
Fall 2022

Outline (from last lecture)

• Converting a CSP iThe search tree for CSPs, Variable ordering and
consistency level

• Look-ahead for value selection:
• Forward checking,
• Full-arc-consistency,
• partial look-ahead,
• maintaining arc-consistency

• Dynamic Variable ordering (DVO, DVFC)
• Search for Satisfiability
• Converting a CSP into a SAT problem

Fall 2022

Look-ahead for sat: DPLL
(Davis-Putnam, Logeman and Laveland, 1962)

Fall 2022

On Unit Resolution

Fall 2022

Chronological Backtracking

Fall 2022

Reduction from CSP to SAT
Example: CSP into SAT
 Notation: variable-value pair = vvp

• vvp → term
• V1 = {a, b, c, d} yields x1 = (V1, a), x2 = (V1, b), x3 = (V1, c), x4 = (V1, d),
• V2 = {a, b, c} yields x5 = (V2, a), x6 = (V2, b), x7 = (V2,c).

• The vvp’s of a variable → disjunction of terms
• V1 = {a, b, c, d} yields

• (How do we express: “At most one VVP per variable “

Fall 2022

Reduction from CSP to SAT
Example: CSP into SAT
 Notation: variable-value pair = vvp

• vvp → term
• V1 = {a, b, c, d} yields x1 = (V1, a), x2 = (V1, b), x3 = (V1, c), x4 = (V1, d),
• V2 = {a, b, c} yields x5 = (V2, a), x6 = (V2, b), x7 = (V2,c).

• The vvp’s of a variable → disjunction of terms
• V1 = {a, b, c, d} yields

• (How do we express: “At most one VVP per variable “

Fall 2022

CSP into SAT (cont.)
Constraint:

1. Way 1: Each inconsistent tuple → one disjunctive clause
• For example: how many?

2. Way 2:
a) Consistent tuple → conjunction of terms
b) Each constraint → disjunction of these conjunctions

→ transform into conjunctive normal form (CNF)

Question: find a truth assignment of the Boolean variables such that the
sentence is satisfied

Fall 2022

Outline

• The search tree for CSPs, Variable ordering and consistency level
• Look-ahead for value selection:

• Forward checking,
• Full-arc-consistency,
• partial look-ahead,
• maintaining arc-consistency

• Dynamic Variable ordering (DVO, DVFC)
• Search for Satisfiability
• Converting a CSP into a SAT problem

Fall 2022

CompSci 275, CONSTRAINT Networks

Rina Dechter, Fall 2022

9

General Search: Look-back scuemes
Chapter 6

Fall 2022

Outline

• Look-back strategies
• Backjumping: Gaschnig, Graph-based, Conflict-directed
• Learning no-goods, constraint recording.
• Look-back for Satisfiability, integration and Empirical evaluation
• Counting, good caching

10

Fall 2022

Look-back:
Backjumping and Learning

• Backjumping:
• In deadends, go back to the

most recent culprit.

• Learning:
• constraint-recording:

• no-good recording.
• good-recording

11

Fall 2022

Backjumping

• (X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b})
• (r,b,b,b,g,r) conflict set of x7
• (r,-,b,b,g,-) conflict-set of x7
• (r,-,b,-,-,-,-) minimal conflict-set of x7
• Leaf deadend: (r,b,b,b,g,r)
• Every conflict-set is a no-good

12

Fall 2022

Backjumping

• (X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b})
• (r,b,b,b,g,r) conflict set of x7
• (r,-,b,b,g,-) conflict-set of x7
• (r,-,b,-,-,-,-) minimal conflict-set of x7
• Leaf deadend: (r,b,b,b,g,r)
• Every conflict-set is a no-good

13

Fall 2022

Flavor of Gaschnig’s jumps
only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf

14

Fall 2022 15

Flavor of Gaschnig’s jumps
only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf

Fall 2022

Backjumping styles

• Jump at leaf only (Gaschnig 1977)
• Context-based

• Graph-based (Dechter, 1990)
• Jumps at leaf and internal dead-ends, graph information

• Conflict-directed (Prosser 1993)
• Context-based, jumps at leaf and internal dead-ends

16

Fall 2022

Conflict Analysis

•Conflict set
•Leaf deadend
•Nogood
•Safe jump

17

Fall 2022

Conflict-set analysis

18

Fall 2022

Gaschnig’s backjumping:
Culprit variable

•

19

Fall 2022

Gaschnig’s backjumping
implementation [1979]

•

20

Gaschnig’s backjumping

21

Fall 2022

Example of Gaschnig’s backjump

22

Fall 2022

Properties

• Gaschnig’s backjumping implements only safe and maximal
backjumps in leaf-deadends.

