 2022 72

Tree DFS Traversal

CSP

A E F |Rur

A B E |Rue

B C D |Ruep

A B C|Ruc

=
-]
©
o]
™M
-]
©
B
B
]
(<)
=
i
]
-
o]
(o]
]
-
o]
]
i

\

01

A

01

E 1[o] of1]1[o] of1]1]o] o[1]

[o[1]o[1]o[1]0[1]

01

10

number of solutions below it

01110111

F

01 01

01

Value of node

73

Fall 2022

-

CSP - OR Search Tree

A

RABE

A B C RABC B CD Racn A B E A E F AEF
0 0O 1 0 0O 1 0 0O 1 0 0O 0
0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1
010 0 010 1 010 1 010 1
0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1
100 1 100 1 1 0 0 0 100 1
1 0 1 1 17 0 1 0 17 0 1 1 17 0 1 1
171 0 1 171 0 1 1710 1 1710 1
17 1 1 0 17 1 1 1 1 1 1 0 1 1 1 0
14 solutions
0] 1]
0] 1] 0] 1]
0] 1] 0] 1] 0] 1] 0] 1]

[o[1]of1]o[1]o[1]o]1]o[1]o[1[o[1]o[1]o[1]o[1]o[1]o[1]o[1]o[1]o]1][o[1]o[1]o[1]0]1]o[1]o[1]o]1]o[1]o[1]o[1]o1]0[1]0]1]o[1]0[1]0]1]
I 111
6 7 89

10 1 12 13 14

Q1 —

1 2 3 4

Fall 2022 74

#CSP - Searching the Graph by Good Caching

A E F |Rur

A B E |Rue

B C D |Ruep

A B C|Ruc

=[A]

A context(A)

o
<

B context(B)

[ABC]

C context(C)

[ABD]

D context(D)

= [AE]

E context(E)

[F]

F context(F)

75

Fall 2022

#CSP - Searching the Graph by Good Caching

context(A) = [A]

context(B) = [AB]
context(C) = [ABC]
context(D) = [ABD]
context(E) = [AE]

context(F) = [F]

A B C |Ruge B C D |Rgep A B E |Rpge A E F |Ryge
0 00 1 0 00 1 0 00 1 0 00 0
0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1
010 0 010 1 010 1 010 1
01 1 1 011 0 0 1 1 1 0 1 1 1
100 1 100 1 100 0 100 1
1.0 1 1 1.0 1 0 1.0 1 1 1.0 1 1
110 1 110 1 110 1 110 1
1.1 1 0 1.1 1 1 1.1 1 0 1.1 1 0

Fall 2022

76

#CSP - Searching the Graph by Good Caching

context(A) = [A]
context(B) = [AB]

context(C) = [ABC]
context(D) = [ABD]

context(E) = [AE]

A B C |Ruge B C D |Rgep A B E |Rpge A E F |Ryge
0 00 1 0 00 1 0 00 1 0 00 0
0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1
010 0 010 1 010 1 010 1
01 1 1 011 0 0 1 1 1 0 1 1 1
100 1 100 1 100 0 100 1
1.0 1 1 1.0 1 0 1.0 1 1 1.0 1 1
110 1 110 1 110 1 110 1
1.1 1 0 1.1 1 1 1.1 1 0 1.1 1 0

context(F) = [F]

Fall 2022

77

#CSP - Searching the Graph by Good Caching

c (A) F
] D B E Good-caching:
No caching: ~ 0 g
0 (exp(pw))
(exp(n)) ~_
0 1
1 0 1
1 0 1 1 0
0
0 1 0 1 0 1 0 1 1 0 1
0 0
0 0 0 0 A((OM1(0(1]0 k1 01
OE&OE&OEA| E&o
1] [{4] [{1 [({d1]
01 01 O1 01110111 10 10 10 11

Fall 2022 78

Summary: search principles

e DFS is better than BFS search

« Constraint propagation (i.e., bounded inference)
prunes search space

« Constraint propagation yields good advise for how to
branch and where to go

e Backjumping and no-good learning helps prune
search space and revise problem.

» Good learning revise problem but helps only
counting, enumeration

Fall 2022 79

Outline

e Look-back strategies

e Backjumping: Gaschnig, Graph-based, Conflict-directed

e Learning no-goods, constraint recording.

« Look-back for Satisfiability, integration and Empirical evaluation

e Counting, good caching

Fall 2022

80