23

Fall 2022

Gaschnig jumps only at
leaf-dead-ends Internal
dead-ends: dead-ends that are non-leaf

24

Fall 2022

Backjumping styles

• Jump at leaf only (Gaschnig 1977)
• Context-based

• Graph-based (Dechter, 1990)
• Jumps at leaf and internal dead-ends, graph information

• Conflict-directed (Prosser 1993)
• Context-based, jumps at leaf and internal dead-ends

25

Fall 2022

Graph-based backjumping scenarios
Internal deadend at X4

• Scenario 1, deadend at x4:
• Scenario 2: deadend at x5:
• Scenario 3: deadend at x7:
• Scenario 4: deadend at x6:

},{),,(314564 xxxxxI

26

Fall 2022

Graph-based backjumping

• Uses only graph information to find culprit
• Jumps both at leaf and at internal dead-ends
• Whenever a deadend occurs at x, it jumps to the most recent

variable y connected to x in the graph. If y is an internal deadend it
jumps back further to the most recent variable connected to x or y.

• The analysis of conflict is approximated by the graph.
• Graph-based algorithm provide graph-theoretic bounds.

27

Fall 2022

Ancestors and parents

•

28

Fall 2022

Internal deadends analysis

29

The induced-parents of a variable X along an ordering, approximates its parent set
in the induced-ordered graph

Fall 2022

Graph-based backjumping scenarios
Internal deadend at X4

• Scenario 1, deadend at x4:
• Scenario 2: deadend at x5:
• Scenario 3: deadend at x7:
• Scenario 4: deadend at x6:

},{),,(314564 xxxxxI

30

What are the relevant deadends?
What is the induced-parent set.

Fall 2022 31

Graph-based backjumping scenarios
Internal deadend at X4

Fall 2022

Graph-based backjumping algorithm,
but we need to jump at internal deadends too

When would not all variables
In the session above
X_i are relevant deadends?
read example 6.6

32

Fall 2022

Properties of graph-based backjumping

•

33

Fall 2022

Conflict-directed backjumping
(Prosser 1990)

•

34

Fall 2022

Example of conflict-directed
backjumping

35

Fall 2022

Properties of conflic-directed
backjumping

• Given a dead-end , , the latest variable in its jumpback set
is the earliest variable to which it is safe to jump.

• This is the culprit.
• Algorithm conflict-directed backtracking jumps back to the

latest variable in the dead-end jumpback set and is therefore
safe and maximal.

36

Fall 2022

Conflict-directed backjumping

37

Fall 2022

Graph-Based backjumping on dFS orderings

38

Fall 2022

Graph-based backjumping on DFS ordering

39

Rule: Go back to parent. No need to maintain a parent set

Spanning-tree of a graph;
DFS spanning trees, Pseudo-tree
Pseudo-tree is a spanning tree that does not allow arcs across branches.

Fall 2022

 Complexity of graph-based backjumping

40

•

Fall 2022

Complexity of backjumping
uses pseudo-tree analysis

Simple: always jump back to parent in pseudo tree
Complexity for csp: exp(tree-depth)
Complexity for csp: exp(w*log n)

41

Fall 2022

Outline

• Look-back strategies
• Backjumping: Gaschnig, Graph-based, Conflict-directed
• Learning no-goods, constraint recording.

• Shallow and deep learning, graph-based learning

• Look-back for Satisfiability, integration and Empirical evaluation
• Counting, good caching

42

Fall 2022

Look-back: No-good Learning,
Constraint recording

•

Learning means recording conflict sets
used as constraints to prune future
search space.

43

Fall 2022

Learning, constraint recording

• Learning means recording conflict sets
• An opportunity to learn is when deadend is discovered.
• Goal of learning is to not discover the same deadends.
• Try to identify small conflict sets
• Learning prunes the search space.

44

Fall 2022

Nogoods explain deadends

• Conflicts to record are explanations
• (x1=2,x2=2,x3=1,x4=2) 4-ary
• (x1=2,x2=2,x3=1,x4=2)! (x5 ≠1) and
• (x3=1,x4=2) !
• (x4=2) ! (x5 ≠1)

Learning means recording explanations to conflicts.
These are implied constraints

(x5 ≠1)

45

Fall 2022

Learning example

46

X3, X4
 r r
 r b
 b r
 b b

Fall 2022

Learning issues

•Learning styles
• Graph-based or context-based

• i-bounded, scope-bounded

• Relevance-based

•Non-systematic randomized learning
•Implies time and space overhead
•Applicable to SAT

47

Fall 2022

Graph-based learning algorithm

48

Fall 2022

Deep learning

• Deep learning: recording all and only minimal
conflict sets

• Example:
• Although most accurate, overhead can be

prohibitive: the number of conflict sets in the worst-
case:

49

Deep learning pioneer

https://medium.com/a-computer-of-ones-own/rina-dechter-deep-learning-pioneer-e7e9ccc96c6e

Fall 2022

Learning example

50

X3, X4
 r r
 r b
 b r
 b b

Fall 2022

 Jumpback learning

• Record the jumpback assignment

51

Jumpback set = {x3,x2,x7} X3,x2,x7
 r b r
 r b b
 r g r
 r g b
 b b r
 b b b
 b g b
 b g r

Fall 2022

 Jumpback learning

• Record the jumpback assignment

52

Fall 2022

Bounded and relevance-based learning
Bounding the arity of constraints recorded:
• When bound is i: i-ordered graph-based,i-order jumpback or i-order

deep learning.
• Overhead complexity of i-bounded learning is time and space

exponential in i.

53

Fall 2022

Complexity of backtrack-learning
for CSP

• The complexity of learning along d is time and space
exponential in w*(d):

The number of dead-ends is bounded by

Number of constraint tests per dead-end are

Space complexity is
Time complexity is

n- depth of tree, e- number of constraints

54

Fall 2022

Non-Systematic randomized learning

• Do search in a random way with interupts, restarts,
unsafe backjumping, but record conflicts.

• Guaranteed completeness.

55

Fall 2022

Outline

• Look-back strategies
• Backjumping: Gaschnig, Graph-based, Conflict-directed
• Learning no-goods, constraint recording.
• Look-back for Satisfiability, integration and Empirical evaluation
• Counting, good caching

56

Fall 2022

Look-back for SAT

•

57

 phi = {A,B,X}, {~C,~X}
Assignment= (~A,~B,C,F,R ! X)

{A,B,~C}

Fall 2022 58

Look-back for SAT

Fall 2022

Integration of algorithms

59

Fall 2022 60

Fall 2022

Relationships between various
backtracking algorithms

61

Fall 2022

Empirical comparison of algorithms

•Benchmark instances
•Random problems
•Application-based random problems
•Generating fixed length random k-sat (n,m)
uniformly at random

•Generating fixed length random CSPs
•(N,K,T,C) also arity, r.

62

Fall 2022

The Phase transition (m/n)

63

• Fixed length formulas are
generated by selecting a fixed
number m of clauses uniformly
at random of a given length k.

• Small number of clauses yield

easy solvable instances. Large
number of clauses yield easy
unsolvable instances.

• Peak hardness dependant on
m/n. for 3-sat, m/n = 4.2

• Random CSPs are generated via
(N,k,C,T)=(number of variables,
domains, number of binary
constraints, T tightness

Fall 2022

Some empirical evaluation
• Sets 1-3 reports average over 2000 instances of random csps from

50% hardness. Set 1: 200 variables, set 2: 300, Set 3: 350. All had 3
values. Entries: average number of nodes, average time in sec

• Dimacs problems

64

Fall 2022

Results Interpretation

65

These results show that interleaving an arc-consistency procedure with search was
generally quite effective in these studies, as was combining learning and value
ordering.
An interesting observation can be made based on the nature of the constraints in
each of
the three sets of random problems. The problems with more restrictive, or tighter,
constraints, had sparser constraint graphs. With the looser constraints, the
difference
in performance among the algorithms was much less than on problems with tighter
con-
straints. The arc-consistency enforcing, and constraint-learning procedures were
much
more effective on the sparser graphs with tight constraints. These procedures are
able to
exploit the local structure in such problems. We also see that FC+AC prune the
search
space most effectively.

Fall 2022

Outline

• Look-back strategies
• Backjumping: Gaschnig, Graph-based, Conflict-directed
• Learning no-goods, constraint recording.
• Look-back for Satisfiability, integration and Empirical evaluation
• Good caching, counting

66

Fall 2022

Good caching:
Moving from one to all or counting

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1 0 1 0 1

F 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

E 0 1 0 1 0 1 0 1

0C 1 0 1 0 1 0 1

F 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0B 1 0 1

A 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 1 0 1

E

C

F

D

B

A 0 1

0 1

0 1 0 1 0 1

A

D

B C

E

F

67

Fall 2022

Summary: Time-space for
consistency and counting

•

68

Fall 2022

All Solutions and Counting

•For all solutions and counting we will see
• The additional impact of Good learning
• BFS makes sense with good learning

• BFS and DFS time and space exp(path-width)

• Good-learning doesn’t help consistency task

69

Fall 2022

#CSP – OR Search Tree

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

A

E

C

B

F

D

A B C RABC
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

A B E RABE
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

A E F RAEF
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

B C D RBCD
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

70

Fall 2022

#CSP – OR Search Tree

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

A

E

C

B

F

D

A B C RABC
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

B C D RBCD
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B E RABE
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

A E F RAEF
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

71

Fall 2022

#CSP - OR Search Tree

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

A

E

C

B

F

D

A B C RABC
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

B C D RBCD
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B E RABE
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

A E F RAEF
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

14 solutions

1 2 3 4 6 7 9 10 11 12 13 145 8

72

Fall 2022

#CSP - Tree DFS Traversal

0 1

0

0 1

0 1

0

C

D

F

E

B

A 0

A

E

C

B

F

D

A B C RABC
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

A B E RABE
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

A E F RAEF
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

B C D RBCD
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

0 1

1 0

1

0 1

0 1

0 1

1 0

1 1

2

0

0 1

0 1

0 1

1 0

1 0 1

1

3

Value of node = number of solutions below it

5

0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1

1 0 1

1

0 1 0 11 1 1 1 1 0 1 0 1 0 1 1

1 2 1 2

0

0
1

0
1

0
2

0

0

0

2

2

2

1

0
3 3

6

6

9

1 1 1

12

3

14

73

Fall 2022

#CSP - OR Search Tree

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1

C

D

F

E

B

A 0 1

A

E

C

B

F

D

A B C RABC
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

B C D RBCD
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B E RABE
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

A E F RAEF
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

14 solutions

1 2 3 4 6 7 9 10 11 12 13 145 8

74

Fall 2022

#CSP - Searching the Graph by Good Caching

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 1 0 1

0 1 0 1

C context(C) = [ABC]

D context(D) = [ABD]

F context(F) = [F]

E context(E) = [AE]

B context(B) = [AB]

A context(A) = [A] 0 1

A

E

C

B

F

D

A B C RABC
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

A B E RABE
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

A E F RAEF
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

B C D RBCD
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

75

Fall 2022

#CSP - Searching the Graph by Good Caching

0

0 1

0 1

0 1

0

C context(C) = [ABC]

D context(D) = [ABD]

F context(F) = [F]

E context(E) = [AE]

B context(B) = [AB]

A context(A) = [A] 0

A

E

C

B

F

D

A B C RABC
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

A B E RABE
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

A E F RAEF
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

B C D RBCD
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

0 1

1 0

1 1

1 0 1 0 1 0 1

0 1 0 1 0 1

0 1

1 0 1

1

2

3

1

9

2

3 3

6

6

12

1 1

2 1

3

2

2

2

5

14

76

Fall 2022

#CSP - Searching the Graph by Good Caching

0

0 1

0 1

0 1

0

C context(C) = [ABC]

D context(D) = [ABD]

F context(F) = [F]

E context(E) = [AE]

B context(B) = [AB]

A context(A) = [A] 0

A

E

C

B

F

D

A B C RABC
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

A B E RABE
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

A E F RAEF
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

B C D RBCD
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

0 1

1 0

1 1

1 0 1 0 1 0 1

0 1 0 1 0 1

0 1

1 0 1

1

2

3

1

9

2

3 3

6

6

12

1 1

2 1

3

2

2

2

5

14

(A=0,E=0) is good
V(A=0,E=0)=1

77

Fall 2022

#CSP - Searching the Graph by Good Caching

A

E

C

B

F

D

0

0 1

0 1

0 1

0

0

0 1

1 0

1 1

1 0 1 0 1 0 1

0 1 0 1 0 1

0 1

1 0 1

1

2

3

1

9

3 3

6

6

12

1 1

2 1

3

2

2

2

5

14

0 1

0

0 1

0 1

0

0

01

1 0

1

0 1

0 1

01

1 0

11

2

0

0 1

0 1

01

1 0

1 01

1

3

5

0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1

1 0 1

1

01 0111 11 10 10 10 11

1 2 1 2

0

0
1
0
1
0

2
0

0

0

2

2

2

1

0
3 3

6

6

9

1 1 1

12

3

1
4

Good-caching:
O(exp(pw))No caching:

O(exp(n))

78

Fall 2022

Summary: search principles

• DFS is better than BFS search
• Constraint propagation (i.e., bounded inference)

prunes search space
• Constraint propagation yields good advise for how to

branch and where to go
• Backjumping and no-good learning helps prune

search space and revise problem.
• Good learning revise problem but helps only

counting, enumeration

79

Fall 2022

Outline

• Look-back strategies
• Backjumping: Gaschnig, Graph-based, Conflict-directed
• Learning no-goods, constraint recording.
• Look-back for Satisfiability, integration and Empirical evaluation
• Counting, good caching

80

